Introduction to Deep Inelastic Scattering: Past and Present
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glossary Physics (I-Introduction)
1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay. -
Followed by a Stretcher That Fits Into the Same
as the booster; the main synchro what cheaper because some ex tunnel (this would require comple tron taking the beam to the final penditure on buildings and general mentary funding beyond the normal energy; followed by a stretcher infrastructure would be saved. CERN budget); and at the Swiss that fits into the same tunnel as In his concluding remarks, SIN Laboratory. Finally he pointed the main ring of circumference 960 F. Scheck of Mainz, chairman of out that it was really one large m (any resemblance to existing the EHF Study Group, pointed out community of future users, not presently empty tunnels is not that the physics case for EHF was three, who were pushing for a unintentional). Bradamante pointed well demonstrated, that there was 'kaon factory'. Whoever would be out that earlier criticisms are no a strong and competent European first to obtain approval, the others longer valid. The price seems un physics community pushing for it, would beat a path to his door. der control, the total investment and that there were good reasons National decisions on the project for a 'green pasture' version for building it in Europe. He also will be taken this year. amounting to about 870 million described three site options: a Deutschmarks. A version using 'green pasture' version in Italy; at By Florian Scheck existing facilities would be some- CERN using the now defunct ISR A ZEUS group meeting, with spokesman Gunter Wolf one step in front of the pack. (Photo DESY) The HERA electron-proton collider now being built at the German DESY Laboratory in Hamburg will be a unique physics tool. -
Accelerator Search of the Magnetic Monopo
Accelerator Based Magnetic Monopole Search Experiments (Overview) Vasily Dzhordzhadze, Praveen Chaudhari∗, Peter Cameron, Nicholas D’Imperio, Veljko Radeka, Pavel Rehak, Margareta Rehak, Sergio Rescia, Yannis Semertzidis, John Sondericker, and Peter Thieberger. Brookhaven National Laboratory ABSTRACT We present an overview of accelerator-based searches for magnetic monopoles and we show why such searches are important for modern particle physics. Possible properties of monopoles are reviewed as well as experimental methods used in the search for them at accelerators. Two types of experimental methods, direct and indirect are discussed. Finally, we describe proposed magnetic monopole search experiments at RHIC and LHC. Content 1. Magnetic Monopole characteristics 2. Experimental techniques 3. Monopole Search experiments 4. Magnetic Monopoles in virtual processes 5. Future experiments 6. Summary 1. Magnetic Monopole characteristics The magnetic monopole puzzle remains one of the fundamental and unsolved problems in physics. This problem has a along history. The military engineer Pierre de Maricourt [1] in1269 was breaking magnets, trying to separate their poles. P. Curie assumed the existence of single magnetic poles [2]. A real breakthrough happened after P. Dirac’s approach to the solution of the electron charge quantization problem [3]. Before Dirac, J. Maxwell postulated his fundamental laws of electrodynamics [4], which represent a complete description of all known classical electromagnetic phenomena. Together with the Lorenz force law and the Newton equations of motion, they describe all the classical dynamics of interacting charged particles and electromagnetic fields. In analogy to electrostatics one can add a magnetic charge, by introducing a magnetic charge density, thus magnetic fields are no longer due solely to the motion of an electric charge and in Maxwell equation a magnetic current will appear in analogy to the electric current. -
Part B. Radiation Sources Radiation Safety
Part B. Radiation sources Radiation Safety 1. Interaction of electrons-e with the matter −31 me = 9.11×10 kg ; E = m ec2 = 0.511 MeV; qe = -e 2. Interaction of photons-γ with the matter mγ = 0 kg ; E γ = 0 eV; q γ = 0 3. Interaction of neutrons-n with the matter −27 mn = 1.68 × 10 kg ; En = 939.57 MeV; qn = 0 4. Interaction of protons-p with the matter −27 mp = 1.67 × 10 kg ; Ep = 938.27 MeV; qp = +e Note: for any nucleus A: mass number – nucleons number A = Z + N Z: atomic number – proton (charge) number N: neutron number 1 / 35 1. Interaction of electrons with the matter Radiation Safety The physical processes: 1. Ionization losses inelastic collisions with orbital electrons 2. Bremsstrahlung losses inelastic collisions with atomic nuclei 3. Rutherford scattering elastic collisions with atomic nuclei Positrons at nearly rest energy: annihilation emission of two 511 keV photons 2 / 35 1. Interaction of electrons with1.E+02 the matter Radiation Safety ) 1.E+03 -1 Graphite – Z = 6 .g 2 1.E+01 ) Lead – Z = 82 -1 .g 2 1.E+02 1.E+00 1.E+01 1.E-01 1.E+00 collision 1.E-02 radiative collision 1.E-01 stopping pow er (MeV.cm total radiative 1.E-03 stopping pow er (MeV.cm total 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E-02 energy (MeV) 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 Electrons – stopping power 1.E+02 energy (MeV) S 1 dE ) === -1 Copper – Z = 29 ρρρ ρρρ dl .g 2 1.E+01 S 1 dE 1 dE === +++ ρρρ ρρρ dl coll ρρρ dl rad 1 dE 1.E+00 : mass stopping power (MeV.cm 2 g. -
