Id 524 Design Earthquakes for Iter in Europe At

Total Page:16

File Type:pdf, Size:1020Kb

Id 524 Design Earthquakes for Iter in Europe At ID 524 DESIGN EARTHQUAKES FOR ITER IN EUROPE AT CADARACHE Comparison of the semi-empirical methods used according to the French regulation and the seismic probabilistic assessment of the site Jean-Philippe Girard1, Gottfried Grünthal2, Marc Nicolas3 and EISS Team 1 Direction de l‘Énergie Nucléaire, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France 2 GeoForschungsZentrum Potsdam, Germany 3 CEA-DAM Íle de France, 91680 Bruyères-le-Châtel, France Phone: +33 4 42 25 66 74 œ Fax: +33 4 42 25 25 00 œ Email: jean-philippe.girard@ cea.fr Abstract Input requirements and assumptions for ITER consider that an infrequent, severe earthquake (called SL-2) which, although unlikely to occur during the lifetime of the facility, is assessed to demonstrate adequate protection of the public. This earthquake is assumed to have a return period of 10,000 years. An investment protection level or inspection level (where all Structures, Systems and Components are safe) with a peak ground acceleration (pga) at 0.5 m/s2 is also considered. As a basis, orders of magnitude of consequences, if no countermeasures were taken, are given. The European site proposed for ITER is situated in the South of France, 40 km North-East of Aix-en-Provence, in a low to moderate seismic area according to the Global Seismic Hazard Map (GSHAP Group 1999). The tokamak building would be implemented on good bedrock made of limestone with a shear wave velocity of over 1,300 m/s. Four aspects are discussed: regulation, implementation of this regulation for the proposed site (site geology, tectonic, seismotectonic), a probabilistic seismic hazard assessment of the site has been performed using a methodology which considers uncertainties (this work has been developed by the team which had contributed to large parts of the GSHAP map study), finally the fulfilment of the requirements and assumptions are discussed, according to IAEA guides for instance. As a conclusion of the studies the main characteristics of the Cadarache European site are discussed: as a reference the standardized 475 year mean return period hazard (i.e. 10 % of chance to occur in 50 years); 10,000 year return period in accordance with the ITER assumption. Preliminary studies have shown that the European site proposal will ensure a low level of project risk with respect to the seismic hazard. Keywords: ITER, Cadarache, seism, geology 1 ID 524 Input requirements and assumptions for ITER consider that an infrequent, severe earthquake which, although unlikely to occur during the lifetime of the facility, is assessed to demonstrate adequate protection of the public. This earthquake is assumed to have a return period of 10,000 years. An investment protection level or inspection level (where all structures, systems and components are safe) is also defined with a peak ground acceleration (pga) of .05 g (or 0.5m/s2). 1. Radioactive inventory and potential risk and impact The ITER tritium inventory is in the order of a kilogram of tritium. The impact of such an inventory on nearest population could be in the order of few tens of mSv to the Sievert according to the chemical form of the tritium (gas or water) if no confinement would be designed to prevent releases of the tritium. 1 to 10 mSv is the upper limit of design values usually consider for infrequent severe accident consequences. Though if no other contamination sources were considered (i.e. radioactive with irradiated dust, or chemical with beryllium), ITER would have to be designed to confine tritium during major accident such as severe earthquakes. 2. Seismic Hazard Assessment at the proposed European ITER Site The probabilistic seismic hazard assessment analysis for the proposed ITER site at Cadarache, France, is described. Uncertainties in the input parameters lead to fractiles reflecting the uncertainty of the output hazard. According to the IAEA SL-1 and SL-2 standards, median hazard values at annual probabilities of occurrence of 10-2 and 10-4 years, respectively, are given. 2.1. Seismicity data For the probabilistic calculation of the seismic hazard at Cadarache the French earthquake catalogue —Sisfrance“ [1], calibrated in terms of moment magnitudes Mw, served as the basis for the study. The spatial distribution of epicentres in the region of southern France (including parts of Italy) is shown in Figure 1 (see [2] and [3]). 