Chapter 5: Flow Control
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PPC7A10 at Our Website: Click HERE Powerx Product Manual PPC7A
Full-service, independent repair center -~ ARTISAN® with experienced engineers and technicians on staff. TECHNOLOGY GROUP ~I We buy your excess, underutilized, and idle equipment along with credit for buybacks and trade-ins. Custom engineering Your definitive source so your equipment works exactly as you specify. for quality pre-owned • Critical and expedited services • Leasing / Rentals/ Demos equipment. • In stock/ Ready-to-ship • !TAR-certified secure asset solutions Expert team I Trust guarantee I 100% satisfaction Artisan Technology Group (217) 352-9330 | [email protected] | artisantg.com All trademarks, brand names, and brands appearing herein are the property o f their respective owners. Find the Abaco Systems / Radstone PPC7A10 at our website: Click HERE PowerX Product Manual PPC7A Appendix C - PPC7A This appendix contains hardware information for PPC7A boards. The information contained in this document must be used in conjunction with PowerX Quick Start, PowerX User Guides and/or the PowerX product Manual. Link Settings...................................................................................................................................... C-3 Default Link Settings............................................................................................................................... C-3 RTC Standby Supply Voltage Link (E1)................................................................................................. C-4 FLASH Write Enable Links (E3 and E9)............................................................................................... -
A Not So Short Introduction to Pcie
Practical introduction to PCI Express with FPGAs Michal HUSEJKO, John EVANS [email protected] IT-PES-ES v 1.0 Agenda • What is PCIe ? o System Level View o PCIe data transfer protocol • PCIe system architecture • PCIe with FPGAs o Hard IP with Altera/Xilinx FPGAs o Soft IP (PLDA) o External PCIe PHY (Gennum) v 1.0 System Level View • Interconnection • Top-down tree hierarchy • PCI/PCIe configuration space • Protocol v 1.0 Interconnection • Serial interconnection • Dual uni-directional • Lane, Link, Port • Scalable o Gen1 2.5/ Gen2 5.0/ Gen3 8.0 GT/s o Number of lanes in FPGAs: x1, x2, x4, x8 • Gen1/2 8b10b • Gen3 128b/130b v 1.0 Image taken from “Introduction to PCI Express” Tree hierarchy • Top-down tree hierarchy with single host • 3 types of devices: Root Complex, Endpoint, Switch • Point-to-point connection between devices without sideband signalling • 2 types of ports: downstream/upstream • Configuration space Image taken from “Introduction to PCI Express” v 1.0 PCIe Configuration space • Similar to PCI conf space – binary compatible for first 256 bytes • Defines device(system) capabilities • Clearly identifies device in the system o Device ID o Vendor ID o Function ID o All above • and defines memory space allocated to device. v 1.0 PCIe transfer protocol • Transaction categories • Protocol • Implementation of the protocol v 1.0 Transaction categories • Configuration – move downstream • Memory – address based routing • IO – address based routing • Message – ID based routing v 1.0 Transaction Types v 1.0 Table taken from “PCI -
Hypertransport Extending Technology Leadership
HyperTransport Extending Technology Leadership International HyperTransport Symposium 2009 February 11, 2009 Mario Cavalli General Manager HyperTransport Technology Consortium Copyright HyperTransport Consortium 2009 HyperTransport Extending Technology Leadership HyperTransport and Consortium Snapshot Industry Status and Trends HyperTransport Leadership Role February 11, 2009 Mario Cavalli General Manager HyperTransport Technology Consortium Copyright HyperTransport Consortium 2009 HyperTransport Snapshot Low Latency, High Bandwidth, High Efficiency Point-to-Point Interconnect Leadership CPU-to-I/O CPU-to-CPU CPU-to-Coprocessor Copyright HyperTransport Consortium 2009 Adopted by Industry Leaders in Widest Range of Applications than Any Other Interconnect Technology Copyright HyperTransport Consortium 2009 Snapshot Formed 2001 Controls, Licenses, Promotes HyperTransport as Royalty-Free Open Standard World Technology Leaders among Commercial and Academic Members Newly Elected President Mike Uhler VP Accelerated Computing Advanced Micro Devices Copyright HyperTransport Consortium 2009 Industry Status and Trends Copyright HyperTransport Consortium 2009 Global Economic Downturn Tough State of Affairs for All Industries Consumer Markets Crippled with Long-Term to Recovery Commercial Markets Strongly Impacted Copyright HyperTransport Consortium 2009 Consequent Business Focus Cost Effectiveness No Redundancy Frugality Copyright HyperTransport Consortium 2009 Downturn Breeds Opportunities Reinforced Need for More Optimized, Cost-Effective Computing -
Hypertransport?
