Natural Numerosities of Sets of Tuples
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Elementary Set Theory
1 Elementary Set Theory Notation: fg enclose a set. f1; 2; 3g = f3; 2; 2; 1; 3g because a set is not defined by order or multiplicity. f0; 2; 4;:::g = fxjx is an even natural numberg because two ways of writing a set are equivalent. ; is the empty set. x 2 A denotes x is an element of A. N = f0; 1; 2;:::g are the natural numbers. Z = f:::; −2; −1; 0; 1; 2;:::g are the integers. m Q = f n jm; n 2 Z and n 6= 0g are the rational numbers. R are the real numbers. Axiom 1.1. Axiom of Extensionality Let A; B be sets. If (8x)x 2 A iff x 2 B then A = B. Definition 1.1 (Subset). Let A; B be sets. Then A is a subset of B, written A ⊆ B iff (8x) if x 2 A then x 2 B. Theorem 1.1. If A ⊆ B and B ⊆ A then A = B. Proof. Let x be arbitrary. Because A ⊆ B if x 2 A then x 2 B Because B ⊆ A if x 2 B then x 2 A Hence, x 2 A iff x 2 B, thus A = B. Definition 1.2 (Union). Let A; B be sets. The Union A [ B of A and B is defined by x 2 A [ B if x 2 A or x 2 B. Theorem 1.2. A [ (B [ C) = (A [ B) [ C Proof. Let x be arbitrary. x 2 A [ (B [ C) iff x 2 A or x 2 B [ C iff x 2 A or (x 2 B or x 2 C) iff x 2 A or x 2 B or x 2 C iff (x 2 A or x 2 B) or x 2 C iff x 2 A [ B or x 2 C iff x 2 (A [ B) [ C Definition 1.3 (Intersection). -
A Class of Symmetric Difference-Closed Sets Related to Commuting Involutions John Campbell
A class of symmetric difference-closed sets related to commuting involutions John Campbell To cite this version: John Campbell. A class of symmetric difference-closed sets related to commuting involutions. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2017, Vol 19 no. 1. hal-01345066v4 HAL Id: hal-01345066 https://hal.archives-ouvertes.fr/hal-01345066v4 Submitted on 18 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Discrete Mathematics and Theoretical Computer Science DMTCS vol. 19:1, 2017, #8 A class of symmetric difference-closed sets related to commuting involutions John M. Campbell York University, Canada received 19th July 2016, revised 15th Dec. 2016, 1st Feb. 2017, accepted 10th Feb. 2017. Recent research on the combinatorics of finite sets has explored the structure of symmetric difference-closed sets, and recent research in combinatorial group theory has concerned the enumeration of commuting involutions in Sn and An. In this article, we consider an interesting combination of these two subjects, by introducing classes of symmetric difference-closed sets of elements which correspond in a natural way to commuting involutions in Sn and An. We consider the natural combinatorial problem of enumerating symmetric difference-closed sets consisting of subsets of sets consisting of pairwise disjoint 2-subsets of [n], and the problem of enumerating symmetric difference-closed sets consisting of elements which correspond to commuting involutions in An. -
Intransitivity, Utility, and the Aggregation of Preference Patterns
ECONOMETRICA VOLUME 22 January, 1954 NUMBER 1 INTRANSITIVITY, UTILITY, AND THE AGGREGATION OF PREFERENCE PATTERNS BY KENNETH 0. MAY1 During the first half of the twentieth century, utility theory has been subjected to considerable criticism and refinement. The present paper is concerned with cer- tain experimental evidence and theoretical arguments suggesting that utility theory, whether cardinal or ordinal, cannot reflect, even to an approximation, the existing preferences of individuals in many economic situations. The argument is based on the necessity of transitivity for utility, observed circularities of prefer- ences, and a theoretical framework that predicts circularities in the presence of preferences based on numerous criteria. THEORIES of choice may be built to describe behavior as it is or as it "ought to be." In the belief that the former should precede the latter, this paper is con- cerned solely with descriptive theory and, in particular, with the intransitivity of preferences. The first section indicates that transitivity is not necessary to either the usual axiomatic characterization of the preference relation or to plau- sible empirical definitions. The second section shows the necessity of transitivity for utility theory. The third section points to various examples of the violation of transitivity and suggests how experiments may be designed to bring out the conditions under which transitivity does not hold. The final section shows how intransitivity is a natural result of the necessity of choosing among alternatives according to conflicting criteria. It appears from the discussion that neither cardinal nor ordinal utility is adequate to deal with choices under all conditions, and that we need a more general theory based on empirical knowledge of prefer- ence patterns. -