2.2. Input parameters and computation algorithm The uncertainty of the input parameters used for a probabilistic hazard calculation are considered in the so-called —logic tree“ algorithm. For each input parameter, several values or models are entered with their relative weights. The seismic source zone model proposed in Martin [4] et al. (2001) was adopted, dividing France into 52 seismic source zones. The zones around Cadarache are shown in Figure 2. The source zone model was modified with respect to the Durance fault, which is considered as separate. Seismicity parameters calculated for each zone for the logic tree input are the characteristics (a- and b-values) of the Gutenberg- Richter frequency-magnitude relation based on complete data in each size class, maximum expected magnitudes and representative focal depths [5]. The input a- and b-values are given with ± one standard deviation to account for the uncertainty. The maximum magnitude values are obtained with a technique modified after Cornell (1994) [6] and Coppersmith (1994) [7] based on data from globally distributed stable continental regions. Five representative values of the focal depth distribution are given for each source zone. Samples of frequency- magnitude relations, maximum magnitude distributions and focal depth sets are given in Figure 2. The obtained magnitude values are well above the respective maximum observed 2 ID 524 magnitude, e.g. for two of the zones in Figure 1, the highest maximum values are more than two magnitude units above the observed magnitude. Since no sufficient numbers of strong- motion recordings exist for southern France, attenuation relations from similar tectonic regimes and with similar subsoil characteristics were applied for the Cadarache calculations. Since both, extensional tectonics and strike-slip movement are prevailing in the surrounding of the site, attenuation relations for the peak ground acceleration by Spudich [8] et al. (1999) for extensional regimes (33 % weight) and by Boore [9] et al. (1997) assuming strike-slip mechanism (33 %) and not specified mechanism (33 %) were applied. According to the measured shear wave velocities at the Cadarache site all relations are for rock type conditions. 3. Results Seismic Hazard Assessment Each of the branches (combinations) of the logic tree gives hazard solutions for a range of annual probabilities of occurrence for the proposed European site. Fractiles of the solutions of all branches are selected and plotted in Figure 2, the median 50 % curve and the 16 % and 84 % fractiles are shown. ITER seismic design specifications are based on the median hazard for mean return periods of 102 and 104 years. The obtained median hazard values for Cadarache are respectively 0.67 m/s2 and 2.26 m/s2. From published seismic hazard maps in recent domestic assessments for Cadarache (Martin et al., 2001), hazard values in the ranges 0.5-0.7 m/s2 for a mean return period of 100 years and 1.5-2 m/s2 for 1975 years mean return period were derived. These values are in good agreement with the findings of the present study (Figure 2). 4. Site ground characteristic The European proposed site for ITER is situated in the South-East of France on a limestone bedrock close to the confluence of the Durance and Verdon Rivers in Provence. Extensive drillings of the proposed site leads to select an area with dense limestone (density = 2.5 t/m2) up to the natural level to implement the tokamak building and the other nuclear and safety building. Sixty drillings from 20 to 60 metres on the whole expected ITER building platform, a 200 metre deep drilling is available nearby on the Cadarache Centre. It has been shown through seven seismic refraction profiles that the limestone is homogeneous (little fractured) and free from any karstic cavity and from any marly or clayey beds. The characteristics of the ground have been measured and largely fulfil the requirement of ITER in terms of soil bearing capacity (400 t/m2 for a design load of 100 t/m2), in case aseismic bearings would be used no differential settlement have to be feared. The shear wave velocity (which is a criteria of the ground in terms of classification of soil vs. amplification of seismic hazard) has been measured trough three cross-holes technique on the first 30 metres under the zero level of the nuclear building and leads to mean on 30 first metres). W ith a mean over the 30 first metres under the tokamak basemat of 1,350 m/s, these measurements leads to classify the soil as good hard bedrock (on a scale of three types of soil, poor, medium and good) the threshold for —good“ being 800 m/s according to the French regulation and 1,100 m/s according to the IAEA standards. 5. Regulation to apply for ITER in Europe and in France According, among others, to the tritium inventory ITER will be a so-called —Installation Nucléaire de Base“. A prescriptive rule for the seismic hazard of such facility is available and has to be fulfilled. This rule has recently been updated (2001). The standard procedure is to integrate the elements of the seismological (instrumental seismicity, historical and 3 ID 524 prehistorical data), geophysical and geological database to construct a regional seismotectonic model consisting of a discrete set of seismogenic structures and zones of diffuse seismicity. The maximum potential earthquake of each seismogenic structure and each zone of diffuse seismicity should be assumed to occur at the point of the structure (or zone) closest to the site area.
