Operational and Decommissioning Experience with Fast Reactors

Total Page:16

File Type:pdf, Size:1020Kb

Operational and Decommissioning Experience with Fast Reactors IAEA-TECDOC-1405 Operational and decommissioning experience with fast reactors Proceedings of a technical meeting held in Cadarache, France, 11–15 March 2002 August 2004 IAEA-TECDOC-1405 Operational and decommissioning experience with fast reactors Proceedings of a technical meeting held in Cadarache, France, 11–15 March 2002 August 2004 The originating Section of this publication in the IAEA was: Nuclear Power Technology Development Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria OPERATIONAL AND DECOMMISSIONING EXPERIENCE WITH FAST REACTORS IAEA, VIENNA, 2004 IAEA-TECDOC-1405 ISBN 92–0–107804–8 ISSN 1011–4289 © IAEA, 2004 Printed by the IAEA in Austria August 2004 FOREWORD The fast reactor, which can generate electricity and breed additional fissile material for future fuel stocks, is a resource that will be needed when economic uranium supplies for the advanced water cooled reactors or other thermal-spectrum options diminish. Further, the fast-fission fuel cycle in which material is recycled offers the flexibility needed to contribute decisively towards solving the problem of growing ‘spent’ fuel inventories by greatly reducing the volume of high level waste that must be disposed of in long term repositories. This is a waste management option that also should be retained for future generations. The fast reactor has been the subject of research and development programmes in a number of countries for more than 50 years. Now, despite early sharing and innovative worldwide research and development, ongoing work is confined to China, France, India, Japan, the Republic of Korea, and the Russian Federation. Information generated worldwide will be needed in the future. Presently, it is in danger of being lost — even in those countries continuing the work. Many Member States have repeatedly underscored the importance of knowledge preservation and transmission to the young generation. In response to expressed needs by Member States, the IAEA has undertaken concrete steps towards the implementation of a fast reactor data retrieval and knowledge preservation initiative. Within the framework and drawing on the wide expertise of its Technical Working Group on Fast Reactors (TWG-FR), the IAEA convened, November 22–24 1999, an Advisory Group Meeting on Evaluation of Fast Reactor Core Physics Tests. The outcome of this advisory group meeting was to underline the importance of an IAEA initiated effort to preserve fast reactor physics knowledge with an exhaustive review of all available sources of fast reactor experimental data, including data from critical facilities. The initiative received further support at a special technical session, entitled Passing on Fifty Years of Fast Reactor Knowledge to a New Generation in Nuclear Research and Development, which was held at the 2001 American Nuclear Society Winter Meeting, and co- chaired by Argonne National Laboratory (ANL) and IAEA staff. In another, more general development, the IAEA Director General convened a meeting of senior officials form around the world to address the more general issue of nuclear knowledge management (17–19 June 2002). At this meeting, there was widespread agreement that, for sustainability reasons, long term development of nuclear power, as a part of the world’s future energy mix, will require fast reactor technology and, that given the decline in fast reactor development projects, data retrieval and knowledge preservation efforts in this area are of particular importance. Operational experience constitutes an important aspect of any fast reactor knowledge base. It is within the framework of the aforementioned initiative, and with the objective of gathering and exchanging information on fast reactor operational and decommissioning experience, and initiating the process of analyzing it (a necessary step in the process of transforming ‘knowledge’ into ‘wisdom’), that the IAEA convened the Technical Meeting on Operational and Decommissioning Experience with Fast Reactors. The technical meeting, hosted by CEA, Centre d’Etudes de Cadarache, France, was held 11–15 March 2002. – 2 – The IAEA would like to express its appreciation to all the participants, authors of papers, chairpersons, and to the hosts at CEA Cadarache. The IAEA officer responsible for this publication was A. Stanculescu of the Division of Nuclear Power. EDITORIAL NOTE The papers in these proceedings are reproduced as submitted to the Publishing Section and have not undergone rigorous editorial review by the IAEA. The views expressed do not necessarily reflect those of the IAEA, the governments of the nominating Member States or the nominating organizations. The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA. The authors are responsible for having obtained the necessary permission for the IAEA to reproduce, translate or use material from sources already protected by copyrights. CONTENTS 1. INTRODUCTION................................................................................................................. 