Open Set Theory

Total Page:16

File Type:pdf, Size:1020Kb

Open Set Theory OPEN SET THEORY Tim Button and the Open Logic Project About This book is an Open Education Resource. It is written for students with a little background in logic, and some high school mathematics. It aims to scratch the tip of the surface of the philosophy of set theory. By the end of this book, students reading it might have a sense of: 1. why set theory came about; 2. how to reduce large swathes of mathematics to set theory + arithmetic; 3. how to embed arithmetic in set theory; 4. what the cumulative iterative conception of set amounts to; 5. how one might try to justify the axioms of ZFC. The book grew out of a short course that I (Tim Button) teach at Cambridge. Before me, it was lectured by Luca Incurvati and Michael Potter. In writing this book—and the course, more generally—I was hugely indebted to both Luca and Michael. I want to offer both of them my heartfelt thanks. The book also draws material from the Open Logic Text. In particular, chap- ters1–3 are drawn (with only tiny changes) from the Open Logic Text. Recip- rocally, I (Tim) am contributing the material I have written back to the Open Logic Project. Please see openlogicproject.org for more information. This book was released January 21, 2019, under a Creative Commons license (CC BY 4.0; full details are available at the CC website). The following is a human-readable summary of (and not a substitute for) that license: License details. You are free to: — Share: copy and redistribute the material in any medium or format — Adapt: remix, transform, and build upon the material for any purpose, even commercially. Under the following terms: — Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. 1 Contents 0 Prelude: history and mythology6 0.1 Infinitesimals and differentiation................. 6 0.2 Rigorous definition of limits ................... 8 0.3 Pathologies............................. 9 0.4 More myth than history? ..................... 11 0.5 Where we are headed....................... 11 I Na¨ıveset theory 13 1 Getting started 15 1.1 Extensionality ........................... 15 1.2 Subsets ............................... 16 1.3 Some important sets of numbers................. 17 1.4 Unions and Intersections ..................... 17 1.5 Pairs, Tuples, Cartesian Products................. 20 1.6 Russell’s Paradox ......................... 21 Problems.................................. 22 2 Relations 23 2.1 Relations as Sets .......................... 23 2.2 Philosophical reflections...................... 24 2.3 Special Properties of Relations.................. 26 2.4 Orders................................ 27 2.5 Operations on Relations...................... 29 Problems.................................. 30 3 Functions 31 3.1 Basics ................................ 31 3.2 Kinds of Functions......................... 33 3.3 Functions as relations....................... 35 3.4 Inverses of Functions ....................... 36 3.5 Composition of Functions..................... 37 Problems.................................. 37 2 CONTENTS 3 4 The Size of Sets 39 4.1 Introduction ............................ 39 4.2 Countable Sets........................... 39 4.3 Cantor’s zig-zag method ..................... 41 4.4 Pairing functions and codes.................... 42 4.5 Uncountable Sets.......................... 43 4.6 Reduction.............................. 45 4.7 Equinumerosity .......................... 45 4.8 Sets of different sizes, and Cantor’s Theorem.......... 46 4.9 The notion of size, and Schroder–Bernstein¨ ........... 47 4.10 Appendix: Cantor on the line and the plane.......... 48 4.11 Appendix: Hilbert’s space-filling curves ............ 49 Problems.................................. 51 5 Arithmetisation 53 5.1 From N to Z ............................ 53 5.2 From Z to Q ............................ 55 5.3 The real line............................. 56 5.4 From Q to R ............................ 57 5.5 Some philosophical reflections.................. 59 5.6 Appendix: ordered rings and fields............... 60 5.7 Appendix: the reals as Cauchy sequences............ 63 Problems.................................. 66 6 Infinite sets 68 6.1 Hilbert’s Hotel........................... 68 6.2 Dedekind algebras......................... 69 6.3 Dedekind algebras and arithmetical induction......... 70 6.4 Dedekind’s “proof” of an infinite set .............. 71 6.5 Appendix: a proof of Schroder–Bernstein¨ ............ 73 II The iterative conception 75 7 The iterative conception 78 7.1 Extensionality ........................... 78 7.2 Russell’s Paradox (again)..................... 78 7.3 Predicative and impredicative.................. 