Recommended publications
  • NUCLEAR INSTALLATIONS in the COUNTRIES of the EUROPEAN ATOMIC ENERGY COMMUNITY (Second Edition)
    !:£k2üi.ïK!lr*Üfa"HÏ mm h«tk .-Vi»,····» WWÍM This document was prepared under the sponsorship of the Commission of the European Atomic Energy Community (EURATOM). Jfc* Mmm Neither the EURATOM Commission, its contractors nor any person acting on their behalf m tf t * iiii «lai OCR r Uli íj ;QJRÌ m Io — Make any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this document, or that the ï H use of any information, apparatus, method, or process disclosed in this document mav not infringe privately owned rights; or 2o — Assume any liability with respect to the use of, or for damages resulting from t'. any information, apparatus, method or process disclosed in this document. EUR 1 8 3 .e NUCLEAR INSTALLATIONS IN THE COUNTRIES OF THE EUROPEAN ATOMIC ENERGY COMMUNITY (Second Edition). European Atomic Energy Community - EURATOM Directorate-General for Industry and Economy Brussels, 1 January 1963 - 43 pages This survey features all the specifically nuclear installations which already exist, which are under construction, the construction of which has been decided or which are being planned in the member countries of Euratom. It comprises, for each installation, a short description limited to its main characteristics; it also mentions the more important enterprises which are known to have participated in the building of these installations. EUR 1 8 3 . e NUCLEAR INSTALLATIONS IN THE COUNTRIES OF THE EUROPEAN ATOMIC ENERGY COMMUNITY (Second Edition). European Atomic Energy Community - EURATOM Directorate-General for Industry and Economy Brussels, 1 January 1963 - 43 pages This survey features all the specifically nuclear installations which already exist, which are under construction, the construction of which has been decided or which are being planned in the member countries of Euratom.
    [Show full text]
  • The Jules Horowitz Reactor Project, a Driver for Revival of the Research Reactor Community
    THE JULES HOROWITZ REACTOR PROJECT, A DRIVER FOR REVIVAL OF THE RESEARCH REACTOR COMMUNITY P. PERE, C. CAVAILLER, C. PASCAL AREVA TA CEA Cadarache - Etablissement d'AREVA TA - Chantier RJH - MOE - BV2 - BP n° 9 – 13115 Saint Paul lez Durance - France CS 50497 - 1100, rue JR Gauthier de la Lauzière, 13593 Aix en Provence cedex 3 – France ABSTRACT The first concrete of the nuclear island for the Jules Horowitz Reactor (JHR) was poured at the end of July 2009 and construction is ongoing. The JHR is the largest new platform for irradiation experiments supporting Generation II and III reactors, Generation IV technologies, and radioisotope production. This facility, composed of a unique grouping of workshops, hot cells and hot laboratories together with a first -rate MTR research reactor, will ensure that the process, from preparations for irradiation experiments through post-irradiation non-destructive examination, is completed expediently, efficiently and, of course, safely. In addition to the performance requirements to be met in terms of neutron fluxes on the samples (5x1014 n.cm-2/sec-1 E> 1 MeV in core and 3,6x1014 n.cm-2/sec-1 E<0.625 eV in the reflector) and the JHR’s considerable irradiation capabilities (more than 20 experiments and one-tenth of irradiation area for simultaneous radioisotope production), the JHR is the first MTR to be built since the end of the 1960s, making this an especially challenging project. The presentation will provide an overview of the reactor, hot cells and laboratories and an outline of the key milestones in the project schedule, including initial criticality in early 2014 and radioisotope production in 2015.