MTH 304: General Topology Semester 2, 2017-2018
MTH 304: General Topology Semester 2, 2017-2018 Dr. Prahlad Vaidyanathan Contents I. Continuous Functions3 1. First Definitions................................3 2. Open Sets...................................4 3. Continuity by Open Sets...........................6 II. Topological Spaces8 1. Definition and Examples...........................8 2. Metric Spaces................................. 11 3. Basis for a topology.............................. 16 4. The Product Topology on X × Y ...................... 18 Q 5. The Product Topology on Xα ....................... 20 6. Closed Sets.................................. 22 7. Continuous Functions............................. 27 8. The Quotient Topology............................ 30 III.Properties of Topological Spaces 36 1. The Hausdorff property............................ 36 2. Connectedness................................. 37 3. Path Connectedness............................. 41 4. Local Connectedness............................. 44 5. Compactness................................. 46 6. Compact Subsets of Rn ............................ 50 7. Continuous Functions on Compact Sets................... 52 8. Compactness in Metric Spaces........................ 56 9. Local Compactness.............................. 59 IV.Separation Axioms 62 1. Regular Spaces................................ 62 2. Normal Spaces................................ 64 3. Tietze's extension Theorem......................... 67 4. Urysohn Metrization Theorem........................ 71 5. Imbedding of Manifolds.......................... -
Old Notes from Warwick, Part 1
Measure Theory, MA 359 Handout 1 Valeriy Slastikov Autumn, 2005 1 Measure theory 1.1 General construction of Lebesgue measure In this section we will do the general construction of σ-additive complete measure by extending initial σ-additive measure on a semi-ring to a measure on σ-algebra generated by this semi-ring and then completing this measure by adding to the σ-algebra all the null sets. This section provides you with the essentials of the construction and make some parallels with the construction on the plane. Throughout these section we will deal with some collection of sets whose elements are subsets of some fixed abstract set X. It is not necessary to assume any topology on X but for simplicity you may imagine X = Rn. We start with some important definitions: Definition 1.1 A nonempty collection of sets S is a semi-ring if 1. Empty set ? 2 S; 2. If A 2 S; B 2 S then A \ B 2 S; n 3. If A 2 S; A ⊃ A1 2 S then A = [k=1Ak, where Ak 2 S for all 1 ≤ k ≤ n and Ak are disjoint sets. If the set X 2 S then S is called semi-algebra, the set X is called a unit of the collection of sets S. Example 1.1 The collection S of intervals [a; b) for all a; b 2 R form a semi-ring since 1. empty set ? = [a; a) 2 S; 2. if A 2 S and B 2 S then A = [a; b) and B = [c; d). -
Equivalents to the Axiom of Choice and Their Uses A
EQUIVALENTS TO THE AXIOM OF CHOICE AND THEIR USES A Thesis Presented to The Faculty of the Department of Mathematics California State University, Los Angeles In Partial Fulfillment of the Requirements for the Degree Master of Science in Mathematics By James Szufu Yang c 2015 James Szufu Yang ALL RIGHTS RESERVED ii The thesis of James Szufu Yang is approved. Mike Krebs, Ph.D. Kristin Webster, Ph.D. Michael Hoffman, Ph.D., Committee Chair Grant Fraser, Ph.D., Department Chair California State University, Los Angeles June 2015 iii ABSTRACT Equivalents to the Axiom of Choice and Their Uses By James Szufu Yang In set theory, the Axiom of Choice (AC) was formulated in 1904 by Ernst Zermelo. It is an addition to the older Zermelo-Fraenkel (ZF) set theory. We call it Zermelo-Fraenkel set theory with the Axiom of Choice and abbreviate it as ZFC. This paper starts with an introduction to the foundations of ZFC set the- ory, which includes the Zermelo-Fraenkel axioms, partially ordered sets (posets), the Cartesian product, the Axiom of Choice, and their related proofs. It then intro- duces several equivalent forms of the Axiom of Choice and proves that they are all equivalent. In the end, equivalents to the Axiom of Choice are used to prove a few fundamental theorems in set theory, linear analysis, and abstract algebra. This paper is concluded by a brief review of the work in it, followed by a few points of interest for further study in mathematics and/or set theory. iv ACKNOWLEDGMENTS Between the two department requirements to complete a master's degree in mathematics − the comprehensive exams and a thesis, I really wanted to experience doing a research and writing a serious academic paper. -
Reverse Mathematics, Trichotomy, and Dichotomy