79 7.4 The cumulative-iterative approach................ 81 7.5 Urelements or not?......................... 82 7.6 Appendix: Frege’s Basic Law V ................. 84 8 Steps towards Z 85 8.1 The story in more detail...................... 85 8.2 Separation.............................. 85 8.3 Union ................................ 87 CONTENTS 4 8.4 Pairs................................. 87 8.5 Powersets.............................. 88 8.6 Infinity................................ 89 8.7 Z−: a milestone........................... 91 8.8 Selecting our natural numbers.................. 91 8.9 Appendix: closure, comprehension, and intersection . 92 Problems.................................. 93 9 Ordinals 94 9.1 The general idea of an ordinal .................. 94 9.2 Well orderings ........................... 95 9.3 Order-isomorphisms........................ 96 9.4 Von Neumann’s construction of the ordinals.......... 98 9.5 Basic properties of the ordinals.................. 98 9.6 Replacement ............................ 101 9.7 ZF−: a milestone.......................... 102 9.8 Ordinals as order-types...................... 102 9.9 Successor and limit ordinals ................... 103 Problems.................................. 104 10 Stages and ranks 105 10.1 Defining the stages as the Vas................... 105 10.2 The Transfinite Recursion Theorem(s) . 105 10.3 Basic properties of stages..................... 107 10.4 Foundation............................. 108 10.5 Z and ZF: a milestone....................... 110 10.6 Rank................................. 110 11 Replacement 112 11.1 The strength of Replacement................... 112 11.2 Extrinsic considerations about Repalement . 113 11.3 Limitation-of-size ......................... 114 11.4 Replacement and “absolute infinity” . 115 11.5 Replacement and Reflection ................... 117 Problems.................................. 120 12 Ordinal arithmetic 121 12.1 Ordinal addition.......................... 121 12.2 Using ordinal addition ...................... 124 12.3 Ordinal multiplication....................... 125 12.4 Ordinal exponentiation...................... 126 Problems.................................. 127 13 Cardinals 128 13.1 Cantor’s Principle ......................... 128 13.2 Cardinals as ordinals ....................... 128 CONTENTS 5 13.3 ZFC: a milestone.......................... 130 13.4 Finite, countable, uncountable.................. 130 13.5 Appendix: Hume’s Principle................... 133 14 Cardinal arithmetic 135 14.1 Defining the basic operations................... 135 14.2 Simplifying addition and multiplication . 137 14.3 Some simplification with cardinal exponentiation . 138 14.4 The Continuum Hypothesis ................... 139 14.5 Appendix: @-fixed-points..................... 141 Problems.................................. 143 15 Choice 144 15.1 The Tarski–Scott trick ....................... 144 15.2 Comparability and Hartogs’ Lemma . 145 15.3 The Well-Ordering Problem.................... 146 15.4 Countable choice.......................... 147 15.5 Intrinsic considerations about Choice . 149 15.6 The Banach–Tarski Paradox.................... 150 15.7 Appendix: Vitali’s Paradox.................... 152 Problems.................................. 155 Bibliography 156 Chapter 0 Prelude: history and mythology To understand the philosophical significance of set theory, it will help to have some sense of why set theory arose at all. To understand that, it will help to think a little bit about the history and mythology of mathematics. So, before we get started on discussing set theory at all, we will start with a very brief “history”. But I put this in scare-quotes, because it is very brief, extremely selective, and somewhat contestable. 0.1 Infinitesimals and differentiation Newton and Leibniz discovered the calculus (independently) at the end of the 17th century. A particularly important application of the calculus was differentiation. Roughly speaking, differentiation aims to give a notion of the “rate of change”, or gradient, of a function at a point. Here is a vivid way to illustrate the idea. Consider the function f (x) = 2 x /4 + 1/2, depicted in black below: f (x) 5 4 3 2 1 x 1 2 3 4 6 7 Suppose we want to find the gradient of the function at c = 1/2. We start by drawing a triangle whose hypotenuse approximates the gradient at that point, perhaps the red triangle above. When b is the base length of our tri- angle, its height is f (1/2 + b) − f (1/2), so that the gradient of the hypotenuse is: f (1/2 + b) − f (1/2) b So the gradient of our red triangle, with base length 3, is exactly 1. The hypotenuse of a smaller triangle, the green triangle with base length 2, gives a better approximation; its gradient is 3/4.