HT.book Page 99 Monday, January 13, 2003 12:12 PM 5 Flow Control The Previous Chapter The previous chapter described the use of HyperTransport control and data packets to construct HyperTransport link transactions. Control packet types include Information, Request, and Response variants; data packets contain a payload of 0-64 valid bytes. The transmission, structure, and use of each packet type is presented. This Chapter This chapter describes HyperTransport flow control, used to throttle the move- ment of packets across each link interface. On a high-performance connection such as HyperTransport, efficient management of transaction flow is nearly as important as the raw bandwidth made possible by clock speed and data bus width. Topics covered here include background information on bus flow control and the initialization and use of the HyperTransport virtual channel flow con- trol buffer mechanism defined for each transmitter-receiver pair. The Next Chapter The next chapter describes the rules governing acceptance, forwarding, and rejection of packets seen by HyperTransport devices. Several factors come into play in routing, including the packet type, the direction it is moving, and the device type which sees it. A related topic also covered in this chapter is the fair- ness algorithm used by a tunnel device as it inserts its own packets into the traf- fic it forwards upstream on behalf of devices below it. The HyperTransport specification provides a fairness algorithm and a hardware method for tunnel management packet insertion. The Problem On any bus where an agent initiates the exchange of information (commands, data, status, etc.) with a target, a number of things can cause a delay (or even end) the normal completion of the intended transfer. -
Comparison of High Performance Northbridge Architectures in Multiprocessor Servers
Comparison of High Performance Northbridge Architectures in Multiprocessor Servers Michael Koontz MS CpE Scholarly Paper Advisor: Dr. Jens-Peter Kaps Co-Advisor: Dr. Daniel Tabak - 1 - Table of Contents 1. Introduction ...............................................................................................................3 2. The x86-64 Instruction Set Architecture (ISA) ...................................................... 3 3. Memory Coherency ...................................................................................................4 4. The MOESI and MESI Cache Coherency Models.................................................8 5. Scalable Coherent Interface (SCI) and HyperTransport ....................................14 6. Fully-Buffered DIMMS ..........................................................................................16 7. The AMD Opteron Northbridge ............................................................................19 8. The Intel Blackford Northbridge Architecture .................................................... 27 9. Performance and Power Consumption .................................................................32 10. Additional Considerations ..................................................................................34 11. Conclusion ............................................................................................................ 36 - 2 - 1. Introduction With the continuing growth of today’s multi-media, Internet based culture, businesses are becoming more dependent -
A Unified Memory Network Architecture for In-Memory
A Unified Memory Network Architecture for In-Memory Computing in Commodity Servers Jia Zhan∗, Itir Akgun∗, Jishen Zhao†, Al Davis‡, Paolo Faraboschi‡, Yuangang Wang§, and Yuan Xie∗ ∗University of California, Santa Barbara †University of California, Santa Cruz ‡HP Labs §Huawei Abstract—In-memory computing is emerging as a promising largely residing in main memory, they also pose significant paradigm in commodity servers to accelerate data-intensive challenges in DRAM scaling, especially for memory capacity. processing by striving to keep the entire dataset in DRAM. To If the large dataset cannot fit entirely in memory, it has to address the tremendous pressure on the main memory system, discrete memory modules can be networked together to form a be spilled to disk, thus causing sub-optimal performance due memory pool, enabled by recent trends towards richer memory to disk I/O contention. Unfortunately, with the current DDRx interfaces (e.g. Hybrid Memory Cubes, or HMCs). Such an inter- based memory architecture, the scaling of DRAM capacity memory network provides a scalable fabric to expand memory falls far behind the growth of dataset size of in-memory capacity, but still suffers from long multi-hop latency, limited computing applications [12]. A straightforward approach to bandwidth, and high power consumption—problems that will continue to exacerbate as the gap between interconnect and increase memory capacity is to add more CPU sockets for transistor performance grows. Moreover, inside each memory additional memory channels. However, this will introduce module, an intra-memory network (NoC) is typically employed to significant hardware cost [13]. Moreover, in a multi-socket connect different memory partitions. -
