Genomic and Functional Profiling of Duplicated Chromosome

Total Page:16

File Type:pdf, Size:1020Kb

Genomic and Functional Profiling of Duplicated Chromosome Human Molecular Genetics, 2006, Vol. 15, No. 6 853–869 doi:10.1093/hmg/ddl004 Advance Access published on January 30, 2006 Genomic and functional profiling of duplicated chromosome 15 cell lines reveal regulatory alterations in UBE3A-associated ubiquitin–proteasome pathway processes Colin A. Baron1, Clifford G. Tepper2, Stephenie Y. Liu1, Ryan R. Davis1, Nicholas J. Wang3, N. Carolyn Schanen4 and Jeffrey P. Gregg1,* 1Department of Pathology and 2Department of Biochemistry and Molecular Medicine, University of California, Davis School of Medicine, Sacramento, CA 95817, USA, 3Department of Human Genetics, University of 4 California–Los Angeles, Los Angeles, CA, USA and Center for Pediatric Research, Nemours Biomedical Research, Downloaded from Alfred I. duPont Hospital for Children, Wilmington, DE, USA Received November 21, 2005; Revised and Accepted January 25, 2006 Autism is a complex neurodevelopmental disorder having both genetic and epigenetic etiological elements. hmg.oxfordjournals.org Isodicentric chromosome 15 (Idic15), characterized by duplications of the multi-disorder critical region of 15q11–q14, is a relatively common cytogenetic event. When the duplication involves maternally derived con- tent, this abnormality is strongly correlated with autism disorder. However, the mechanistic links between Idic15 and autism are ill-defined. To gain insight into the potential role of these duplications, we performed a comprehensive, genomics-based characterization of an in vitro model system consisting of lymphoblast cell lines derived from individuals with both autism and Idic15. Array-based comparative genomic hybridiz- ation using commercial single nucleotide polymorphism arrays was conducted and found to be capable of by guest on December 17, 2010 sub-classifying Idic15 samples by virtue of the lengths of the duplicated chromosomal region. In further analysis, whole-genome expression profiling revealed that 112 transcripts were significantly dysregulated in samples harboring duplications. Paramount among changing genes was ubiquitin protein ligase E3A (UBE3A; 15q11–q13), which was found to be nearly 1.5–2.0-fold up-regulated in duplicated samples at both the RNA and protein levels. Other key findings from gene expression analysis included two down- regulated genes, APP and SUMO1, with well-characterized roles in the process of apoptosis. We further demonstrate in this lymphoblast model that the gene-dosage directed increases in UBE3A levels can lead to dysregulation of the process of ubiquitination in response to genotoxic insult. This study provides insight into the direct and indirect effects of copy number gains in chromosome 15 and provides a framework for the study of these effects in neuronal systems. INTRODUCTION factors for autism has been well established in family and twin studies. Additionally, there is an emerging evidence Childhood autism (MIM 209850) is characterized as a that the presence of chromosomal abnormalities may play a pervasive neurodevelopmental disorder with onset before significant role in the etiology of autism. This is based on 30–36 months of age, resulting in impairment in social inter- the high frequency of large chromosomal anomalies identified action and communication and manifestation of repetitive in patients with autism spectrum disorders (ASD), which stereotypic behavior. The estimated prevalence of this disorder range from 1.7 to 4.8% depending on the population screened is one to two per 1000 births (1). The involvement of genetic and the method of detection applied (2,3). These have *To whom correspondence should be addressed at: MIND Institute Wet Lab, 2805 50th St., No. 2420, Sacramento, CA 95817, USA. Tel: +1 9167030362; Fax: +1 9167030367; Email: [email protected] # The Author 2006. Published by Oxford University Press. All rights reserved. For Permissions, please email: [email protected] 854 Human Molecular Genetics, 2006, Vol. 15, No. 6 included unbalanced translocations, inversions, rings and isodicentric chromosomes. Analysis of differentially expressed interstitial deletions and duplications. Although most of these genes demonstrated an overabundance of genes in pathways rearrangements are unique to a single patient or family, a associated with ubiquitination and apoptosis, suggesting that number of recurrent chromosome abnormalities have been these pathways may be altered in Idic15 subjects. Of reported in unrelated patients, including duplication of 15q, prominence was UBE3A, located within the 15q11–q13 deletions of 18q, Xp, 2q and sex chromosome aneuploidies: contig area, which was found to be overexpressed at both the 47,XYY and 45,X (4,5). transcriptional and