Math 7409 Lecture Notes 10 Posets and Lattices a Partial Order on a Set
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Elementary Set Theory
1 Elementary Set Theory Notation: fg enclose a set. f1; 2; 3g = f3; 2; 2; 1; 3g because a set is not defined by order or multiplicity. f0; 2; 4;:::g = fxjx is an even natural numberg because two ways of writing a set are equivalent. ; is the empty set. x 2 A denotes x is an element of A. N = f0; 1; 2;:::g are the natural numbers. Z = f:::; −2; −1; 0; 1; 2;:::g are the integers. m Q = f n jm; n 2 Z and n 6= 0g are the rational numbers. R are the real numbers. Axiom 1.1. Axiom of Extensionality Let A; B be sets. If (8x)x 2 A iff x 2 B then A = B. Definition 1.1 (Subset). Let A; B be sets. Then A is a subset of B, written A ⊆ B iff (8x) if x 2 A then x 2 B. Theorem 1.1. If A ⊆ B and B ⊆ A then A = B. Proof. Let x be arbitrary. Because A ⊆ B if x 2 A then x 2 B Because B ⊆ A if x 2 B then x 2 A Hence, x 2 A iff x 2 B, thus A = B. Definition 1.2 (Union). Let A; B be sets. The Union A [ B of A and B is defined by x 2 A [ B if x 2 A or x 2 B. Theorem 1.2. A [ (B [ C) = (A [ B) [ C Proof. Let x be arbitrary. x 2 A [ (B [ C) iff x 2 A or x 2 B [ C iff x 2 A or (x 2 B or x 2 C) iff x 2 A or x 2 B or x 2 C iff (x 2 A or x 2 B) or x 2 C iff x 2 A [ B or x 2 C iff x 2 (A [ B) [ C Definition 1.3 (Intersection). -
Intransitivity, Utility, and the Aggregation of Preference Patterns
ECONOMETRICA VOLUME 22 January, 1954 NUMBER 1 INTRANSITIVITY, UTILITY, AND THE AGGREGATION OF PREFERENCE PATTERNS BY KENNETH 0. MAY1 During the first half of the twentieth century, utility theory has been subjected to considerable criticism and refinement. The present paper is concerned with cer- tain experimental evidence and theoretical arguments suggesting that utility theory, whether cardinal or ordinal, cannot reflect, even to an approximation, the existing preferences of individuals in many economic situations. The argument is based on the necessity of transitivity for utility, observed circularities of prefer- ences, and a theoretical framework that predicts circularities in the presence of preferences based on numerous criteria. THEORIES of choice may be built to describe behavior as it is or as it "ought to be." In the belief that the former should precede the latter, this paper is con- cerned solely with descriptive theory and, in particular, with the intransitivity of preferences. The first section indicates that transitivity is not necessary to either the usual axiomatic characterization of the preference relation or to plau- sible empirical definitions. The second section shows the necessity of transitivity for utility theory. The third section points to various examples of the violation of transitivity and suggests how experiments may be designed to bring out the conditions under which transitivity does not hold. The final section shows how intransitivity is a natural result of the necessity of choosing among alternatives according to conflicting criteria. It appears from the discussion that neither cardinal nor ordinal utility is adequate to deal with choices under all conditions, and that we need a more general theory based on empirical knowledge of prefer- ence patterns. -
Natural Numerosities of Sets of Tuples
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 367, Number 1, January 2015, Pages 275–292 S 0002-9947(2014)06136-9 Article electronically published on July 2, 2014 NATURAL NUMEROSITIES OF SETS OF TUPLES MARCO FORTI AND GIUSEPPE MORANA ROCCASALVO Abstract. We consider a notion of “numerosity” for sets of tuples of natural numbers that satisfies the five common notions of Euclid’s Elements, so it can agree with cardinality only for finite sets. By suitably axiomatizing such a no- tion, we show that, contrasting to cardinal arithmetic, the natural “Cantorian” definitions of order relation and arithmetical operations provide a very good algebraic structure. In fact, numerosities can be taken as the non-negative part of a discretely ordered ring, namely the quotient of a formal power series ring modulo a suitable (“gauge”) ideal. In particular, special numerosities, called “natural”, can be identified with the semiring of hypernatural numbers of appropriate ultrapowers of N. Introduction In this paper we consider a notion of “equinumerosity” on sets of tuples of natural numbers, i.e. an equivalence relation, finer than equicardinality, that satisfies the celebrated five Euclidean common notions about magnitudines ([8]), including the principle that “the whole is greater than the part”. This notion preserves the basic properties of equipotency for finite sets. In particular, the natural Cantorian definitions endow the corresponding numerosities with a structure of a discretely ordered semiring, where 0 is the size of the emptyset, 1 is the size of every singleton, and greater numerosity corresponds to supersets. This idea of “Euclidean” numerosity has been recently investigated by V. -