Recommended publications
  • De Rham Cohomology
    De Rham Cohomology 1. Definition of De Rham Cohomology Let X be an open subset of the plane. If we denote by C0(X) the set of smooth (i. e. infinitely differentiable functions) on X and C1(X), the smooth 1-forms on X (i. e. expressions of the form fdx + gdy where f; g 2 C0(X)), we have natural differntiation map d : C0(X) !C1(X) given by @f @f f 7! dx + dy; @x @y usually denoted by df. The kernel for this map (i. e. set of f with df = 0) is called the zeroth De Rham Cohomology of X and denoted by H0(X). It is clear that these are precisely the set of locally constant functions on X and it is a vector space over R, whose dimension is precisley the number of connected components of X. The image of d is called the set of exact forms on X. The set of pdx + qdy 2 C1(X) @p @q such that @y = @x are called closed forms. It is clear that exact forms and closed forms are vector spaces and any exact form is a closed form. The quotient vector space of closed forms modulo exact forms is called the first De Rham Cohomology and denoted by H1(X). A path for this discussion would mean piecewise smooth. That is, if γ : I ! X is a path (a continuous map), there exists a subdivision, 0 = t0 < t1 < ··· < tn = 1 and γ(t) is continuously differentiable in the open intervals (ti; ti+1) for all i.
    [Show full text]
  • 1 Elementary Set Theory
    1 Elementary Set Theory Notation: fg enclose a set. f1; 2; 3g = f3; 2; 2; 1; 3g because a set is not defined by order or multiplicity. f0; 2; 4;:::g = fxjx is an even natural numberg because two ways of writing a set are equivalent. ; is the empty set. x 2 A denotes x is an element of A. N = f0; 1; 2;:::g are the natural numbers. Z = f:::; −2; −1; 0; 1; 2;:::g are the integers. m Q = f n jm; n 2 Z and n 6= 0g are the rational numbers. R are the real numbers. Axiom 1.1. Axiom of Extensionality Let A; B be sets. If (8x)x 2 A iff x 2 B then A = B. Definition 1.1 (Subset). Let A; B be sets. Then A is a subset of B, written A ⊆ B iff (8x) if x 2 A then x 2 B. Theorem 1.1. If A ⊆ B and B ⊆ A then A = B. Proof. Let x be arbitrary. Because A ⊆ B if x 2 A then x 2 B Because B ⊆ A if x 2 B then x 2 A Hence, x 2 A iff x 2 B, thus A = B. Definition 1.2 (Union). Let A; B be sets. The Union A [ B of A and B is defined by x 2 A [ B if x 2 A or x 2 B. Theorem 1.2. A [ (B [ C) = (A [ B) [ C Proof. Let x be arbitrary. x 2 A [ (B [ C) iff x 2 A or x 2 B [ C iff x 2 A or (x 2 B or x 2 C) iff x 2 A or x 2 B or x 2 C iff (x 2 A or x 2 B) or x 2 C iff x 2 A [ B or x 2 C iff x 2 (A [ B) [ C Definition 1.3 (Intersection).