protein levels. Furthermore, functional In these studies, chromosomal abnormalities have been data presented here suggest that this overexpression of identified by using traditional cytogenetics and fluorescence UBE3A is associated with dysregulated ubiquitination triggered in situ hybridization (FISH), which allow detection of whole- by genotoxic stress and altered apoptosis in patients with chromosome losses or gains or large chromosomal deletions Idic15. Therefore, we demonstrate a systems biology approach and duplications. Over the last several years, however, to analyze copy number changes, demonstrating a link between smaller chromosomal aberrations in the range of 5 kb to DNA copy, transcriptional activity and protein production, as 10 Mb, which have traditionally been undetectable with well as identifying functional repercussions. classic cytogenetics, have been detected in a number of dis- eases. New genomic technologies have been developed, which can scan the genome at a very high resolution (6) in RESULTS Downloaded from order to analyze DNA copy number. Large insert clones that Affymetrix mapping arrays identify Idic15 amplifications contain mapped genomic segments have been utilized for in samples previously characterized by CGH copy number alteration (CNA) detection either by directly spotting onto glass slides or by amplifying these regions and To identify chromosomal amplifications using commercially then spotting them (6). Similarly, oligonucleotides represent- available SNP arrays and a nascent array-based CGH ing specific spacing and regions in the genome have been approach, we profiled 10 samples with known chromosome developed and utilized for copy number analysis (7). Recently, 15 duplications and nine control cell lines with Affymetrix hmg.oxfordjournals.org single nucleotide polymorphism (SNP) arrays, initially uti- arrays. The samples with duplications have been previously lized for loss of heterozygosity in cancer (8–10), have been found to have variable duplications of chromosome 15q11– applied for use in copy number analysis (11). q13, a region spanning 10 Mb. The Affymetrix mapping In this study, we applied the SNP array-based comparative 10K array includes 32 SNPs in this region separated by a genomic hybridization (CGH) approach to a known dupli- median distance of 191 kb. cation of the chromosome 15q11–q13 region that is associated To evaluate whether the SNP arrays would be able to with autism. Duplications of chromosome 15q11–q13 account differentiate between control and duplicated samples, we by guest on December 17, 2010 for 1–3% of autism and are the second most prevalent hybridized genomic DNA from nine samples from typically genomic aberration associated with autism next to fragile X developing children to the arrays and analyzed using the syndrome. These duplications range from 8 to 12 Mb and, Chromosomal Copy Number Tool (CCNT) for regions of sig- when associated with autism, are derived from the maternal nificant consecutive copy change, which we defined to be chromosome (12,13). These duplications can occur either above a 2log10(meta P-value) of 5. None of the samples through generation of a supernumerary isodicentric chromo- from the typically developing children showed meta P-value some 15 (idic15) or as an interstitial duplication. With proof scores above 5 for the target region (Fig. 1A). Conversely, of principle that the SNP array approach is robust in accurately when the same region was examined in the samples with identifying and determining the breakpoints of this region, this known duplications, chromosomal copy number increase for technology could be extended to analyze a large cohort of the 15q11–q13 region was identified in all samples. The children with autism. meta P-values for these samples were found to be at the theor- 220 The importance of this genomic approach in autism is that etical maximum of 20 (P-value ¼ 1 Â 10 ) for the entire there is a significant co-morbidity with mental retardation length of the duplication, a region containing 22–31 SNPs (MR). Recently, Lugtenberg et al. (14) applied array-based (Fig. 1B). Additionally, the data from the CCNT discriminated CGH to a cohort of mentally retarded patients who were con- the characteristic breakpoints of each sample, making it poss- sidered to be cytogenetically normal based on classic cyto- ible to classify them by the length of their duplications genetics and FISH. These studies demonstrated that 10% of (Fig. 2). In summary, these data support the utilization of these MR cases carried small chromosomal abnormalities the SNP arrays and CCNT as a valid approach for the identi- ranging from 100 kb to 12 Mb. This suggests that in autism fication of copy number changes in chromosomal regions. there may be a large number of undetected chromosomal aberrations. Beyond identifying these aberrant