Operations on Partially Ordered Sets and Rational Identities of Type a Adrien Boussicault
Operations on partially ordered sets and rational identities of type A Adrien Boussicault To cite this version: Adrien Boussicault. Operations on partially ordered sets and rational identities of type A. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2013, Vol. 15 no. 2 (2), pp.13–32. hal- 00980747 HAL Id: hal-00980747 https://hal.inria.fr/hal-00980747 Submitted on 18 Apr 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Discrete Mathematics and Theoretical Computer Science DMTCS vol. 15:2, 2013, 13–32 Operations on partially ordered sets and rational identities of type A Adrien Boussicault Institut Gaspard Monge, Universite´ Paris-Est, Marne-la-Valle,´ France received 13th February 2009, revised 1st April 2013, accepted 2nd April 2013. − −1 We consider the family of rational functions ψw = Q(xwi xwi+1 ) indexed by words with no repetition. We study the combinatorics of the sums ΨP of the functions ψw when w describes the linear extensions of a given poset P . In particular, we point out the connexions between some transformations on posets and elementary operations on the fraction ΨP . We prove that the denominator of ΨP has a closed expression in terms of the Hasse diagram of P , and we compute its numerator in some special cases. -
Reverse Mathematics, Trichotomy, and Dichotomy
Reverse mathematics, trichotomy, and dichotomy Fran¸coisG. Dorais, Jeffry Hirst, and Paul Shafer Department of Mathematical Sciences Appalachian State University, Boone, NC 28608 February 20, 2012 Abstract Using the techniques of reverse mathematics, we analyze the log- ical strength of statements similar to trichotomy and dichotomy for sequences of reals. Capitalizing on the connection between sequential statements and constructivity, we find computable restrictions of the statements for sequences and constructive restrictions of the original principles. 1 Axiom systems and encoding reals We will examine several statements about real numbers and sequences of real numbers in the framework of reverse mathematics and in some formalizations of weak constructive analysis. From reverse mathematics, we will concentrate on the axiom systems RCA0, WKL0, and ACA0, which are described in detail by Simpson [8]. Very roughly, RCA0 is a subsystem of second order arith- metic incorporating ordered semi-ring axioms, a restricted form of induction, 0 and comprehension for ∆1 definable sets. The axiom system WKL0 appends K¨onig'stree lemma restricted to 0{1 trees, and the system ACA0 appends a comprehension scheme for arithmetically definable sets. ACA0 is strictly stronger than WKL0, and WKL0 is strictly stronger than RCA0. We will also make use of several formalizations of subsystems of con- structive analysis, all variations of E-HA!, which is intuitionistic arithmetic 1 (Heyting arithmetic) in all finite types with an extensionality scheme. Unlike the reverse mathematics systems which use classical logic, these constructive systems omit the law of the excluded middle. For example, we will use ex- tensions of E\{HA!, a form of Heyting arithmetic with primitive recursion restricted to type 0 objects, and induction restricted to quantifier free for- mulas. -
Some Lattices of Closure Systems on a Finite Set Nathalie Caspard, Bernard Monjardet
Some lattices of closure systems on a finite set Nathalie Caspard, Bernard Monjardet To cite this version: Nathalie Caspard, Bernard Monjardet. Some lattices of closure systems on a finite set. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2004, 6 (2), pp.163-190. hal-00959003 HAL Id: hal-00959003 https://hal.inria.fr/hal-00959003 Submitted on 13 Mar 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Discrete Mathematics and Theoretical Computer Science 6, 2004, 163–190 Some lattices of closure systems on a finite set Nathalie Caspard1 and Bernard Monjardet2 1 LACL, Universite´ Paris 12 Val-de-Marne, 61 avenue du Gen´ eral´ de Gaulle, 94010 Creteil´ cedex, France. E-mail: [email protected] 2 CERMSEM, Maison des Sciences Economiques,´ Universite´ Paris 1, 106-112, bd de l’Hopital,ˆ 75647 Paris Cedex 13, France. E-mail: [email protected] received May 2003, accepted Feb 2004. In this paper we study two lattices of significant particular closure systems on a finite set, namely the union stable closure systems and the convex geometries. Using the notion of (admissible) quasi-closed set and of (deletable) closed set we determine the covering relation ≺ of these lattices and the changes induced, for instance, on the irreducible elements when one goes from C to C ′ where C and C ′ are two such closure systems satisfying C ≺ C ′. -