1 2. SCOPE AND OBJECTIVES ................................................................................................ 2 3. GENERAL STATEMENTS ................................................................................................. 2 3.1. France.....................................................................................................................................2 3.1.1 Background ..................................................................................................................2 3.1.2. Ongoing sodium cooled fast reactor R&D...................................................................3 3.2. Germany .................................................................................................................................4 3.3. India........................................................................................................................................4 3.3.1 Fast breeder test reactor ...............................................................................................4 3.3.2 Prototype fast breeder reactor ......................................................................................5 3.3.3. Knowledge preservation ..............................................................................................5 3.4. Japan.......................................................................................................................................6 3.5. United States of America .......................................................................................................6 4. SESSION SUMMARIES ...................................................................................................... 7 4.1. Session 1: Sodium cooled fast reactor operational experience...............................................7 4.2. Session 2: Sodium cooled fast reactor decommissioning experience ....................................7 4.3. Session 3: Fast reactor physics and engineering experiments and analysis ...........................8 4.4. Session 4: Sodium cooled fast reactor knowledge preservation.............................................8 SESSION 1: FAST REACTOR OPERATIONAL EXPERIENCE Fast breeder test reactor. 15 years of operating experience ..................................................... 15 K.V. Suresh Kumar, R.P. Kapoor, P.V. Ramalingam,B. Rajendran, G. Srinivasan, K.V. Kasiviswanathan Operational experience and upgrading program of the experimental fast reactor JOYO..................................................................................................................... 29 T. Aoyama, T. Odo, S. Suzuki, S. Yogo Operational experience of BN-350 .......................................................................................... 63 I. Dumchev Lifetime extension of the Phénix nuclear power plant............................................................. 83 L. Martin, D. Pepe, R. Dupraz Advanced and innovative approaches to inspect the Phénix fast breeder reactor................................................................................................................... 93 M. Giraud, P. Major, J. Gros, L. Martin, Ph. Benoist, O. Burat Contents_4505.doc Page 2 Sodium cleaning in Phénix steam generator modules.............................................................. 99 O. Gastaldi, V. Grabon, Ch. Cavagna Review of fast reactor operation experience gained in the Russian Frederation. Approaches to the co-ordinated research project ................................................................... 107 V.M. Poplavsky, Yu.M. Ashurko, Yu.E. Bagdassarov, A.V. Karpov, M.P. Nikulin, A.M Tsiboulia, N.N. Oshkanov, A.I. Kiryushin,B.A. Vasilyev, K.L. Suknev, A.S. Korol’kov, V.V. Denisov SESSION 2: FAST REACTOR DECOMMISSIONING EXPERIENCE Decommissioning experience from the experimental breeder reactor-II............................... 137 S.P. Henslee, K.E. Rosenberg Sodium removal & decontamination process and decommissioning considerations for the PFBR components .............................................................................