TMS320C6452 DSP Host Port Interface (HPI)
TMS320C6452 DSP Host Port Interface (HPI) User's Guide Literature Number: SPRUF87A October 2007–Revised May 2008 2 SPRUF87A–October 2007–Revised May 2008 Submit Documentation Feedback Contents Preface ........................................................................................................................................ 6 1 Introduction......................................................................................................................... 9 1.1 Purpose of the Peripheral................................................................................................ 9 1.2 Features .................................................................................................................... 9 1.3 Functional Block Diagram .............................................................................................. 10 1.4 Industry Standard(s) Compliance Statement ........................................................................ 11 1.5 Terminology Used in This Document ................................................................................. 11 2 Peripheral Architecture ....................................................................................................... 12 2.1 Clock Control............................................................................................................. 12 2.2 Memory Map ............................................................................................................ 12 2.3 Signal Descriptions ..................................................................................................... -
1 Signal Definitions
PI7C8140A 2-Port PCI-to-PCI Bridge REVISION 1.01 3545 North First Street, San Jose, CA 95134 Telephone: 1-877-PERICOM, (1-877-737-4266) Fax: 408-435-1100 Internet: http://www.pericom.com 07-0067 PI7C8140A 2-PORT PCI-TO-PCI BRIDGE LIFE SUPPORT POLICY Pericom Semiconductor Corporation’s products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to such intended use is executed between the manufacturer and an officer of PSC. 1) Life support devices or system are devices or systems which: a) Are intended for surgical implant into the body or b) Support or sustain life and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. 2) A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Pericom Semiconductor Corporation reserves the right to make changes to its products or specifications at any time, without notice, in order to improve design or performance and to supply the best possible product. Pericom Semiconductor does not assume any responsibility for use of any circuitry described other than the circuitry embodied in a Pericom Semiconductor product. The Company makes no representations that circuitry described herein is free from patent infringement or other rights of third parties which may result from its use. -
Introduction to AGP-8X
W H I T E P A P E R Introduction to AGP-8X Allan Chen Jessie Johnson Angel Suhrstedt ADVANCED MICRO DEVICES, INC. One AMD Place Sunnyvale, CA 94088 Page 1 Introduction to AGP-8X May 10, 2002 W H I T E P A P E R Background Tremendous efforts have been made to improve computing system performance through increases in CPU processing power; however, I/O bottlenecks throughout the computing platform can limit the system performance. To eliminate system bottlenecks, AMD has been working with industry leaders to implement innovative technologies including AGP, DDR SDRAM, USB2.0, and HyperTransport™ technology. This white paper will provide an overview of the latest graphics subsystem innovation: AGP-8X. Introduction The Accelerated Graphics Port (AGP) was developed as a high-performance graphics interface. It alleviates the PCI graphics bottleneck by providing high bandwidth throughput and direct access to system memory. The new AGP3.0 specification adds an 8X mode definition, which doubles the maximum data transfer rate from the previous high reached with AGP-4X by doubling the amount of data transferred per AGP bus cycle. Figure 1 shows the graphic interface bandwidth performance evolution from PCI to AGP-8X. In this figure, AGP3.0 refers to the specific AGP interface specification. AGP-1X, AGP-2X, AGP-4X and AGP-8X represent the data transfer speed mode. Graphics Interface Peak Bandwidth 2500 2000 1500 1000 Bandwidth (MB/s) 500 0 PCI AGP1X AGP2X AGP4X AGP8X AGP 1.0 Specification AGP 2.0 Specification AGP 3.0 Specification Figure 1: Available bandwidth of different graphic interfaces. -
AMD Opteron™ 4000 Series Platform Quick Reference Guide