12 Light Scattering AQ1
12 Light Scattering AQ1 Lev T. Perelman CONTENTS 12.1 Introduction ......................................................................................................................... 321 12.2 Basic Principles of Light Scattering ....................................................................................323 12.3 Light Scattering Spectroscopy ............................................................................................325 12.4 Early Cancer Detection with Light Scattering Spectroscopy .............................................326 12.5 Confocal Light Absorption and Scattering Spectroscopic Microscopy ............................. 329 12.6 Light Scattering Spectroscopy of Single Nanoparticles ..................................................... 333 12.7 Conclusions ......................................................................................................................... 335 Acknowledgment ........................................................................................................................... 335 References ...................................................................................................................................... 335 12.1 INTRODUCTION Light scattering in biological tissues originates from the tissue inhomogeneities such as cellular organelles, extracellular matrix, blood vessels, etc. This often translates into unique angular, polari- zation, and spectroscopic features of scattered light emerging from tissue and therefore information about tissue -
Solutions 7: Interacting Quantum Field Theory: Λφ4
QFT PS7 Solutions: Interacting Quantum Field Theory: λφ4 (4/1/19) 1 Solutions 7: Interacting Quantum Field Theory: λφ4 Matrix Elements vs. Green Functions. Physical quantities in QFT are derived from matrix elements M which represent probability amplitudes. Since particles are characterised by having a certain three momentum and a mass, and hence a specified energy, we specify such physical calculations in terms of such \on-shell" values i.e. four-momenta where p2 = m2. For instance the notation in momentum space for a ! scattering in scalar Yukawa theory uses four-momenta labels p1 and p2 flowing into the diagram for initial states, with q1 and q2 flowing out of the diagram for the final states, all of which are on-shell. However most manipulations in QFT, and in particular in this problem sheet, work with Green func- tions not matrix elements. Green functions are defined for arbitrary values of four momenta including unphysical off-shell values where p2 6= m2. So much of the information encoded in a Green function has no obvious physical meaning. Of course to extract the corresponding physical matrix element from the Greens function we would have to apply such physical constraints in order to get the physics of scattering of real physical particles. Alternatively our Green function may be part of an analysis of a much bigger diagram so it represents contributions from virtual particles to some more complicated physical process. ∗1. The full propagator in λφ4 theory Consider a theory of a real scalar field φ 1 1 λ L = (@ φ)(@µφ) − m2φ2 − φ4 (1) 2 µ 2 4! (i) A theory with a gφ3=(3!) interaction term will not have an energy which is bounded below. -
An Analysis on Single and Central Diffractive Heavy Flavour Production at Hadron Colliders
416 Brazilian Journal of Physics, vol. 38, no. 3B, September, 2008 An Analysis on Single and Central Diffractive Heavy Flavour Production at Hadron Colliders M. V. T. Machado Universidade Federal do Pampa, Centro de Cienciasˆ Exatas e Tecnologicas´ Campus de Bage,´ Rua Carlos Barbosa, CEP 96400-970, Bage,´ RS, Brazil (Received on 20 March, 2008) In this contribution results from a phenomenological analysis for the diffractive hadroproduction of heavy flavors at high energies are reported. Diffractive production of charm, bottom and top are calculated using the Regge factorization, taking into account recent experimental determination of the diffractive parton density functions in Pomeron by the H1 Collaboration at DESY-HERA. In addition, multiple-Pomeron corrections are considered through the rapidity gap survival probability factor. We give numerical predictions for single diffrac- tive as well as double