Recommended publications
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Rule Mining on Microrna Expression Profiles For
    Faculty of Engineering and Information Technology University of Technology, Sydney Rule Mining on MicroRNA Expression Profiles for Human Disease Understanding A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Renhua Song July 2016 CERTIFICATE OF AUTHORSHIP/ORIGINALITY I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. Signature of Candidate i Acknowledgments First, and foremost, I would like to express my gratitude to my chief supervisor, Assoc. Prof. Jinyan Li, and to my co-supervisors Assoc. Prof. Paul Kennedy and Assoc. Prof. Daniel Catchpoole. I am extremely grateful for all the advice and guidance so unselfishly given to me over the last three and half years by these three distinguished academics. This research would not have been possible without their high order supervision, support, assistance and leadership. The wonderful support and assistance provided by many people during this research is very much appreciated by me and my family. I am very grateful for the help that I received from all of these people but there are some special individuals that I must thank by name. A very sincere thank you is definitely owed to my loving husband Jing Liu, not only for his tremendous support during the last three and half years, but also his unfailing and often sorely tested patience.
    [Show full text]
  • Exploring Prostate Cancer Genome Reveals Simultaneous Losses of PTEN, FAS and PAPSS2 in Patients with PSA Recurrence After Radical Prostatectomy
    Int. J. Mol. Sci. 2015, 16, 3856-3869; doi:10.3390/ijms16023856 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Exploring Prostate Cancer Genome Reveals Simultaneous Losses of PTEN, FAS and PAPSS2 in Patients with PSA Recurrence after Radical Prostatectomy Chinyere Ibeawuchi 1, Hartmut Schmidt 2, Reinhard Voss 3, Ulf Titze 4, Mahmoud Abbas 5, Joerg Neumann 6, Elke Eltze 7, Agnes Marije Hoogland 8, Guido Jenster 9, Burkhard Brandt 10 and Axel Semjonow 1,* 1 Prostate Center, Department of Urology, University Hospital Muenster, Albert-Schweitzer-Campus 1, Gebaeude 1A, Muenster D-48149, Germany; E-Mail: [email protected] 2 Center for Laboratory Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Gebaeude 1A, Muenster D-48149, Germany; E-Mail: [email protected] 3 Interdisciplinary Center for Clinical Research, University of Muenster, Albert-Schweitzer-Campus 1, Gebaeude D3, Domagkstrasse 3, Muenster D-48149, Germany; E-Mail: [email protected] 4 Pathology, Lippe Hospital Detmold, Röntgenstrasse 18, Detmold D-32756, Germany; E-Mail: [email protected] 5 Institute of Pathology, Mathias-Spital-Rheine, Frankenburg Street 31, Rheine D-48431, Germany; E-Mail: [email protected] 6 Institute of Pathology, Klinikum Osnabrueck, Am Finkenhuegel 1, Osnabrueck D-49076, Germany; E-Mail: [email protected] 7 Institute of Pathology, Saarbrücken-Rastpfuhl, Rheinstrasse 2, Saarbrücken D-66113, Germany; E-Mail: [email protected] 8 Department
    [Show full text]
  • Modulating Hallmarks of Cholangiocarcinoma
    University of Nebraska Medical Center DigitalCommons@UNMC Theses & Dissertations Graduate Studies Fall 12-14-2018 Modulating Hallmarks of Cholangiocarcinoma Cody Wehrkamp University of Nebraska Medical Center Follow this and additional works at: https://digitalcommons.unmc.edu/etd Part of the Molecular Biology Commons Recommended Citation Wehrkamp, Cody, "Modulating Hallmarks of Cholangiocarcinoma" (2018). Theses & Dissertations. 337. https://digitalcommons.unmc.edu/etd/337 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@UNMC. It has been accepted for inclusion in Theses & Dissertations by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. MODULATING HALLMARKS OF CHOLANGIOCARCINOMA by Cody J. Wehrkamp A DISSERTATION Presented to the Faculty of the University of Nebraska Graduate College in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Biochemistry and Molecular Biology Graduate Program Under the Supervision of Professor Justin L. Mott University of Nebraska Medical Center Omaha, Nebraska November 2018 Supervisory Committee: Kaustubh Datta, Ph.D. Melissa Teoh‐Fitzgerald, Ph.D. Richard G. MacDonald, Ph.D. Acknowledgements This endeavor has led to scientific as well as personal growth for me. I am indebted to many for their knowledge, influence, and support along the way. To my mentor, Dr. Justin L. Mott, you have been an incomparable teacher and invaluable guide. You upheld for me the concept that science is intrepid, even when the experience is trying. Through my training, and now here at the end, I can say that it has been an honor to be your protégé. When you have shaped your future graduates to be and do great, I will be privileged to say that I was your first one.