Recommended publications
  • Framatome in Latin America Strong History and Partnerships
    SEN – Semana da Engenharia Nuclear UFRJ 17/10/2019 Framatome– 2019 1 © Framatome All right reserved Framatome– 2019 2 © Framatome All right reserved Framatome at a glance 60 years of experience, alongside our customers, in developing safe and competitive nuclear power worldwide Design Supply Manufacture Integrate Maintain Framatome– 2019 3 © Framatome All right reserved Framatome at a glance High-performing people and technologies for safe and competitive nuclear plants worldwide 92 14 000 250 3.3 NPPs PEOPLE REACTORS € BILLION As OEM Servicing … All over the world 2017 turnover Framatome– 2019 4 © Framatome All right reserved Our values More than principles, our values guide our actions and describe how we work each other, with our customers and business partners Safety Future Performance Integrity Passion Framatome– 2019 5 © Framatome All right reserved Framatome worldwide presence Germany 4 sites France 17 sites USA 7 sites China 8 sites 58 locations Argentina Japan Sweden 21 Belgium Republic of South Switzerland countries Others Brazil Africa The Netherlands locations Bulgaria Russia Ukraine Canada Slovakia United Arab Emirates Framatome– 2019 Czech Republic Slovenia United Kingdom 6 Finland South Korea © Framatome Hungary Spain All right reserved Our customers Asia CNNC Nawah CGN Tepco North & South America Doosan Hitachi Bruce Power Exelon OPG KHNP Dominion Corporation PSEG Africa MHI Duke Energy Luminant TVA Entergy NA-SA Eskom ETN NextEra Europe ANAV EDF Energy Skoda CNAT Engie TVO CEA EPZ Vattenfall CEZ Iberdrola DCNS KKG EnBW NEK Framatome– 2019 7 EDF RWE © Framatome All right reserved Framatome shareholder structure 19,5% 75,5% 5% • Stock-listed company • Majority shareholder: French state 100% Framatome Inc.
    [Show full text]
  • NUCLEAR INSTALLATIONS in the COUNTRIES of the EUROPEAN ATOMIC ENERGY COMMUNITY (Second Edition)
    !:£k2üi.ïK!lr*Üfa"HÏ mm h«tk .-Vi»,····» WWÍM This document was prepared under the sponsorship of the Commission of the European Atomic Energy Community (EURATOM). Jfc* Mmm Neither the EURATOM Commission, its contractors nor any person acting on their behalf m tf t * iiii «lai OCR r Uli íj ;QJRÌ m Io — Make any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this document, or that the ï H use of any information, apparatus, method, or process disclosed in this document mav not infringe privately owned rights; or 2o — Assume any liability with respect to the use of, or for damages resulting from t'. any information, apparatus, method or process disclosed in this document. EUR 1 8 3 .e NUCLEAR INSTALLATIONS IN THE COUNTRIES OF THE EUROPEAN ATOMIC ENERGY COMMUNITY (Second Edition). European Atomic Energy Community - EURATOM Directorate-General for Industry and Economy Brussels, 1 January 1963 - 43 pages This survey features all the specifically nuclear installations which already exist, which are under construction, the construction of which has been decided or which are being planned in the member countries of Euratom. It comprises, for each installation, a short description limited to its main characteristics; it also mentions the more important enterprises which are known to have participated in the building of these installations. EUR 1 8 3 . e NUCLEAR INSTALLATIONS IN THE COUNTRIES OF THE EUROPEAN ATOMIC ENERGY COMMUNITY (Second Edition). European Atomic Energy Community - EURATOM Directorate-General for Industry and Economy Brussels, 1 January 1963 - 43 pages This survey features all the specifically nuclear installations which already exist, which are under construction, the construction of which has been decided or which are being planned in the member countries of Euratom.