Pomeron exchange (DPE) cross sections, which agree with the available data for diffractive production of charm and beauty. We make estimates which could be compared to future measurements at the LHC. Keywords: Heavy flavour production; Pomeron physics; Single diffraction; Quantum Chromodynamics 1. INTRODUCTION the diffractive quarkonium production, which is now sensitive to the gluon content of the Pomeron at small-x and may be For a long time, diffractive processes in hadron collisions particularly useful in studying the different mechanisms for have been described by Regge theory in terms of the exchange quarkonium production. of a Pomeron with vacuum quantum numbers [1]. However, the nature of the Pomeron and its reaction mechanisms are In order to do so, we will use the hard diffractive factoriza- not completely known. -
A New Avenue to Parton Distribution Functions Uncertainties: Self-Organizing Maps Abstract
A New Avenue to Parton Distribution Functions Uncertainties: Self-Organizing Maps Abstract Neural network algorithms have been recently applied to construct Parton Distribution Functions (PDFs) parametrizations as an alternative to standard global fitting procedures. We propose a different technique, namely an interactive neural network algorithm using Self-Organizing Maps (SOMs). SOMs enable the user to directly control the data selection procedure at various stages of the process. We use all available data on deep inelastic scattering experiments in the kinematical region of 0:001 ≤ x ≤ 0:75, and 1 ≤ Q2 ≤ 100 GeV2, with a cut on the final state invariant mass, W 2 ≥ 10 GeV2. Our main goal is to provide a fitting procedure that, at variance with standard neural network approaches, allows for an increased control of the systematic bias. Controlling the theoretical uncertainties is crucial for determining the outcome of a variety of high energy physics experiments using hadron beams. In particular, it is a prerequisite for unambigously extracting from experimental data the signal of the Higgs boson, that is considered to be, at present, the key for determining the theory of the masses of all known elementary particles, or the Holy Grail of particle physics. PACS numbers: 13.60.-r, 12.38.-t, 24.85.+p 1 I. DEFINITION OF THE PROBLEM AND GENERAL REMARKS In high energy physics experiments one detects the cross section, σX , for observing a particle X during a given collision process. σX is proportional to the number of counts in the detector. It is, therefore, directly \observable". Consider the collision between two hadrons (a hadron is a more general name to indicate a proton, neutron...or a more exotic particle made of quarks). -
Collider Physics at HERA
ANL-HEP-PR-08-23 Collider Physics at HERA M. Klein1, R. Yoshida2 1University of Liverpool, Physics Department, L69 7ZE, Liverpool, United Kingdom 2Argonne National Laboratory, HEP Division, 9700 South Cass Avenue, Argonne, Illinois, 60439, USA May 21, 2008 Abstract From 1992 to 2007, HERA, the first electron-proton collider, operated at cms energies of about 320 GeV and allowed the investigation of deep-inelastic and photoproduction processes at the highest energy scales accessed thus far. This review is an introduction to, and a summary of, the main results obtained at HERA during its operation. To be published in Progress in Particle and Nuclear Physics arXiv:0805.3334v1 [hep-ex] 21 May 2008 1 Contents 1 Introduction 4 2 Accelerator and Detectors 5 2.1 Introduction.................................... ...... 5 2.2 Accelerator ..................................... ..... 6 2.3 Deep Inelastic Scattering Kinematics . ............. 9 2.4 Detectors ....................................... .... 12 3 Proton Structure Functions 15 3.1 Introduction.................................... ...... 15 3.2 Structure Functions and Parton Distributions . ............... 16 3.3 Measurement Techniques . ........ 18 3.4 Low Q2 and x Results .................................... 19 2 3.4.1 The Discovery of the Rise of F2(x, Q )....................... 19 3.4.2 Remarks on Low x Physics.............................. 20 3.4.3 The Longitudinal Structure Function . .......... 22 3.5 High Q2 Results ....................................... 23 4 QCD Fits 25 4.1 Introduction.................................... ...... 25 4.2 Determinations ofParton Distributions . .............. 26 4.2.1 TheZEUSApproach ............................... .. 27 4.2.2 TheH1Approach................................. .. 28 4.3 Measurements of αs inInclusiveDIS ............................ 29 5 Jet Measurements 32 5.1 TheoreticalConsiderations . ........... 32 5.2 Jet Cross-Section Measurements . ........... 34 5.3 Tests of pQCD and Determination of αs ......................... -
Deep Inelastic Scattering