    [Show full text]
  • The Iterative Conception of Set Author(S): George Boolos Reviewed Work(S): Source: the Journal of Philosophy, Vol
    Journal of Philosophy, Inc. The Iterative Conception of Set Author(s): George Boolos Reviewed work(s): Source: The Journal of Philosophy, Vol. 68, No. 8, Philosophy of Logic and Mathematics (Apr. 22, 1971), pp. 215-231 Published by: Journal of Philosophy, Inc. Stable URL: http://www.jstor.org/stable/2025204 . Accessed: 12/01/2013 10:53 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Journal of Philosophy, Inc. is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Philosophy. http://www.jstor.org This content downloaded on Sat, 12 Jan 2013 10:53:17 AM All use subject to JSTOR Terms and Conditions THE JOURNALOF PHILOSOPHY VOLUME LXVIII, NO. 8, APRIL 22, I97I _ ~ ~~~~~~- ~ '- ' THE ITERATIVE CONCEPTION OF SET A SET, accordingto Cantor,is "any collection.., intoa whole of definite,well-distinguished objects... of our intuitionor thought.'1Cantor alo sdefineda set as a "many, whichcan be thoughtof as one, i.e., a totalityof definiteelements that can be combinedinto a whole by a law.'2 One mightobject to the firstdefi- nitionon the groundsthat it uses the conceptsof collectionand whole, which are notionsno betterunderstood than that of set,that there ought to be sets of objects that are not objects of our thought,that 'intuition'is a termladen with a theoryof knowledgethat no one should believe, that any object is "definite,"that there should be sets of ill-distinguishedobjects, such as waves and trains,etc., etc.
    [Show full text]
  • A Class of Symmetric Difference-Closed Sets Related to Commuting Involutions John Campbell
    A class of symmetric difference-closed sets related to commuting involutions John Campbell To cite this version: John Campbell. A class of symmetric difference-closed sets related to commuting involutions. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2017, Vol 19 no. 1. hal-01345066v4 HAL Id: hal-01345066 https://hal.archives-ouvertes.fr/hal-01345066v4 Submitted on 18 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Discrete Mathematics and Theoretical Computer Science DMTCS vol. 19:1, 2017, #8 A class of symmetric difference-closed sets related to commuting involutions John M. Campbell York University, Canada received 19th July 2016, revised 15th Dec. 2016, 1st Feb. 2017, accepted 10th Feb. 2017. Recent research on the combinatorics of finite sets has explored the structure of symmetric difference-closed sets, and recent research in combinatorial group theory has concerned the enumeration of commuting involutions in Sn and An. In this article, we consider an interesting combination of these two subjects, by introducing classes of symmetric difference-closed sets of elements which correspond in a natural way to commuting involutions in Sn and An. We consider the natural combinatorial problem of enumerating symmetric difference-closed sets consisting of subsets of sets consisting of pairwise disjoint 2-subsets of [n], and the problem of enumerating symmetric difference-closed sets consisting of elements which correspond to commuting involutions in An.
    [Show full text]
  • Even Ordinals and the Kunen Inconsistency∗
    Even ordinals and the Kunen inconsistency∗ Gabriel Goldberg Evans Hall University Drive Berkeley, CA 94720 July 23, 2021 Abstract This paper contributes to the theory of large cardinals beyond the Kunen inconsistency, or choiceless large cardinal axioms, in the context where the Axiom of Choice is not assumed. The first part of the paper investigates a periodicity phenomenon: assuming choiceless large cardinal axioms, the properties of the cumulative hierarchy turn out to alternate between even and odd ranks. The second part of the paper explores the structure of ultrafilters under choiceless large cardinal axioms, exploiting the fact that these axioms imply a weak form of the author's Ultrapower Axiom [1]. The third and final part of the paper examines the consistency strength of choiceless large cardinals, including a proof that assuming DC, the existence of an elementary embedding j : Vλ+3 ! Vλ+3 implies the consistency of ZFC + I0. embedding j : Vλ+3 ! Vλ+3 implies that every subset of Vλ+1 has a sharp. We show that the existence of an elementary embedding from Vλ+2 to Vλ+2 is equiconsistent with the existence of an elementary embedding from L(Vλ+2) to L(Vλ+2) with critical point below λ. We show that assuming DC, the existence of an elementary embedding j : Vλ+3 ! Vλ+3 implies the consistency of ZFC + I0. By a recent result of Schlutzenberg [2], an elementary embedding from Vλ+2 to Vλ+2 does not suffice. 1 Introduction Assuming the Axiom of Choice, the large cardinal hierarchy comes to an abrupt halt in the vicinity of an !-huge cardinal.
