<<

TMDs and J/ψ polarization at the EIC

Cristian Pisano

University and INFN Cagliari

In collaboration with: U. D’Alesio, L. Maxia, F. Murgia, S. Rajesh Gluon TMDs and factorization

2/17 TMD factorization

2 2 Two scale processes Q  qT

Factorization proven

All orders in αs Leading order in powers of 1/Q (twist)

Collins, Cambridge University Press (2011)

3/17 TMD factorization Scales and frameworks

Three physical scales, two theoretical tools Bacchetta, Boer, Diehl, Mulders, JHEP 08 (2008) Bacchetta, Bozzi, Echevarria, CP, Prokudin, Radici, PLB 797 (2019) Boer, D’Alesio, Murgia, CP, Taels, JHEP 09 (2020)

Useful to test assumptions on TMD factorization 4/17 Gluon TMDs

Angeles-Martinez et al., Acta Phys, Pol. B46 (2015) Mulders, Rodrigues, PRD 63 (2001) Meissner, Metz, Goeke, PRD 76 (2007)

g I f1 : unpolarized TMD gluon distribution ⊥ g I h1 : distribution of linearly polarized inside an unp.

In contrast to TMDs, gluon TMDs are almost unknown

5/17 Gluon TMDs Linear polarization of gluons

Gluons inside an unpolarized hadron can be linearly polarized

It requires nonzero transverse momentum

Interference between ±1 gluon helicity states

Like the unpolarized gluon TMD, it is T -even and exists in different versions: I [++] = [−−] (WW) (SIDIS and DY-like process)

Gluons probed in heavy quark production in both ep and pp scattering

6/17 J/ψ-pair production g √ Extraction of f1 at s = 13 TeV

ΨΨ qT = PT ≤ MΨΨ/2 in order to have two different scales Color Singlet production mechanism =⇒:[−, −] gauge link structure (like DY) ] -1 0.4 g 2 Gaussian f1, fit over [0 ;/2] [GeV T 0.3 ψψ LHCb data without DPS

d σ /dP 0.2 = 8 GeV

> /2 = 3.3 ± 0.8 GeV2

ψψ T

d σ /dP b P [GeV] ψψT Lansberg, CP, Scarpa, Schlegel, PLB 784 (2018) LHCb Coll., JHEP 06 (2017)

7/17 C = +1 quarkonium production

qT -distribution of ηQ and χQJ (Q = c, b) in the kinematic region qT  2MQ

1 dσ(ηQ ) g g 2 2 ∝ f1 ⊗ f1 [1 − R(qT )][ pseudoscalar] σ(ηQ ) dqT

1 dσ(χQ0) g g 2 2 ∝ f1 ⊗ f1 [1 + R(qT )][ scalar] σ(χQ0) dqT 1 dσ(χQ2) g g 2 ∝ f1 ⊗ f1 σ(χQ2) dqT Boer, CP, PRD 86 (2012) 0.8 3 2 -1 2 -2 σ-1dσ / dq (GeV-2) σ dσ / dq (GeV ) 0.7 T T χ 2.5 χ 0 0 0.6 ⊥ g χ ⊥ g χ ( h1 = 0) 2 ( h1 = 0) 2 2 η η 0.5 Q Q

0.4 1.5

2 2 0.3 〈 p 〉 = 1 GeV 〈 p2 〉 2 T 1 T = 0.25 GeV 0.2 0.5 0.1

0 0 0 0.5 1 1.5 2 2.5 3 0 0.2 0.4 0.6 0.8 1 1.2 1.4 qT (GeV) qT (GeV)

Proof of factorization at NLO for p p → ηQ X in the Color Singlet Model (CSM) Ma, Wang, Zhao, PRD 88 (2013); PLB 737 (2014) Echevarria, JHEP 1910 (2019)

Future fixed target experiments at LHC and NICA 8/17 Quarkonium polarization

9/17 Quarkonium polarization Reference frames

∗ We study γ (q) + p(P) → J/ψ(Pψ) + X in the J/ψ rest frame

HX: Helicity TF: Target CS: Collins-Soper GJ: Gottfried-Jackson

The frames are related to each other by a rotation around the Y axis

10/17 Quarkonium polarization Helicity structure functions

Model-independent arguments (hermiticity, parity conservation) lead to eight independent helicity structure functions: Lam, Tung, PRD 18 (1978) Boer, Vogelsang, PRD 74 (2006)

P P P WT ≡ W11 = W−1−1 P P WL ≡ W00 √ P P W∆ ≡ 2 Re W10 P P P W∆∆ ≡ W1−1 = W−11

∗ I P = L, T : γ polarization I Λ = T , L, ∆, ∆∆: J/ψ helicity

However, by looking at the angular dependence of the decaying only four linear combinations can be disentangled

h 2i T L WΛ ≡ 1 + (1 − y) WΛ + (1 − y)WΛ with Λ = T , L, ∆, ∆∆

11/17 Quarkonium polarization Angular structure of the cross section

Usual SIDIS variables: Q2 P · q P · P Q2 = −q2 , x = , y = , z = ψ B 2P · q P · ` P · q

Cross section differential inΩ=( θ, ϕ), solid angle of the decaying `+

dσ dσ ≡ 4 dxB dy d Pψ dΩ

α2 h i dσ ∝ W (1 + cos2 θ) + W (1 − cos2 θ) + W sin 2θ cos ϕ + W sin2 θ cos 2ϕ yQ2 T L ∆ ∆∆