Particle Physics Michaelmas Term 2011 Prof Mark Thomson e– p Handout 6 : Deep Inelastic Scattering Prof. M.A. Thomson Michaelmas 2011 176 e– p Elastic Scattering at Very High q2 ,At high q2 the Rosenbluth expression for elastic scattering becomes •From e– p elastic scattering, the proton magnetic form factor is at high q2 Phys. Rev. Lett. 23 (1969) 935 •Due to the finite proton size, elastic scattering M.Breidenbach et al., at high q2 is unlikely and inelastic reactions where the proton breaks up dominate. e– e– q p X Prof. M.A. Thomson Michaelmas 2011 177 Kinematics of Inelastic Scattering e– •For inelastic scattering the mass of the final state hadronic system is no longer the proton mass, M e– •The final state hadronic system must q contain at least one baryon which implies the final state invariant mass MX > M p X For inelastic scattering introduce four new kinematic variables: ,Define: Bjorken x (Lorentz Invariant) where •Here Note: in many text books W is often used in place of MX Proton intact hence inelastic elastic Prof. M.A. Thomson Michaelmas 2011 178 ,Define: e– (Lorentz Invariant) e– •In the Lab. Frame: q p X So y is the fractional energy loss of the incoming particle •In the C.o.M. Frame (neglecting the electron and proton masses): for ,Finally Define: (Lorentz Invariant) •In the Lab. Frame: is the energy lost by the incoming particle Prof. M.A. Thomson Michaelmas 2011 179 Relationships between Kinematic Variables •Can rewrite the new kinematic variables in terms of the squared centre-of-mass energy, s, for the electron-proton collision e– p Neglect mass of electron •For a fixed centre-of-mass energy, it can then be shown that the four kinematic variables are not independent. -
The Basic Interactions Between Photons and Charged Particles With
Outline Chapter 6 The Basic Interactions between • Photon interactions Photons and Charged Particles – Photoelectric effect – Compton scattering with Matter – Pair productions Radiation Dosimetry I – Coherent scattering • Charged particle interactions – Stopping power and range Text: H.E Johns and J.R. Cunningham, The – Bremsstrahlung interaction th physics of radiology, 4 ed. – Bragg peak http://www.utoledo.edu/med/depts/radther Photon interactions Photoelectric effect • Collision between a photon and an • With energy deposition atom results in ejection of a bound – Photoelectric effect electron – Compton scattering • The photon disappears and is replaced by an electron ejected from the atom • No energy deposition in classical Thomson treatment with kinetic energy KE = hν − Eb – Pair production (above the threshold of 1.02 MeV) • Highest probability if the photon – Photo-nuclear interactions for higher energies energy is just above the binding energy (above 10 MeV) of the electron (absorption edge) • Additional energy may be deposited • Without energy deposition locally by Auger electrons and/or – Coherent scattering Photoelectric mass attenuation coefficients fluorescence photons of lead and soft tissue as a function of photon energy. K and L-absorption edges are shown for lead Thomson scattering Photoelectric effect (classical treatment) • Electron tends to be ejected • Elastic scattering of photon (EM wave) on free electron o at 90 for low energy • Electron is accelerated by EM wave and radiates a wave photons, and approaching • No -
Optical Light Manipulation and Imaging Through Scattering Media
Optical light manipulation and imaging through scattering media Thesis by Jian Xu In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2020 Defended September 2, 2020 ii © 2020 Jian Xu ORCID: 0000-0002-4743-2471 All rights reserved except where otherwise noted iii ACKNOWLEDGEMENTS Foremost, I would like to express my sincere thanks to my advisor Prof. Changhuei Yang, for his constant support and guidance during my PhD journey. He created a research environment with a high degree of freedom and encouraged me to explore fields with a lot of unknowns. From his ethics of research, I learned how to be a great scientist and how to do independent research. I also benefited greatly from his high standards and rigorous attitude towards work, with which I will keep in my future path. My committee members, Professor Andrei Faraon, Professor Yanbei Chen, and Professor Palghat P. Vaidyanathan, were extremely supportive. I am grateful for the collaboration and research support from Professor Andrei Faraon and his group, the helpful discussions in optics and statistics with Professor Yanbei Chen, and the great courses and solid knowledge of signal processing from Professor Palghat P. Vaidyanathan. I would also like to thank the members from our lab. Dr. Haojiang Zhou introduced me to the wavefront shaping field and taught me a lot of background knowledge when I was totally unfamiliar with the field. Dr. Haowen Ruan shared many innovative ideas and designs with me, from which I could understand the research field from a unique perspective.