    [Show full text]
  • Intransitivity, Utility, and the Aggregation of Preference Patterns
    ECONOMETRICA VOLUME 22 January, 1954 NUMBER 1 INTRANSITIVITY, UTILITY, AND THE AGGREGATION OF PREFERENCE PATTERNS BY KENNETH 0. MAY1 During the first half of the twentieth century, utility theory has been subjected to considerable criticism and refinement. The present paper is concerned with cer- tain experimental evidence and theoretical arguments suggesting that utility theory, whether cardinal or ordinal, cannot reflect, even to an approximation, the existing preferences of individuals in many economic situations. The argument is based on the necessity of transitivity for utility, observed circularities of prefer- ences, and a theoretical framework that predicts circularities in the presence of preferences based on numerous criteria. THEORIES of choice may be built to describe behavior as it is or as it "ought to be." In the belief that the former should precede the latter, this paper is con- cerned solely with descriptive theory and, in particular, with the intransitivity of preferences. The first section indicates that transitivity is not necessary to either the usual axiomatic characterization of the preference relation or to plau- sible empirical definitions. The second section shows the necessity of transitivity for utility theory. The third section points to various examples of the violation of transitivity and suggests how experiments may be designed to bring out the conditions under which transitivity does not hold. The final section shows how intransitivity is a natural result of the necessity of choosing among alternatives according to conflicting criteria. It appears from the discussion that neither cardinal nor ordinal utility is adequate to deal with choices under all conditions, and that we need a more general theory based on empirical knowledge of prefer- ence patterns.
    [Show full text]
  • A Taste of Set Theory for Philosophers
    Journal of the Indian Council of Philosophical Research, Vol. XXVII, No. 2. A Special Issue on "Logic and Philosophy Today", 143-163, 2010. Reprinted in "Logic and Philosophy Today" (edited by A. Gupta ans J.v.Benthem), College Publications vol 29, 141-162, 2011. A taste of set theory for philosophers Jouko Va¨an¨ anen¨ ∗ Department of Mathematics and Statistics University of Helsinki and Institute for Logic, Language and Computation University of Amsterdam November 17, 2010 Contents 1 Introduction 1 2 Elementary set theory 2 3 Cardinal and ordinal numbers 3 3.1 Equipollence . 4 3.2 Countable sets . 6 3.3 Ordinals . 7 3.4 Cardinals . 8 4 Axiomatic set theory 9 5 Axiom of Choice 12 6 Independence results 13 7 Some recent work 14 7.1 Descriptive Set Theory . 14 7.2 Non well-founded set theory . 14 7.3 Constructive set theory . 15 8 Historical Remarks and Further Reading 15 ∗Research partially supported by grant 40734 of the Academy of Finland and by the EUROCORES LogICCC LINT programme. I Journal of the Indian Council of Philosophical Research, Vol. XXVII, No. 2. A Special Issue on "Logic and Philosophy Today", 143-163, 2010. Reprinted in "Logic and Philosophy Today" (edited by A. Gupta ans J.v.Benthem), College Publications vol 29, 141-162, 2011. 1 Introduction Originally set theory was a theory of infinity, an attempt to understand infinity in ex- act terms. Later it became a universal language for mathematics and an attempt to give a foundation for all of mathematics, and thereby to all sciences that are based on mathematics.