Reverse mathematics, trichotomy, and dichotomy Fran¸coisG. Dorais, Jeffry Hirst, and Paul Shafer Department of Mathematical Sciences Appalachian State University, Boone, NC 28608 February 20, 2012 Abstract Using the techniques of reverse mathematics, we analyze the log- ical strength of statements similar to trichotomy and dichotomy for sequences of reals. Capitalizing on the connection between sequential statements and constructivity, we find computable restrictions of the statements for sequences and constructive restrictions of the original principles. 1 Axiom systems and encoding reals We will examine several statements about real numbers and sequences of real numbers in the framework of reverse mathematics and in some formalizations of weak constructive analysis. From reverse mathematics, we will concentrate on the axiom systems RCA0, WKL0, and ACA0, which are described in detail by Simpson [8]. Very roughly, RCA0 is a subsystem of second order arith- metic incorporating ordered semi-ring axioms, a restricted form of induction, 0 and comprehension for ∆1 definable sets. The axiom system WKL0 appends K¨onig'stree lemma restricted to 0{1 trees, and the system ACA0 appends a comprehension scheme for arithmetically definable sets. ACA0 is strictly stronger than WKL0, and WKL0 is strictly stronger than RCA0. We will also make use of several formalizations of subsystems of con- structive analysis, all variations of E-HA!, which is intuitionistic arithmetic 1 (Heyting arithmetic) in all finite types with an extensionality scheme. Unlike the reverse mathematics systems which use classical logic, these constructive systems omit the law of the excluded middle. For example, we will use ex- tensions of E\{HA!, a form of Heyting arithmetic with primitive recursion restricted to type 0 objects, and induction restricted to quantifier free for- mulas. -
Some Set Theory We Should Know Cardinality and Cardinal Numbers
SOME SET THEORY WE SHOULD KNOW CARDINALITY AND CARDINAL NUMBERS De¯nition. Two sets A and B are said to have the same cardinality, and we write jAj = jBj, if there exists a one-to-one onto function f : A ! B. We also say jAj · jBj if there exists a one-to-one (but not necessarily onto) function f : A ! B. Then the SchrÄoder-BernsteinTheorem says: jAj · jBj and jBj · jAj implies jAj = jBj: SchrÄoder-BernsteinTheorem. If there are one-to-one maps f : A ! B and g : B ! A, then jAj = jBj. A set is called countable if it is either ¯nite or has the same cardinality as the set N of positive integers. Theorem ST1. (a) A countable union of countable sets is countable; (b) If A1;A2; :::; An are countable, so is ¦i·nAi; (c) If A is countable, so is the set of all ¯nite subsets of A, as well as the set of all ¯nite sequences of elements of A; (d) The set Q of all rational numbers is countable. Theorem ST2. The following sets have the same cardinality as the set R of real numbers: (a) The set P(N) of all subsets of the natural numbers N; (b) The set of all functions f : N ! f0; 1g; (c) The set of all in¯nite sequences of 0's and 1's; (d) The set of all in¯nite sequences of real numbers. The cardinality of N (and any countable in¯nite set) is denoted by @0. @1 denotes the next in¯nite cardinal, @2 the next, etc. -
Set Theory in Computer Science a Gentle Introduction to Mathematical Modeling I
Set Theory in Computer Science A Gentle Introduction to Mathematical Modeling I Jose´ Meseguer University of Illinois at Urbana-Champaign Urbana, IL 61801, USA c Jose´ Meseguer, 2008–2010; all rights reserved. February 28, 2011 2 Contents 1 Motivation 7 2 Set Theory as an Axiomatic Theory 11 3 The Empty Set, Extensionality, and Separation 15 3.1 The Empty Set . 15 3.2 Extensionality . 15 3.3 The Failed Attempt of Comprehension . 16 3.4 Separation . 17 4 Pairing, Unions, Powersets, and Infinity 19 4.1 Pairing . 19 4.2 Unions . 21 4.3 Powersets . 24 4.4 Infinity . 26 5 Case Study: A Computable Model of Hereditarily Finite Sets 29 5.1 HF-Sets in Maude . 30 5.2 Terms, Equations, and Term Rewriting . 33 5.3 Confluence, Termination, and Sufficient Completeness . 36 5.4 A Computable Model of HF-Sets . 39 5.5 HF-Sets as a Universe for Finitary Mathematics . 43 5.6 HF-Sets with Atoms . 47 6 Relations, Functions, and Function Sets 51 6.1 Relations and Functions . 51 6.2 Formula, Assignment, and Lambda Notations . 52 6.3 Images . 54 6.4 Composing Relations and Functions . 56 6.5 Abstract Products and Disjoint Unions . 59 6.6 Relating Function Sets . 62 7 Simple and Primitive Recursion, and the Peano Axioms 65 7.1 Simple Recursion . 65 7.2 Primitive Recursion . 67 7.3 The Peano Axioms . 69 8 Case Study: The Peano Language 71 9 Binary Relations on a Set 73 9.1 Directed and Undirected Graphs . 73 9.2 Transition Systems and Automata . -
Logic and Proof Release 3.18.4