    [Show full text]
  • Cadarache, Marcoule, Saclay
    2020 INTERNATIONAL SCHOOL IN NUCLEAR ENGINEERING Neutronics and thermal-hydraulics coupling for SFR simulation Cadarache, Marcoule, Saclay - France 6 Doctoral-level Courses in Nuclear Engineering From January 13 to February 7, 2020 COURTESY OF: CEA/DEN, AREVA • GÉOLANE • AREVA CEA/DEN, OF: COURTESY Please visit our website: http://www-instn.cea.fr Computer simulation of displacement cascade Pin-type fuel element of Gas Fast-cooled Reactor (GFR) Neutronics calculation of EPR core with APOLLO3 Actinide complex solvated by extraction molecule Large scale bubble simulation ABOUT THE SCHOOL • The National Institute for Nuclear Science and Technology (INSTN) is organizing the International School in Nuclear Engineering, promoting knowledge in the field of nuclear sciences at a high education level. • The 2020 edition will offer 6 one-week advanced courses in nuclear engineering to be held in France (Cadarache, Marcoule, or Saclay), in January and February 2020. • The courses are designed for young researchers, PhD students, post-doctorates and engineers, already having a Master of Science in nuclear engineering as a background. They present the international state-of-the-art in the main topics of nuclear engineering: reactor core physics, thermal hydraulics, materials, fuels, fuel cycle, nuclear waste. 3 ECTS will be awarded for each successfully completed course (one week). • Lecturers are internationally known experts mostly from CEA, the leading research organisation in France for nuclear energy. OUTLINE PROGRAMME OF COURSES For each course, technical visits of CEA facilities are planned. n Reactor Core Physics: Deterministic and Monte Carlo Methods (C. Diop, J. Tommasi, J-F. Vidal) • Chain reaction and neutron balance • Neutron slowing-down and resonance absorption, self-shielding modelling • The neutron transport equation and calculation schemes: the steady-state integro- differential transport equation.
    [Show full text]
  • Nuclear France Abroad History, Status and Prospects of French Nuclear Activities in Foreign Countries
    Mycle Schneider Consulting Independent Analysis on Energy and Nuclear Policy 45, allée des deux cèdres Tél: 01 69 83 23 79 91210 Draveil (Paris) Fax: 01 69 40 98 75 France e-mail: [email protected] Nuclear France Abroad History, Status and Prospects of French Nuclear Activities in Foreign Countries Mycle Schneider International Consultant on Energy and Nuclear Policy Paris, May 2009 This research was carried out with the support of The Centre for International Governance Innovation (CIGI) in Waterloo, Ontario, Canada (www.cigionline.org) V5 About the Author Mycle Schneider works as independent international energy nuclear policy consultant. Between 1983 and April 2003 Mycle Schneider was executive director of the energy information service WISE-Paris. Since 2000 he has been an advisor to the German Ministry for the Environment, Nature Conservation and Reactor Safety. Since 2004 he has also been in charge of the Environment and Energy Strategies Lecture of the International Master of Science for Project Management for Environmental and Energy Engineering at the French Ecole des Mines in Nantes, France. In 2007 he was appointed as a member of the International Panel on Fissile Materials (IPFM), based at Princeton University, USA (www.fissilematerials.org). In 2006-2007 Mycle Schneider was part of a consultants’ consortium that assessed nuclear decommissioning and waste management funding issues on behalf of the European Commission. In 2005 he was appointed as nuclear security specialist to advise the UK Committee on Radioactive Waste Management (CoRWM). Mycle Schneider has given evidence and held briefings at Parliaments in Australia, Belgium, France, Germany, Japan, South Korea, Switzerland, UK and at the European Parliament.