    [Show full text]
  • Natural Numerosities of Sets of Tuples
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 367, Number 1, January 2015, Pages 275–292 S 0002-9947(2014)06136-9 Article electronically published on July 2, 2014 NATURAL NUMEROSITIES OF SETS OF TUPLES MARCO FORTI AND GIUSEPPE MORANA ROCCASALVO Abstract. We consider a notion of “numerosity” for sets of tuples of natural numbers that satisfies the five common notions of Euclid’s Elements, so it can agree with cardinality only for finite sets. By suitably axiomatizing such a no- tion, we show that, contrasting to cardinal arithmetic, the natural “Cantorian” definitions of order relation and arithmetical operations provide a very good algebraic structure. In fact, numerosities can be taken as the non-negative part of a discretely ordered ring, namely the quotient of a formal power series ring modulo a suitable (“gauge”) ideal. In particular, special numerosities, called “natural”, can be identified with the semiring of hypernatural numbers of appropriate ultrapowers of N. Introduction In this paper we consider a notion of “equinumerosity” on sets of tuples of natural numbers, i.e. an equivalence relation, finer than equicardinality, that satisfies the celebrated five Euclidean common notions about magnitudines ([8]), including the principle that “the whole is greater than the part”. This notion preserves the basic properties of equipotency for finite sets. In particular, the natural Cantorian definitions endow the corresponding numerosities with a structure of a discretely ordered semiring, where 0 is the size of the emptyset, 1 is the size of every singleton, and greater numerosity corresponds to supersets. This idea of “Euclidean” numerosity has been recently investigated by V.
    [Show full text]
  • Math 601 Algebraic Topology Hw 4 Selected Solutions Sketch/Hint
    MATH 601 ALGEBRAIC TOPOLOGY HW 4 SELECTED SOLUTIONS SKETCH/HINT QINGYUN ZENG 1. The Seifert-van Kampen theorem 1.1. A refinement of the Seifert-van Kampen theorem. We are going to make a refinement of the theorem so that we don't have to worry about that openness problem. We first start with a definition. Definition 1.1 (Neighbourhood deformation retract). A subset A ⊆ X is a neighbourhood defor- mation retract if there is an open set A ⊂ U ⊂ X such that A is a strong deformation retract of U, i.e. there exists a retraction r : U ! A and r ' IdU relA. This is something that is true most of the time, in sufficiently sane spaces. Example 1.2. If Y is a subcomplex of a cell complex, then Y is a neighbourhood deformation retract. Theorem 1.3. Let X be a space, A; B ⊆ X closed subspaces. Suppose that A, B and A \ B are path connected, and A \ B is a neighbourhood deformation retract of A and B. Then for any x0 2 A \ B. π1(X; x0) = π1(A; x0) ∗ π1(B; x0): π1(A\B;x0) This is just like Seifert-van Kampen theorem, but usually easier to apply, since we no longer have to \fatten up" our A and B to make them open. If you know some sheaf theory, then what Seifert-van Kampen theorem really says is that the fundamental groupoid Π1(X) is a cosheaf on X. Here Π1(X) is a category with object pints in X and morphisms as homotopy classes of path in X, which can be regard as a global version of π1(X).