AMD Opteron™ 4000 Series Platform Quick Reference Guide The AMD Opteron™ 4100 Series processor, the world’s lowest power per core processor1, sets the foundation for cloud workloads and affordability for mainstream infrastructure servers with prices starting at $992. AMD Opteron™ 4100 Series Processor END USER BENEFITS Outstanding Performance-Per-Watt > Designed from the ground up to handle demanding server workloads at the lowest available energy draw, beating the competition by as much as 40% (per/core).1 Business Value > The world’s first 1P and 2P capable processor at sub $100 pricing.2 Easy to Purchase and Operate > Scalable solutions with feature, component and platform consistency. PRODUCT FEATURES New AMD-P 2.0 Power Savings Features: > Ultra-low power platforms provide power efficiency beyond just the processor, 3 SOUNDBITE for both 1P and 2P server configurations. THE WORLD’S LOWEST POWER PER CORE SERVER PROCESSOR1 > APML (Advanced Platform Management Link)4 provides an interface for processor and systems management monitoring and controlling of system resources such as platform power Quick Features consumption via p-state limits and CPU thermals to closely monitor power and cooling. AMD-P 2.0: > Link Width PowerCap which changes all 16-bit links to 8-bit links5 can help power conscious Ultra-low power platform > customers improve performance-per-watt. > Advanced Platform Management Link (APML)4 > AMD CoolSpeed Technology reduces p-states when a temperature limit is reached to allow a > Link Width PowerCap server to operate if the processor’s thermal environment exceeds safe operational limits. > AMD CoolSpeed Technology > When C1E5,6 is enabled, the cores, southbridge and memory controller enter a sleep state that > C1E6 can equate to significant power savings in the datacenter depending on system configuration. -
An FPGA Based Verification Platform for Hypertransport 3.X
An FPGA based Verification Platform for HyperTransport 3.x Heiner Litz Holger Froening Maximilian Thuermer Ulrich Bruening University of Heidelberg Computer Architecture Group Germany {heiner.litz, holger.froening, ulrich.bruening}@ziti.uni-heidelberg.de ABSTRACT ware (HW/SW) co-verification Field Programmable Gate In this paper we present a verification platform designed Arrays (FPGAs) have several advantages compared to for HyperTransport 3.x (HT3) applications. It is intended to Electronic Design Automation (EDA) tools. FPGAs allow be used in computing environments in which it is directly to run prototypes in real world environments, in which both connected over a HyperTransport link to the main CPUs. hardware modules and software layers can be verified in an No protocol conversions or intermediate bridges are neces- early prototyping stage. However, the drawback is that sary, which results in a very low latency. An FPGA tech- FPGA-based verification platforms have to be specially nology is chosen due to of its reconfigurability. The main designed for certain applications, in particular if the appli- challenge of this work is the implementation of an HT3 cation is based on a new technology. link using FPGA technology. We provide a design space The verification platform presented here connects to a exploration in order to find the most suitable I/O technol- HyperTransport (HT) link. HyperTransport 2.x (HT2) ogy. This includes verification of the HyperTransport-spe- [1][2] is an established technology for chip-to-chip connec- cific signal levelling, the development of an I/O tions offering a very low latency and a high bandwidth. It is architecture supporting a link width of up to 16 lanes with used in all major AMD processors, including the Opteron source synchronous clocking and a clocking scheme to [3]. -
Tsi340 User Manual 80E3000 MA001 05 4 Contents
® IDT Tsi340™ PCI-to-PCI Bridge User Manual 80E3000_MA001_05 September 2009 6024 Silver Creek Valley Road, San Jose, California 95138 Telephone: (800) 345-7015 • (408) 284-8200 • FAX: (408) 284-2775 Printed in U.S.A. ©2009 Integrated Device Technology, Inc. GENERAL DISCLAIMER Integrated Device Technology, Inc. reserves the right to make changes to its products or specifications at any time, without notice, in order to improve design or performance and to supply the best possible product. IDT does not assume any responsibility for use of any circuitry described other than the circuitry embodied in an IDT product. The Company makes no representations that circuitry described herein is free from patent infringement or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent, patent rights or other rights, of Integrated Device Technology, Inc. CODE DISCLAIMER Code examples provided by IDT are for illustrative purposes only and should not be relied upon for developing applications. Any use of the code examples below is completely at your own risk. IDT MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE NONINFRINGEMENT, QUALITY, SAFETY OR SUITABILITY OF THE CODE, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICU- LAR PURPOSE, OR NON-INFRINGEMENT. FURTHER, IDT MAKES NO REPRESENTATIONS OR WARRANTIES AS TO THE TRUTH, ACCURACY OR COMPLETENESS OF ANY STATEMENTS, INFORMATION OR MATERIALS CONCERNING CODE EXAMPLES CONTAINED IN ANY IDT PUBLICATION OR PUBLIC DISCLOSURE OR THAT IS CONTAINED ON ANY IDT INTERNET SITE. IN NO EVENT WILL IDT BE LIABLE FOR ANY DIRECT, CONSEQUENTIAL, INCIDENTAL, INDIRECT, PUNITIVE OR SPECIAL DAMAGES, HOWEVER THEY MAY ARISE, AND EVEN IF IDT HAS BEEN PREVIOUSLY ADVISED ABOUT THE POSSIBILITY OF SUCH DAMAGES.