Single-Element Extensions of Matroids
JOURNAL OF RESEARCH of the National Bureau of Standards-B. Mathematics and Mathematical Physics Vol. 69B, Nos. 1 and 2, January-June 1965 Single-Element Extensions of Matroids Henry H. Crapo Assistant Professor of Mathematics, Northeastern University, Boston, Mass. (No ve mbe r 16, 1964) Extensions of matroids to sets containing one additional ele ment are c ha rac te ri zed in te rms or modular cuts of the lattice or closed s ubsets. An equivalent characterizati o n is given in terms or linear subclasse s or the set or circuits or bonds or the matroid. A scheme for the construc ti o n or finit e geo· me tric lattices is deri ved a nd th e existe nce of at least 2" no ni somorphic matroids on an II- ele ment set is established. Contents Page 1. introducti on .. .. 55 2. Differentials .. 55 3. Unit in crease runcti ons ... .... .. .... ........................ 57 4. Exact diffe re ntia ls .... ... .. .. .. ........ " . 58 5. Sin gle·ele me nt exte ns ions ... ... 59 6. Linear subclasses.. .. .. ... .. 60 7. Geo metric la ttices ................... 62 8. Numeri ca l c lassification of matroid s .... 62 9. Bibl iography.. .. ............... 64 1. Introduction I of ele ments Pi of a lattice L, in whic h Pi covers Pi - t for i = 1, . .. , n, is a path (of length n) from x to y. In order to facilitate induc tive proofs of matroid 2 theore ms, we shall set forth a characte rization of single A step is a path of length J. element extensions of matroid structures. -
Some Set Theory We Should Know Cardinality and Cardinal Numbers
SOME SET THEORY WE SHOULD KNOW CARDINALITY AND CARDINAL NUMBERS De¯nition. Two sets A and B are said to have the same cardinality, and we write jAj = jBj, if there exists a one-to-one onto function f : A ! B. We also say jAj · jBj if there exists a one-to-one (but not necessarily onto) function f : A ! B. Then the SchrÄoder-BernsteinTheorem says: jAj · jBj and jBj · jAj implies jAj = jBj: SchrÄoder-BernsteinTheorem. If there are one-to-one maps f : A ! B and g : B ! A, then jAj = jBj. A set is called countable if it is either ¯nite or has the same cardinality as the set N of positive integers. Theorem ST1. (a) A countable union of countable sets is countable; (b) If A1;A2; :::; An are countable, so is ¦i·nAi; (c) If A is countable, so is the set of all ¯nite subsets of A, as well as the set of all ¯nite sequences of elements of A; (d) The set Q of all rational numbers is countable. Theorem ST2. The following sets have the same cardinality as the set R of real numbers: (a) The set P(N) of all subsets of the natural numbers N; (b) The set of all functions f : N ! f0; 1g; (c) The set of all in¯nite sequences of 0's and 1's; (d) The set of all in¯nite sequences of real numbers. The cardinality of N (and any countable in¯nite set) is denoted by @0. @1 denotes the next in¯nite cardinal, @2 the next, etc. -
Lecture Notes on Algebraic Combinatorics Jeremy L. Martin
Lecture Notes on Algebraic Combinatorics Jeremy L. Martin [email protected] December 3, 2012 Copyright c 2012 by Jeremy L. Martin. These notes are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. 2 Foreword The starting point for these lecture notes was my notes from Vic Reiner's Algebraic Combinatorics course at the University of Minnesota in Fall 2003. I currently use them for graduate courses at the University of Kansas. They will always be a work in progress. Please use them and share them freely for any research purpose. I have added and subtracted some material from Vic's course to suit my tastes, but any mistakes are my own; if you find one, please contact me at [email protected] so I can fix it. Thanks to those who have suggested additions and pointed out errors, including but not limited to: Logan Godkin, Alex Lazar, Nick Packauskas, Billy Sanders, Tony Se. 1. Posets and Lattices 1.1. Posets. Definition 1.1. A partially ordered set or poset is a set P equipped with a relation ≤ that is reflexive, antisymmetric, and transitive. That is, for all x; y; z 2 P : (1) x ≤ x (reflexivity). (2) If x ≤ y and y ≤ x, then x = y (antisymmetry). (3) If x ≤ y and y ≤ z, then x ≤ z (transitivity). We'll usually assume that P is finite. Example 1.2 (Boolean algebras). Let [n] = f1; 2; : : : ; ng (a standard piece of notation in combinatorics) and let Bn be the power set of [n]. We can partially order Bn by writing S ≤ T if S ⊆ T . -