    [Show full text]
  • Redefining the Specificity of Phosphoinositide-Binding by Human
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.20.163253; this version posted June 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Redefining the specificity of phosphoinositide-binding by human PH domain-containing proteins Nilmani Singh1†, Adriana Reyes-Ordoñez1†, Michael A. Compagnone1, Jesus F. Moreno Castillo1, Benjamin J. Leslie2, Taekjip Ha2,3,4,5, Jie Chen1* 1Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801; 2Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205; 3Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218; 4Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205; 5Howard Hughes Medical Institute, Baltimore, MD 21205, USA †These authors contributed equally to this work. *Correspondence: [email protected]. bioRxiv preprint doi: https://doi.org/10.1101/2020.06.20.163253; this version posted June 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. ABSTRACT Pleckstrin homology (PH) domains are presumed to bind phosphoinositides (PIPs), but specific interaction with and regulation by PIPs for most PH domain-containing proteins are unclear. Here we employed a single-molecule pulldown assay to study interactions of lipid vesicles with full-length proteins in mammalian whole cell lysates.
    [Show full text]
  • Molecular Effects of Isoflavone Supplementation Human Intervention Studies and Quantitative Models for Risk Assessment
    Molecular effects of isoflavone supplementation Human intervention studies and quantitative models for risk assessment Vera van der Velpen Thesis committee Promotors Prof. Dr Pieter van ‘t Veer Professor of Nutritional Epidemiology Wageningen University Prof. Dr Evert G. Schouten Emeritus Professor of Epidemiology and Prevention Wageningen University Co-promotors Dr Anouk Geelen Assistant professor, Division of Human Nutrition Wageningen University Dr Lydia A. Afman Assistant professor, Division of Human Nutrition Wageningen University Other members Prof. Dr Jaap Keijer, Wageningen University Dr Hubert P.J.M. Noteborn, Netherlands Food en Consumer Product Safety Authority Prof. Dr Yvonne T. van der Schouw, UMC Utrecht Dr Wendy L. Hall, King’s College London This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences). Molecular effects of isoflavone supplementation Human intervention studies and quantitative models for risk assessment Vera van der Velpen Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 20 June 2014 at 13.30 p.m. in the Aula. Vera van der Velpen Molecular effects of isoflavone supplementation: Human intervention studies and quantitative models for risk assessment 154 pages PhD thesis, Wageningen University, Wageningen, NL (2014) With references, with summaries in Dutch and English ISBN: 978-94-6173-952-0 ABSTRact Background: Risk assessment can potentially be improved by closely linked experiments in the disciplines of epidemiology and toxicology.