    [Show full text]
  • Operational and Decommissioning Experience with Fast Reactors
    IAEA-TECDOC-1405 Operational and decommissioning experience with fast reactors Proceedings of a technical meeting held in Cadarache, France, 11–15 March 2002 August 2004 IAEA-TECDOC-1405 Operational and decommissioning experience with fast reactors Proceedings of a technical meeting held in Cadarache, France, 11–15 March 2002 August 2004 The originating Section of this publication in the IAEA was: Nuclear Power Technology Development Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria OPERATIONAL AND DECOMMISSIONING EXPERIENCE WITH FAST REACTORS IAEA, VIENNA, 2004 IAEA-TECDOC-1405 ISBN 92–0–107804–8 ISSN 1011–4289 © IAEA, 2004 Printed by the IAEA in Austria August 2004 FOREWORD The fast reactor, which can generate electricity and breed additional fissile material for future fuel stocks, is a resource that will be needed when economic uranium supplies for the advanced water cooled reactors or other thermal-spectrum options diminish. Further, the fast-fission fuel cycle in which material is recycled offers the flexibility needed to contribute decisively towards solving the problem of growing ‘spent’ fuel inventories by greatly reducing the volume of high level waste that must be disposed of in long term repositories. This is a waste management option that also should be retained for future generations. The fast reactor has been the subject of research and development programmes in a number of countries for more than 50 years. Now, despite early sharing and innovative worldwide research and development, ongoing work is confined to China, France, India, Japan, the Republic of Korea, and the Russian Federation. Information generated worldwide will be needed in the future.
    [Show full text]
  • Oversight of Research Reactors in the Southeast of France: ASN Regulatory Experience
    Oversight of Research Reactors in the Southeast of France: ASN Regulatory Experience Julien Vieuble, Carole Dormant, Pierre Perdiguier Autorité de Sûreté Nucléaire (French Nuclear Safety Authority), Division de Marseille, 67/69 Avenue du Prado, 13 286 Marseille Cedex 6, France Email of the corresponding author: [email protected] The French Nuclear Safety Authority (ASN), which is an independent administrative authority, is in charge of regulating nuclear safety and radiation protection in order to protect workers, patients, the public and the environment from the risks associated with nuclear activities. ASN also contributes to the public information and the promotion of transparency and openness among stakeholders. The key values of ASN are independence, competence, rigor and transparency, enabling its 450 staff to perform their various duties with the needed legitimacy. ASN’s oversight covers more than 160 civil basic nuclear installations all over France. These installations are of very different varieties and sizes: nuclear power plants, research reactors, nuclear laboratories, fuel cycle facilities, and at different stages in their lives: conception, construction, operation, dismantling. ASN also oversees the safety of radioactive material transport. The ASN division of Marseille oversees the nuclear civil activities in the southeast area of France, which covers, inter alia, the nuclear site of Marcoule (4 civil nuclear installations) and the nuclear site of Cadarache (20 civil nuclear installations). The French public Atomic Energy Commission (CEA) has nine research reactors currently in operation: six of them are located in the southeast of France, and a new one, the Jules Horowitz reactor (JHR), is under construction on the nuclear site of Cadarache.
    [Show full text]
  • ASTRID - LESSONS LEARNED Gilles Rodriguez CEA 30 July 2018
    ASTRID - LESSONS LEARNED Gilles Rodriguez CEA 30 July 2018 Meet the presenter Dr. John E. Kelly is the Deputy Assistant Secretary for Nuclear Reactor Technologies in the U.S. Department of Energy’s Office of Nuclear Energy.is aHis senior office is expertresponsible engineer for the civilian at nuclearthe CEA/CADARACHE reactor research and Mrdevelopment. Gilles portfolio, Rodriguez which includes programs on Small Modular Reactors, Light Water Reactor Sustainability, and (FrenchAdvanced (GenerationAtomic Energy IV) Reactors Commission/Cadarache. His office also is responsible for center the design,) and development has been, and productionin the of positionradioisotope of power deputy systems, head principally of the for ASTRID missions of theProject U.S. National team Aeronautics since 2016. and Space He Administration. In the international arena, Dr. Kelly is the immediate past chair of the Generation IV International Forum (GIF) and the graduatedformer chair of fromthe International the University Atomic Energy of Lyon, Agency’s France Standing inAdvisory 1990 Group with on an Nuclear engineering Energy. degreePrior to joining in Chemistry the Department and of Energy earned in 2010, a Master Dr. Kelly spentof Science 30 years at in Sandia process National engineering Laboratories, where he was engaged in a broad spectrum of research programs in nuclear reactor safety, advanced nuclear energy fromtechnology, the andPolytechnic national security. University In the reactor of Toulouse,safety field, he France, led efforts toin establish 1991. the His scientific areas basis of for expertiseassessing the include risks of nuclear fast powerreactor plant technology, operation and specifically liquid metal those risks processes, associated with and potential process severe accident scenarios.