    [Show full text]
  • Jules Horowitz Reactor (JHR), a High-Performance Material Test Reactor in Cadarache, France
    The Swedish-French collaboration on the research reactors ASTRID & JHR Prof. Christophe Demazière Chalmers University of Technology Department of Applied Physics Division of Nuclear Engineering [email protected] Background − the ESS project • ESS: European Spallation Source – a European Union facility. • Will be built in Lund. • Participation of France is formalized in a contract between France and Sweden. • Sweden has to spend 400 MSEK on joint research in subjects relevant to France (energy and environment). • Out of this, 100 MSEK is devoted to fission-based nuclear energy. Background – the European research program • Vision: Sustainable Nuclear Energy Technology Platform (SNETP). • Planned facilities: – Jules Horowitz Reactor (JHR), a high-performance material test reactor in Cadarache, France. Start of operation: 2014. – MYRRHA facility in Mol, Belgium, a fast spectrum irradiation facility working as an ADS. Start of operation: ca. 2023. – ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration), a prototype Gen-IV sodium-cooled fast reactor to be built in France. Start of operation: ca. 2020. – VHTR, a first-of-a kind Very High Temperature Reactor for, among others, hydrogen production. VR Multi-project Grant in Nuclear Energy Research • 3 multi-grant projects granted by the Swedish Research Council in the spring of 2012 (projects in collaboration with CEA, France – French Alternative Energies and Atomic Energy Commission): – DEMO-JHR (coordinator: Prof. Christophe Demazière, Chalmers): 3 PhD projects. – ASTRID
    [Show full text]
  • The Jules Horowitz Reactor Project, a Driver for Revival of the Research Reactor Community
    THE JULES HOROWITZ REACTOR PROJECT, A DRIVER FOR REVIVAL OF THE RESEARCH REACTOR COMMUNITY P. PERE, C. CAVAILLER, C. PASCAL AREVA TA CEA Cadarache - Etablissement d'AREVA TA - Chantier RJH - MOE - BV2 - BP n° 9 – 13115 Saint Paul lez Durance - France CS 50497 - 1100, rue JR Gauthier de la Lauzière, 13593 Aix en Provence cedex 3 – France ABSTRACT The first concrete of the nuclear island for the Jules Horowitz Reactor (JHR) was poured at the end of July 2009 and construction is ongoing. The JHR is the largest new platform for irradiation experiments supporting Generation II and III reactors, Generation IV technologies, and radioisotope production. This facility, composed of a unique grouping of workshops, hot cells and hot laboratories together with a first -rate MTR research reactor, will ensure that the process, from preparations for irradiation experiments through post-irradiation non-destructive examination, is completed expediently, efficiently and, of course, safely. In addition to the performance requirements to be met in terms of neutron fluxes on the samples (5x1014 n.cm-2/sec-1 E> 1 MeV in core and 3,6x1014 n.cm-2/sec-1 E<0.625 eV in the reflector) and the JHR’s considerable irradiation capabilities (more than 20 experiments and one-tenth of irradiation area for simultaneous radioisotope production), the JHR is the first MTR to be built since the end of the 1960s, making this an especially challenging project. The presentation will provide an overview of the reactor, hot cells and laboratories and an outline of the key milestones in the project schedule, including initial criticality in early 2014 and radioisotope production in 2015.
    [Show full text]
  • Cadarache, Marcoule, Saclay
    2020 INTERNATIONAL SCHOOL IN NUCLEAR ENGINEERING Neutronics and thermal-hydraulics coupling for SFR simulation Cadarache, Marcoule, Saclay - France 6 Doctoral-level Courses in Nuclear Engineering From January 13 to February 7, 2020 COURTESY OF: CEA/DEN, AREVA • GÉOLANE • AREVA CEA/DEN, OF: COURTESY Please visit our website: http://www-instn.cea.fr Computer simulation of displacement cascade Pin-type fuel element of Gas Fast-cooled Reactor (GFR) Neutronics calculation of EPR core with APOLLO3 Actinide complex solvated by extraction molecule Large scale bubble simulation ABOUT THE SCHOOL • The National Institute for Nuclear Science and Technology (INSTN) is organizing the International School in Nuclear Engineering, promoting knowledge in the field of nuclear sciences at a high education level. • The 2020 edition will offer 6 one-week advanced courses in nuclear engineering to be held in France (Cadarache, Marcoule, or Saclay), in January and February 2020. • The courses are designed for young researchers, PhD students, post-doctorates and engineers, already having a Master of Science in nuclear engineering as a background. They present the international state-of-the-art in the main topics of nuclear engineering: reactor core physics, thermal hydraulics, materials, fuels, fuel cycle, nuclear waste. 3 ECTS will be awarded for each successfully completed course (one week). • Lecturers are internationally known experts mostly from CEA, the leading research organisation in France for nuclear energy. OUTLINE PROGRAMME OF COURSES For each course, technical visits of CEA facilities are planned. n Reactor Core Physics: Deterministic and Monte Carlo Methods (C. Diop, J. Tommasi, J-F. Vidal) • Chain reaction and neutron balance • Neutron slowing-down and resonance absorption, self-shielding modelling • The neutron transport equation and calculation schemes: the steady-state integro- differential transport equation.