    [Show full text]
  • Variation in Protein Coding Genes Identifies Information
    bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 1 1 2 3 4 5 Variation in protein coding genes identifies information flow as a contributor to 6 animal complexity 7 8 Jack Dean, Daniela Lopes Cardoso and Colin Sharpe* 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Institute of Biological and Biomedical Sciences 25 School of Biological Science 26 University of Portsmouth, 27 Portsmouth, UK 28 PO16 7YH 29 30 * Author for correspondence 31 [email protected] 32 33 Orcid numbers: 34 DLC: 0000-0003-2683-1745 35 CS: 0000-0002-5022-0840 36 37 38 39 40 41 42 43 44 45 46 47 48 49 Abstract bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 2 1 Across the metazoans there is a trend towards greater organismal complexity. How 2 complexity is generated, however, is uncertain. Since C.elegans and humans have 3 approximately the same number of genes, the explanation will depend on how genes are 4 used, rather than their absolute number.
    [Show full text]
  • Expression Analysis of Progesterone‑Regulated Mirnas in Cells Derived from Human Glioblastoma
    MOLECULAR MEDICINE REPORTS 23: 475, 2021 Expression analysis of progesterone‑regulated miRNAs in cells derived from human glioblastoma DIANA ELISA VELÁZQUEZ‑VÁZQUEZ1, AYLIN DEL MORAL‑MORALES1, JENIE MARIAN CRUZ‑BURGOS2, EDUARDO MARTÍNEZ‑MARTÍNEZ3, MAURICIO RODRÍGUEZ‑DORANTES2 and IGNACIO CAMACHO‑ARROYO1 1Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología‑Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510; 2Oncogenomics Laboratory, The National Institute of Genomic Medicine; 3Laboratory of Cell Communication and Extracellular Vesicles, The National Institute of Genomic Medicine, Mexico City 14610, Mexico Received August 16, 2020; Accepted February 2, 2021 DOI: 10.3892/mmr.2021.12114 Abstract. Glioblastomas (GBMs) are the most frequent and is characterized by being highly infiltrative, angiogenic and malignant type of brain tumor. It has been reported that resistant to chemotherapy and radiotherapy. The medical progesterone (P4) regulates the progression of GBMs by modi‑ history of patients with GBM is short as few of them survive fying the expression of genes that promote cell proliferation, more than one year (1‑3). GBM is mainly diagnosed in adults migration and invasion; however, it is not fully understood >50 years old, but it can occur at any age and the incidence is how these processes are regulated. It is possible that P4 medi‑ higher in men than in women (3:2) (4). ates some of these effects through changes in the microRNA Studies have focused on the identification of new biomarkers (miRNA) expression profile in GBM cells. The present study and therapeutic agents in GBM. Of particular interest are the investigated the effects of P4 on miRNAs expression profile microRNAs (miRNAs), which are single‑stranded, short, in U‑251MG cells derived from a human GBM.
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • ARHGAP25 (A-12): Sc-137297
    SAN TA C RUZ BI OTEC HNOL OG Y, INC . ARHGAP25 (A-12): sc-137297 BACKGROUND SOURCE GTPase-activating proteins (GAPs) accelerate the intrinsic rate of GTP ARHGAP25 (A-12) is an affinity purified goat polyclonal antibody raised hydrolysis of Ras-related proteins, resulting in downregulation of their active against a peptide mapping within an internal region of ARHGAP25 of human form. ARHGAP25 (Rho GTPase activating protein 25), also known as Rho-type origin. GTPase-activating protein 25, is a 645 amino acid protein that contains one Pleckstrin homology (PH) domain and one Rho-GAP domain. Encoded by a PRODUCT gene that maps to human chromosome 2p14, ARHGAP25 exists as four alter - Each vial contains 200 µg IgG in 1.0 ml of PBS with < 0.1% sodium azide natively spliced isoforms and shares significant homology with ARHGAP22 and 0.1% gelatin. and ARHGAP24 by exhibiting a common domain structure (PH-RhoGAP-CC); however, tissue expression of ARHGAP25 is myeloid-specific. ARHGAP25 is Blocking peptide available for competition studies, sc-137297 P, (100 µg a candidate epigenetic biomarker for non-invasive prenatal diagnosis of Down peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA). syndrome, as well as a candidate gene in a chromosome 2p susceptibility locus linked to salt-sensitive hypertension and drug response. APPLICATIONS ARHGAP25 (A-12) is recommended for detection of ARHGAP25 isoforms 1 REFERENCES and 2 of mouse, rat and human origin by Western Blotting (starting dilution 1. Katoh, M., et al. 2004. Identification and characterization of ARHGAP24 1:100, dilution range 1:50-1:500), immunofluorescence (starting dilution 1:25, and ARHGAP25 genes in silico.