    [Show full text]
  • Flux Distribution of the Superphénix Start-Up Core for the Validation of Neutronic Codes E
    Flux distribution of the Superphénix start-up core for the validation of neutronic codes E. Garcia, P. Sciora, T. Kooyman, G. Rimpault, H. Guo, B. Faure To cite this version: E. Garcia, P. Sciora, T. Kooyman, G. Rimpault, H. Guo, et al.. Flux distribution of the Superphénix start-up core for the validation of neutronic codes. Annals of Nuclear Energy, Elsevier Masson, 2019, 133, pp.889-899. 10.1016/j.anucene.2019.06.066. cea-02535326 HAL Id: cea-02535326 https://hal-cea.archives-ouvertes.fr/cea-02535326 Submitted on 24 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Flux distribution in the Superphénix start-up core with APOLLO3 E. Garcia, P. Sciora, T. Kooyman and G. Rimpault Commissariat à l’Energie Atomique, Centre d’Etudes Nucléaires de Cadarache 13108 St. Paul-lez-Durance, France [email protected], [email protected], [email protected] ABSTRACT The Superphénix reactor remains the largest Sodium-cooled Fast Reactor ever built in the world and its legacy is a unique source of information for SFRs. At the Superphénix start-up, a series of tests (Transversal Irradiation tests) were devoted to the core flux distribution with measurements in several subassembly positions located from the core center to its periphery.
    [Show full text]
  • France's Nuclear Failures
    France’s Nuclear Failures The great illusion of nuclear energy greenpeace.org Catalysing an energy revolution The French nuclear Contents industry’s key players: 3 Introduction The Commissariat à l’Énergie Atomique (CEA – Atomic Energy 4 France’s nuclear ‘success story’: Commissariat) was established as a public corporation in 1946 and charged with overseeing research and development, up to a 50-year history of failures the industrial stage, of all processes necessary for the military 6 Climate change and energy security: programme and subsequently for nuclear electricity generation, including uranium extraction, fuel manufacture and nuclear power’s marginal contribution management of spent fuel and waste. Currently, CEA is a large French research organisation working mainly on energy and 8 Economics: defence technology. the underestimated costs of nuclear power A branch of the CEA was created to manage all its industrial 10 Safety: activities, mainly through the Compagnie Générale des Matières lessons learned or lessons still to come? Nucléaires (Cogema – General Company for Nuclear Materials), a private company established in 1976. In 2001, this merged 12 Security: with Framatome, the nuclear reactor builder, to create the Areva secrecy and unpredictable scenarios group. Currently, 96% of the share capital of the Areva group is held by the French state and large French industries. 14 Waste and decommissioning: Electricité de France (EDF) was established in 1946 through complex issues, unresolved problems nationalisation of a number of state and private companies. First and foremost responsible for overseeing development of 16 Proliferation: the electricity supply across France, today EDF operates all 59 nuclear imperialism, world at risk nuclear reactors in service in France.