Logic and Proof Release 3.18.4 Jeremy Avigad, Robert Y. Lewis, and Floris van Doorn Sep 10, 2021 CONTENTS 1 Introduction 1 1.1 Mathematical Proof ............................................ 1 1.2 Symbolic Logic .............................................. 2 1.3 Interactive Theorem Proving ....................................... 4 1.4 The Semantic Point of View ....................................... 5 1.5 Goals Summarized ............................................ 6 1.6 About this Textbook ........................................... 6 2 Propositional Logic 7 2.1 A Puzzle ................................................. 7 2.2 A Solution ................................................ 7 2.3 Rules of Inference ............................................ 8 2.4 The Language of Propositional Logic ................................... 15 2.5 Exercises ................................................. 16 3 Natural Deduction for Propositional Logic 17 3.1 Derivations in Natural Deduction ..................................... 17 3.2 Examples ................................................. 19 3.3 Forward and Backward Reasoning .................................... 20 3.4 Reasoning by Cases ............................................ 22 3.5 Some Logical Identities .......................................... 23 3.6 Exercises ................................................. 24 4 Propositional Logic in Lean 25 4.1 Expressions for Propositions and Proofs ................................. 25 4.2 More commands ............................................ -
Measures 1 Introduction
Measures These preliminary lecture notes are partly based on textbooks by Athreya and Lahiri, Capinski and Kopp, and Folland. 1 Introduction Our motivation for studying measure theory is to lay a foundation for mod- eling probabilities. I want to give a bit of motivation for the structure of measures that has developed by providing a sort of history of thought of measurement. Not really history of thought, this is more like a fictionaliza- tion (i.e. with the story but minus the proofs of assertions) of a standard treatment of Lebesgue measure that you can find, for example, in Capin- ski and Kopp, Chapter 2, or in Royden, books that begin by first studying Lebesgue measure on <. For studying probability, we have to study measures more generally; that will follow the introduction. People were interested in measuring length, area, volume etc. Let's stick to length. How was one to extend the notion of the length of an interval (a; b), l(a; b) = b − a to more general subsets of <? Given an interval I of any type (closed, open, left-open-right-closed, etc.), let l(I) be its length (the difference between its larger and smaller endpoints). Then the notion of Lebesgue outer measure (LOM) of a set A 2 < was defined as follows. Cover A with a countable collection of intervals, and measure the sum of lengths of these intervals. Take the smallest such sum, over all countable collections of ∗ intervals that cover A, to be the LOM of A. That is, m (A) = inf ZA, where 1 1 X 1 ZA = f l(In): A ⊆ [n=1Ing n=1 ∗ (the In referring to intervals). -
Preliminary Knowledge on Set Theory
Huan Long Shanghai Jiao Tong University Basic set theory Relation Function Spring 2018 Georg Cantor(1845-1918) oGerman mathematician o Founder of set theory Bertrand Russell(1872-1970) oBritish philosopher, logician, mathematician, historian, and social critic. Ernst Zermelo(1871-1953) oGerman mathematician, foundations of mathematics and hence on philosophy David Hilbert (1862-1943) o German mathematicia, one of the most influential and universal mathematicians of the 19th and early 20th centuries. Kurt Gödel(1906-1978) oAustrian American logician, mathematician, and philosopher. ZFC not ¬CH . Paul Cohen(1934-2007)⊢ oAmerican mathematician, 1963: ZFC not CH,AC . Spring 2018 ⊢ Spring 2018 By Georg Cantor in 1870s: A set is an unordered collection of objects. ◦ The objects are called the elements, or members, of the set. A set is said to contain its elements. Notation: ◦ Meaning that: is an element of the set A, or, Set A contains ∈ . Important: ◦ Duplicates do not matter. ◦ Order does not matter. Spring 2018 a∈A a is an element of the set A. a A a is NOT an element of the set A. Set of sets {{a,b},{1, 5.2}, k} ∉ the empty set, or the null set, is set that has no elements. A B subset relation. Each element of A is also an element of B. ∅ A=B equal relation. A B and B A. ⊆ A B ⊆ ⊆ A B strict subset relation. If A B and A B ≠ |A| cardinality of a set, or the number of distinct elements. ⊂ ⊆ ≠ Venn Diagram V U A B U Spring 2018 { , , , } a {{a}} ∈ ∉ {{ }} ∅ ∉∅ {3,4,5}={5,4,3,4} ∅ ∈ ∅ ∈ ∅ S { } ∅⊆ S S ∅ ⊂ ∅ |{3, 3, 4, {2, 3},{1,2,{f}} }|=4 ⊆ Spring 2018 Union Intersection Difference Complement Symmetric difference Power set Spring 2018 Definition Let A and B be sets.