    [Show full text]
  • RIL AMT Workshop Summary
    RIL 2021-03 NRC WORKSHOP ON ADVANCED MANUFACTURING TECHNOLOGIES FOR NUCLEAR APPLICATIONS Part I – Workshop Summary Date Published: Draft April 2021 Prepared by: A. Schneider M. Hiser M. Audrain A. Hull Research Information Letter Office of Nuclear Regulatory Research Disclaimer This report was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any employee, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party’s use, or the results of such use, of any information, apparatus, product, or process disclosed in this publication, or represents that its use by such third party complies with applicable law. This report does not contain or imply legally binding requirements. Nor does this report establish or modify any regulatory guidance or positions of the U.S. Nuclear Regulatory Commission and is not binding on the Commission. EXECUTIVE SUMMARY Advanced manufacturing technologies (AMTs) are defined by the U.S. Nuclear Regulatory Commission (NRC) as those techniques and material processing methods that have not been traditionally used or formally standardized/codified by the nuclear industry. In June 2020, the NRC released Revision 1 to the Agency Action Plan for AMTs (AMT AP) (Agencywide Documents Access and Management System Accession No. ML19333B980 (package)). The AMT AP is a strategic plan that responds to the rapid pace of developments in respective AMTs and industry implementation plans. The NRC’s AMT activities are driven by industry interest in implementing specific AMTs and ensuring that the NRC staff are prepared to review potential AMT applications efficiently and effectively.
    [Show full text]
  • ITER Project Garching for the Fusion Community an Historic Milestone Was Achieved at the Eighth ITER Negotiations Meeting on February 18-19, 2003 in St
    newsletternewsletter Vol 2003 / 2 April 5, 2003 EUROPEAN FUSION DEVELOPEMENT AGREEMENT News Issued by the EFDA Close Support Unit China and the US as New Partners in the ITER Project Garching For the fusion community an historic milestone was achieved at the Eighth ITER Negotiations Meeting on February 18-19, 2003 in St. Petersburg (Russian Federation), when delega- tions from the People’s Republic of China and the United States of America joined those from Canada, the European Union, Japan and the Russian Federation in their efforts to reach agreement on the implementation of the ITER pro- ject. The Head of the Chinese Delegation indicated that Contents China, as the largest developing country in the world, has a great need to pursue alternative energy sources. China . Interview: believes that ITER can potentially lead to new forms of ener- Dr. Joseph V. Minervini gy and contribute to the peaceful and sustainable development page 2 of the world in the long-term. China expressed its strong wishes to be a valuable member of the ITER family, to make joint efforts with . Interview: other partners to the successful exploitation of fusion energy. Prof. Huo Yuping At their St. Petersburg meeting the ITER Negotiators approved the Report on the page 3 Joint Assessment of Specific Sites (JASS). The JASS Report provided as a main con- clusion and despite the differences between the candidate sites (Clarington in Canada, . ITER: Cadarache in France, Vandellos in Spain and Rokkasho-mura in Japan) that the JASS First Full Scale Primary assessment ascertained that all four sites are sound and fully capable to respond to all First Wall Panel ITER Site Requirements and Design Assumptions, as approved by the ITER Council in its January 2000 meeting.