    [Show full text]
  • ASTRID Project, General Overview and Status Progress F
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Archive Ouverte en Sciences de l'Information et de la Communication ASTRID project, general overview and status progress F. Varaine, G. Rodriguez, J.M. Hamy, S. Kubo, H. Mochida, U. Yukinori, J.P. Helle, A. Remy, T. Chauveau, J. Mazel, et al. To cite this version: F. Varaine, G. Rodriguez, J.M. Hamy, S. Kubo, H. Mochida, et al.. ASTRID project, general overview and status progress. GIF Symposium - the 4th GIF Symposium at the 8th edition of Atoms for the Future, Oct 2018, Paris, France. cea-02328962 HAL Id: cea-02328962 https://hal-cea.archives-ouvertes.fr/cea-02328962 Submitted on 25 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ASTRID Project, General Overview and status progress ____________________________________________________________________________________________________ ASTRID PROJECT, GENERAL OVERVIEW AND STATUS PROGRESS F. VARAINE(1), G. RODRIGUEZ(1), J. M. HAMY(2), S. KUBO(3), H. MOCHIDA(4), U. YUKINORI(5), J. P. HELLE(6), A. REMY(7), T. CHAUVEAU(8), J. L. MAZEL(9), M. LIBESSART(10), R. P. BENARD(11), M. FUKUIE(12), D. SETTIMO(13), V.
    [Show full text]
  • The Fission Reactor Generations
    Welcome in Cadarache WONDER 2009 - Cadarache, September 29th 1 Atomic Energy Commission Défence and Security Energy Technologies for information and health Matter sciences Life sciences Education Technology Training transfer WONDER 2009 - Cadarache, September 29th 2 Le CEA : 9 research centers 15600 staff Energy FAR Défence Saclay DIF Matter Sciences Valduc Life sciences Le Ripault Nanotechnologies Grenoble CESTA Marcoule Waste and 3300 scientific publications fuel cycle Cadarache Réactors Fission and fusion 1000 PHD students 1608 patents WONDER 2009 - Cadarache, September 29th 3 Cadarache, 50 years old Né en 1959 2100 16 square kilometers area 6000 personnes 700 19 INB19 nuclear facilities 3006000 staff 350350 M€/an vers l’industrie Trainees,Trainees, PHDPHD (hors ITER) 400 350 M€ / year SubSub contactors contactors toward industry 1600 Ha(ITER not included) 2200 WONDER 2009 - Cadarache, September 29th 4 Fission and fusion FISSION Energy 1 tep/g Neutron Heavy Uranium nucleus Neutrons Energy 10 tep/g Neutron Light H2 nucleus FUSION WONDER 2009 - Cadarache, September 29th 5 The fission reactor generations 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 Present day nuclear plants EPR-type reactors Future reactors Gen 2 Gen 3 Lifetime extension Gen 4 Saving natural resources : 100 Waste minimization : 1000 Improved safety 440 reactors in the world 58 reactors in France 78% of our electricity WONDER 2009 - Cadarache, September 29th 6 Fission research in Cadarache Technology Fuel Reactors WONDER 2009 - Cadarache, September 29th 7 Jules Horowitz
    [Show full text]
  • ITER Practical Information Guide
    ITER Practical Information Guide Page 1 of 39 Table of Contents I. INTRODUCTION OF ITER ORGANIZATION ....................................................... 5 II. HUMAN RESOURCE DEPARTMENT OF ITER ORGANIZATION AND WELCOME OFFICE OF AGENCE ITER FRANCE ........................................................ 6 1. HUMAN RESOURCE DEPARTMENT (HRD) OF ITER ORGANIZATION ..................................... 6 2. WELCOME OFFICE OF AGENCE ITER FRANCE (WO/AIF) ........................................................ 7 III. DOCUMENT OF REFERENCE ................................................................................. 8 1. WORKING CONDITIONS ................................................................................................................... 8 2. THE CODE OF CONDUCT ................................................................................................................. 8 IV. ACCESS TO THE ITER SITE AND SURROUNDING REGION ............................ 9 1. ADDITIONAL INFORMATION: HTTP://WWW.ITER.ORG/VISIT .................................................... 9 2. ACCESS TO THE ITER SITE AND SURROUNDING REGION .......................................................... 9 1. By Commuter Buses ...................................................................................................................... 9 2. By Car ....................................................................................................................................... 10 3. By Public Buses .........................................................................................................................
    [Show full text]