    [Show full text]
  • Handout from Today's Lecture
    MA532 Lecture Timothy Kohl Boston University April 23, 2020 Timothy Kohl (Boston University) MA532 Lecture April 23, 2020 1 / 26 Cardinal Arithmetic Recall that one may define addition and multiplication of ordinals α = ot(A, A) β = ot(B, B ) α + β and α · β by constructing order relations on A ∪ B and B × A. For cardinal numbers the foundations are somewhat similar, but also somewhat simpler since one need not refer to orderings. Definition For sets A, B where |A| = α and |B| = β then α + β = |(A × {0}) ∪ (B × {1})|. Timothy Kohl (Boston University) MA532 Lecture April 23, 2020 2 / 26 The curious part of the definition is the two sets A × {0} and B × {1} which can be viewed as subsets of the direct product (A ∪ B) × {0, 1} which basically allows us to add |A| and |B|, in particular since, in the usual formula for the size of the union of two sets |A ∪ B| = |A| + |B| − |A ∩ B| which in this case is bypassed since, by construction, (A × {0}) ∩ (B × {1})= ∅ regardless of the nature of A ∩ B. Timothy Kohl (Boston University) MA532 Lecture April 23, 2020 3 / 26 Definition For sets A, B where |A| = α and |B| = β then α · β = |A × B|. One immediate consequence of these definitions is the following. Proposition If m, n are finite ordinals, then as cardinals one has |m| + |n| = |m + n|, (where the addition on the right is ordinal addition in ω) meaning that ordinal addition and cardinal addition agree. Proof. The simplest proof of this is to define a bijection f : (m × {0}) ∪ (n × {1}) → m + n by f (hr, 0i)= r for r ∈ m and f (hs, 1i)= m + s for s ∈ n.
    [Show full text]
  • MTH 304: General Topology Semester 2, 2017-2018
    MTH 304: General Topology Semester 2, 2017-2018 Dr. Prahlad Vaidyanathan Contents I. Continuous Functions3 1. First Definitions................................3 2. Open Sets...................................4 3. Continuity by Open Sets...........................6 II. Topological Spaces8 1. Definition and Examples...........................8 2. Metric Spaces................................. 11 3. Basis for a topology.............................. 16 4. The Product Topology on X × Y ...................... 18 Q 5. The Product Topology on Xα ....................... 20 6. Closed Sets.................................. 22 7. Continuous Functions............................. 27 8. The Quotient Topology............................ 30 III.Properties of Topological Spaces 36 1. The Hausdorff property............................ 36 2. Connectedness................................. 37 3. Path Connectedness............................. 41 4. Local Connectedness............................. 44 5. Compactness................................. 46 6. Compact Subsets of Rn ............................ 50 7. Continuous Functions on Compact Sets................... 52 8. Compactness in Metric Spaces........................ 56 9. Local Compactness.............................. 59 IV.Separation Axioms 62 1. Regular Spaces................................ 62 2. Normal Spaces................................ 64 3. Tietze's extension Theorem......................... 67 4. Urysohn Metrization Theorem........................ 71 5. Imbedding of Manifolds..........................
    [Show full text]
  • Formal Construction of a Set Theory in Coq
    Saarland University Faculty of Natural Sciences and Technology I Department of Computer Science Masters Thesis Formal Construction of a Set Theory in Coq submitted by Jonas Kaiser on November 23, 2012 Supervisor Prof. Dr. Gert Smolka Advisor Dr. Chad E. Brown Reviewers Prof. Dr. Gert Smolka Dr. Chad E. Brown Eidesstattliche Erklarung¨ Ich erklare¨ hiermit an Eides Statt, dass ich die vorliegende Arbeit selbststandig¨ verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe. Statement in Lieu of an Oath I hereby confirm that I have written this thesis on my own and that I have not used any other media or materials than the ones referred to in this thesis. Einverstandniserkl¨ arung¨ Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die Bibliothek der Informatik aufgenommen und damit vero¨ffentlicht wird. Declaration of Consent I agree to make both versions of my thesis (with a passing grade) accessible to the public by having them added to the library of the Computer Science Department. Saarbrucken,¨ (Datum/Date) (Unterschrift/Signature) iii Acknowledgements First of all I would like to express my sincerest gratitude towards my advisor, Chad Brown, who supported me throughout this work. His extensive knowledge and insights opened my eyes to the beauty of axiomatic set theory and foundational mathematics. We spent many hours discussing the minute details of the various constructions and he taught me the importance of mathematical rigour. Equally important was the support of my supervisor, Prof. Smolka, who first introduced me to the topic and was there whenever a question arose.
    [Show full text]