    [Show full text]
  • The Regulatory Control of Radioactive Waste
    RADIOACTIVE WASTE MANAGEMENTAND DECOMMISSIONING IN ITALY 1. NATIONAL FRAMEWORK FOR MANAGEMENT AND REGULATION OF RADIOACTIVE WASTE AND DECOMMISSIONING 1.1 National Framework 1.1.1 Overview of national policy Commercial utilisation of nuclear power in Italy started in 1963 and by 1981 four nuclear power plants, namely the NPPs of Garigliano (BWR), Latina (MAGNOX), Trino (PWR) and Caorso (BWR), and a LEU fuel fabrication installation (Bosco Marengo S.p.A.) had been commissioned. During that period the Nuclear Energy Research Agency (CNEN) – now the Agency for New Technologies, Energy and the Sustainable Economic Development (ENEA) - developed an extensive R&D programme on the nuclear fuel cycle with the operation of experimental fuel cycle installations (e.g. ITREC and EUREX). The three NPPs of Latina, Trino and Caorso continued to be operated until 1987, when they were definitely shut down based on a governmental decision which interpreted the results of a national referendum, called upon after the Chernobyl accident, as the will to abandon the nuclear option. The NPP of Garigliano had been already shut down in 1978, for technical reasons. At the same time the nuclear programme was cancelled, the Interministerial Committee for the Economical Planning (CIPE) required the National Electricity Company (ENEL S.p.A.) to start the decommissioning of the NPPs and a “Safe storage” (IAEA level 1/2) option was initially adopted. In 1999, all ENEL S.p.A. liabilities and assets connected to nuclear power were assigned to a newly established company, named Sogin (Società Gestione Impianti Nucleari) S.p.A., whose shareholder is the Ministry of Economy and Finance, while the Ministry of Economic Development gives the strategic and operational objectives.
    [Show full text]
  • Olkiluoto 3: Framatome Teams All Set for Fuel Loading
    PRESS RELEASE March 26, 2021 Olkiluoto 3: Framatome teams all set for fuel loading March 26, 2021 – The Olkiluoto 3 EPR reactor completes a decisive stage of its commissioning. The Finnish safety authority (STUK) has authorized the fuel load for the Olkiluoto 3 EPR reactor. Loading operations led by plant operator TVO, with the support from AREVA and Framatome, can begin. "Fuel loading is a major milestone for the project. Reaching this milestone illustrates the expertise and know-how of our teams," said Bernard Fontana, CEO of Framatome. "Framatome's teams are fully mobilized alongside AREVA and TVO to finalize and deliver the nuclear power plant while meeting the highest safety and security standards. I thank them for their engagement.” To carry out the loading operations, an integrated team made up of approximately 40 employees from TVO, AREVA and Framatome has been formed. It includes around 15 fuel handlers, employees specializing in the fuel handling operations, and four neutronics engineers in charge of monitoring the core during loading. A total of 241 fuel assemblies manufactured in Framatome's plants in Germany and in France will be loaded in the reactor vessel to constitute the first core. The Areva NP and Areva NP GmbH Olkiluoto 3 project teams, who will later join Framatome, are supported by over 110 Framatome employees permanently based on the site, and by Framatome engineering teams located in France and in Germany. Completion of the fuel loading will be followed by a new series of hot functional tests before the first criticality and commissioning for commercial operation.
    [Show full text]
  • Nuclear France Abroad History, Status and Prospects of French Nuclear Activities in Foreign Countries
    Mycle Schneider Consulting Independent Analysis on Energy and Nuclear Policy 45, allée des deux cèdres Tél: 01 69 83 23 79 91210 Draveil (Paris) Fax: 01 69 40 98 75 France e-mail: [email protected] Nuclear France Abroad History, Status and Prospects of French Nuclear Activities in Foreign Countries Mycle Schneider International Consultant on Energy and Nuclear Policy Paris, May 2009 This research was carried out with the support of The Centre for International Governance Innovation (CIGI) in Waterloo, Ontario, Canada (www.cigionline.org) V5 About the Author Mycle Schneider works as independent international energy nuclear policy consultant. Between 1983 and April 2003 Mycle Schneider was executive director of the energy information service WISE-Paris. Since 2000 he has been an advisor to the German Ministry for the Environment, Nature Conservation and Reactor Safety. Since 2004 he has also been in charge of the Environment and Energy Strategies Lecture of the International Master of Science for Project Management for Environmental and Energy Engineering at the French Ecole des Mines in Nantes, France. In 2007 he was appointed as a member of the International Panel on Fissile Materials (IPFM), based at Princeton University, USA (www.fissilematerials.org). In 2006-2007 Mycle Schneider was part of a consultants’ consortium that assessed nuclear decommissioning and waste management funding issues on behalf of the European Commission. In 2005 he was appointed as nuclear security specialist to advise the UK Committee on Radioactive Waste Management (CoRWM). Mycle Schneider has given evidence and held briefings at Parliaments in Australia, Belgium, France, Germany, Japan, South Korea, Switzerland, UK and at the European Parliament.