Alternatively, in terms of the polarization parameters λ, µ, ν : α2  1  dσ ∝ (W + W ) 1 + λ cos2 θ + µ sin 2θ cos ϕ + ν sin2 θ cos 2ϕ yQ2 T L 2 W − W W 2W λ = T L , µ = ∆ , ν = ∆∆ WT + WL WT + WL WT + WL

12/17 Quarkonium polarization Collinear factorization

The helicity structure functions can be calculated within the NRQCD framework: double expansion in αs and v

2 4 Contributing partonic subprocesses at the orders αs and v ∗ 0 γ (q) + a(pa) → J/ψ(Pψ) + a(pa) a = g, q, q¯

q q q

Pψ Pψ Pψ Pψ q

pa

pa′ pa pa′ p p a pa′ a pa′ (a) (b) (c) (d)

The six diagrams of type (a) are the only ones corresponding to the Color-Singlet production mechanism

3 [1] 1 [8] 3 [8] 3 [8] Fock states included in the calculation: S1 , S0 , S1 , P0 Beneke, Kramer, Vanttinen, PRD 57 (1998)

qT : transverse momentum of the photon w.r.t. Pψ, P

13/17 Quarkonium polarization Collinear factorization

Frame-independent leading power behavior of the structure functions up to 2 2 2 corrections of O(ΛQCD/|qT |), O(|qT |/Q) in the regionΛ QCD  qT  Q

" 2 2 ! # T T 1 Q + Mψ g 2  g i  2 WT =ˆσT 2 L 2 f1 (x, µ ) + Pgg ⊗ f1 + Pgi ⊗ f1 (x, µ ) qT qT

" 2 2 ! # T T 1 Q + Mψ g 2  g i  2 WL =ˆσL 2 L 2 f1 (x, µ ) + Pgg ⊗ f1 + Pgi ⊗ f1 (x, µ ) qT qT

" 2 2 ! # L L 1 Q + Mψ g 2  g i  2 WL =ˆσL 2 L 2 f1 (x, µ ) + Pgg ⊗ f1 + Pgi ⊗ f1 (x, µ ) qT qT

T T 1  g i  2 W∆∆=σ ˆ∆∆ 2 δPgg ⊗ f1 + δPgi ⊗ f1 (x, µ ) qT

P ∗P Λ σˆΛ : pol. partonic cross sections for γ g → J/ψ function of NRQCD LDMEs 2 2 ! 2 2 ! Q + Mψ Q + Mψ 11CA − 4nf TR L 2 ≡ 2CA ln 2 − qT qT 6

14/17 Quarkonium polarization TMD factorization

2 2 When qT  Q at O(αs ) only color-octet (CO) production channels dominate

q

pa Neglecting smearing effects in quarkonium formation: T T g 2 L L g 2 L L g 2 WT =ˆσT f1 (x, qT ) WT =σ ˆT f1 (x, qT ) WL =σ ˆL f1 (x, qT )

T T ⊥ g 2 W∆∆=σ ˆ∆∆ h1 (x, qT )

T ⊥ g 3 W∆∆ gives access to h1 and to the poorly known P0 LDME Smearing effects need to be included to match the result in the intermediate 2 2 2 overlapping regionΛ QCD  qT  Q

15/17 Quarkonium polarization Shape functions

Smearing effects are encoded in the shape functions ∆[n] (TMD generalizations

of NRQCD LDMEs) Echevarria, JHEP 10 (2019) Fleming, Makris, Mehen, JHEP 04 (2020)

TMD Collinear

2 2 2 2 qT  Q ΛQCD  qT

Imposing the matching of the TMD and collinear results in the overlapping 2 2 2 g g [n] regionΛ QCD  qT  Q : f1 −→ C[f1 ∆ ] 2 [n] 2 2 αs Q µ 2 2 ∆ (kT , µ ) = 2 2 CA h0|O8 (n)|0i ln 2 kT  Mp 2π kT kT Boer, D’Alesio, Murgia, CP, Taels, JHEP 09 (2020) D’Alesio, Maxia, Murgia, CP, Rajesh, in preparation 16/17 Conclusions

I Polarization states of J/ψ mesons produced in semi-inclusive DIS can be studied in different frames at the future EIC

I In the TMD region, we have shown that the distribution of linearly polarized gluons can, if sizable, affect the ν polarization parameter

I Our TMD formulae, at the order αs correctly match with the collinear 2 factorization results at high transverse momentum at the order αs

I If TMD factorization is applicable to this process, shape functions will have to be included in the expression of the cross section

I EIC data will shed light on gluon TMDs, shape functions and on the mechanisms underlying quarkonium production and polarization

I Other TMD observables/frameworks proposed for J/ψ production at EIC Godbole, Misra, Mukherjee, Rawoot, PRD 85 (2012) Godbole, Kaushik, Misra, Rawoot, PRD 91 (2015) Mukherjee, Rajesh, EPJC 77 (2017) Rajesh, Kishore, Mukherjee, PRD 98 (2018) Bacchetta, Boer, CP, Taels, EPJC 80 (2020) Boer, CP, Taels, PRD 103 (2021)

17/17