    [Show full text]
  • A Yeast Phenomic Model for the Influence of Warburg Metabolism on Genetic Buffering of Doxorubicin Sean M
    Santos and Hartman Cancer & Metabolism (2019) 7:9 https://doi.org/10.1186/s40170-019-0201-3 RESEARCH Open Access A yeast phenomic model for the influence of Warburg metabolism on genetic buffering of doxorubicin Sean M. Santos and John L. Hartman IV* Abstract Background: The influence of the Warburg phenomenon on chemotherapy response is unknown. Saccharomyces cerevisiae mimics the Warburg effect, repressing respiration in the presence of adequate glucose. Yeast phenomic experiments were conducted to assess potential influences of Warburg metabolism on gene-drug interaction underlying the cellular response to doxorubicin. Homologous genes from yeast phenomic and cancer pharmacogenomics data were analyzed to infer evolutionary conservation of gene-drug interaction and predict therapeutic relevance. Methods: Cell proliferation phenotypes (CPPs) of the yeast gene knockout/knockdown library were measured by quantitative high-throughput cell array phenotyping (Q-HTCP), treating with escalating doxorubicin concentrations under conditions of respiratory or glycolytic metabolism. Doxorubicin-gene interaction was quantified by departure of CPPs observed for the doxorubicin-treated mutant strain from that expected based on an interaction model. Recursive expectation-maximization clustering (REMc) and Gene Ontology (GO)-based analyses of interactions identified functional biological modules that differentially buffer or promote doxorubicin cytotoxicity with respect to Warburg metabolism. Yeast phenomic and cancer pharmacogenomics data were integrated to predict differential gene expression causally influencing doxorubicin anti-tumor efficacy. Results: Yeast compromised for genes functioning in chromatin organization, and several other cellular processes are more resistant to doxorubicin under glycolytic conditions. Thus, the Warburg transition appears to alleviate requirements for cellular functions that buffer doxorubicin cytotoxicity in a respiratory context.
    [Show full text]
  • ATP6V0A2 Rabbit Polyclonal Antibody – TA308549 | Origene
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA308549 ATP6V0A2 Rabbit Polyclonal Antibody Product data: Product Type: Primary Antibodies Applications: WB Recommended Dilution: WB:1:1000-1:10000 Reactivity: Human, Mouse Host: Rabbit Isotype: IgG Clonality: Polyclonal Immunogen: Recombinant fragment corresponding to a region within amino acids 156 and 434 of ATP6V0A2 (Uniprot ID#Q9Y487) Formulation: 1XPBS, 20% Glycerol (pH7). 0.01% Thimerosal was added as a preservative. Concentration: lot specific Purification: Purified by antigen-affinity chromatography. Conjugation: Unconjugated Storage: Store at -20°C as received. Stability: Stable for 12 months from date of receipt. Predicted Protein Size: 98 kDa Gene Name: ATPase H+ transporting V0 subunit a2 Database Link: NP_036595 Entrez Gene 21871 MouseEntrez Gene 23545 Human Q9Y487 Background: The multisubunit vacuolar-type proton pump (H(+)-ATPase or V-ATPase) is essential for acidification of diverse cellular components, including endosomes, lysosomes, clathrin-coated vesicles, secretory vesicles, and chromaffin granules, and it is found at high density in the plasma membrane of certain specialized cells. H(+)-ATPases are comprised of a peripheral V(1) domain and an integral membrane V(0) domain; ATP6V0A2 is a component of the V(0) domain (Smith et al., 2003 [PubMed 14580332]). [supplied by OMIM] Synonyms: A2; ARCL; ARCL2A; ATP6A2;
    [Show full text]