    [Show full text]
  • Specials Steels and Superalloys for Nuclear Industry
    Specials Steels and Superalloys for Nuclear Industry Enhancing your performance or almost 60 years Aubert & Duval has been a key partner for the development Aubert & Duval: Your partner F of forged and rolled products, especially those customized for the nuclear market. to energize your success With full vertical integration from melting, to remelting, hot converting and machining (rough machining through to near-net-shape parts), Aubert & Duval offers wide-ranging cutting edge capabilities for nuclear application. Equipment Process flow . MELTING Melting furnaces (EAF, AOD, LF) Melting up to 60 tons Vacuum Induction Melting (VIM) HPS NiSA up to 20 tons Remelting furnaces (ESR, VAR) up to 30 tons powder atomization (Gaz, VIM) . FORGING Open-die forging presses Remelting Powder atomization from 1,500 to 10,000 tons Closed-die forging presses from 4,500 to 65,000 tons . ROLLING MILL HPS 7-200 mm diameter bars High Performance Steels: Conversion . HEAT TREATMENT A range of alloyed steels with Solution and ageing furnaces tightly controlled characteristics HPS Ti NiSA AL PM Horizontal and vertical quenching offering optimum value for equipment customers. TESTING Forging Closed-die Hot Isostatic Immersion UT up to 13 tons and/or rolling Forging Forging Pressing (HIP) ©Valinox-Franck Dunouau (28,000 lbs) Automated contact UT up to 20 tons NiSA Aubert & Duval has also put in place over many decades dedicated skills to co-design re-engineered Nickel-base Superalloys: Nickel-based superalloys: materials metallurgical solutions with our clients. keeping high surface integrity while Sales of alloys and superalloys have progressively expanded across a broad spectrum of primary withstanding severe mechanical circuit contractors and their subcontractors.
    [Show full text]
  • Press Kit Inauguration of the Conversion Orano Tricastin BP 16 26 701 Pierrelatte Plant 10 September 2018
    Press kit Inauguration of the conversion Orano Tricastin BP 16 26 701 Pierrelatte plant 10 September 2018 Contacts Presse Nathalie Bonnefoy +33 (0)6 23 17 24 24 [email protected] Gilles Crest +33 (0)6 71 08 11 54 [email protected] www.orano.group Oranogroup EDITORIAL The plant we are opening today is a major industrial investment for Orano, for the French nuclear industry and for the industry of our country. ith the Georges Besse II enrichment plant on the same site, it is probably the largest industrial investment made in France in recent years. The Comurhex W II project was launched to give France an industrial facility offering cutting- edge safety, security, and environmental and industrial performance. A facility that gives us a global competitive advantage and guarantees an uninterrupted electricity supply for our markets. A tool integrating technological innovations in terms of safety, environment, and improvement of industrial performance: recycling of chemical reagents, reduction by 90% of water consumption, automated control-command system to improve the process control. It is an exceptional project that has required the best of our expertise from the teams of Orano Chemistry and Enrichment as well as Orano Projets, and throughout our group alongside our industrial partners. The project successfully completed at the same time as our group was reinventing itself to create a new flagship technology business to give nuclear materials all their value. While an important debate is taking place on France's multi-year energy program, the investment we have made in the Tricastin site and its plants shows the confidence we have in the future of nuclear energy.
    [Show full text]