Logic and Proof Release 3.18.4
Logic and Proof Release 3.18.4 Jeremy Avigad, Robert Y. Lewis, and Floris van Doorn Sep 10, 2021 CONTENTS 1 Introduction 1 1.1 Mathematical Proof ............................................ 1 1.2 Symbolic Logic .............................................. 2 1.3 Interactive Theorem Proving ....................................... 4 1.4 The Semantic Point of View ....................................... 5 1.5 Goals Summarized ............................................ 6 1.6 About this Textbook ........................................... 6 2 Propositional Logic 7 2.1 A Puzzle ................................................. 7 2.2 A Solution ................................................ 7 2.3 Rules of Inference ............................................ 8 2.4 The Language of Propositional Logic ................................... 15 2.5 Exercises ................................................. 16 3 Natural Deduction for Propositional Logic 17 3.1 Derivations in Natural Deduction ..................................... 17 3.2 Examples ................................................. 19 3.3 Forward and Backward Reasoning .................................... 20 3.4 Reasoning by Cases ............................................ 22 3.5 Some Logical Identities .......................................... 23 3.6 Exercises ................................................. 24 4 Propositional Logic in Lean 25 4.1 Expressions for Propositions and Proofs ................................. 25 4.2 More commands ............................................ -
Preliminary Knowledge on Set Theory
Huan Long Shanghai Jiao Tong University Basic set theory Relation Function Spring 2018 Georg Cantor(1845-1918) oGerman mathematician o Founder of set theory Bertrand Russell(1872-1970) oBritish philosopher, logician, mathematician, historian, and social critic. Ernst Zermelo(1871-1953) oGerman mathematician, foundations of mathematics and hence on philosophy David Hilbert (1862-1943) o German mathematicia, one of the most influential and universal mathematicians of the 19th and early 20th centuries. Kurt Gödel(1906-1978) oAustrian American logician, mathematician, and philosopher. ZFC not ¬CH . Paul Cohen(1934-2007)⊢ oAmerican mathematician, 1963: ZFC not CH,AC . Spring 2018 ⊢ Spring 2018 By Georg Cantor in 1870s: A set is an unordered collection of objects. ◦ The objects are called the elements, or members, of the set. A set is said to contain its elements. Notation: ◦ Meaning that: is an element of the set A, or, Set A contains ∈ . Important: ◦ Duplicates do not matter. ◦ Order does not matter. Spring 2018 a∈A a is an element of the set A. a A a is NOT an element of the set A. Set of sets {{a,b},{1, 5.2}, k} ∉ the empty set, or the null set, is set that has no elements. A B subset relation. Each element of A is also an element of B. ∅ A=B equal relation. A B and B A. ⊆ A B ⊆ ⊆ A B strict subset relation. If A B and A B ≠ |A| cardinality of a set, or the number of distinct elements. ⊂ ⊆ ≠ Venn Diagram V U A B U Spring 2018 { , , , } a {{a}} ∈ ∉ {{ }} ∅ ∉∅ {3,4,5}={5,4,3,4} ∅ ∈ ∅ ∈ ∅ S { } ∅⊆ S S ∅ ⊂ ∅ |{3, 3, 4, {2, 3},{1,2,{f}} }|=4 ⊆ Spring 2018 Union Intersection Difference Complement Symmetric difference Power set Spring 2018 Definition Let A and B be sets. -
Learnability Can Be Independent of ZFC Axioms: Explanations and Implications
Learnability Can Be Independent of ZFC Axioms: Explanations and Implications (William) Justin Taylor Department of Computer Science University of Wisconsin - Madison Madison, WI 53715 [email protected] September 19, 2019 1 Introduction Since Gödel proved his incompleteness results in the 1930s, the mathematical community has known that there are some problems, identifiable in mathemat- ically precise language, that are unsolvable in that language. This runs the gamut between very abstract statements like the existence of large cardinals, to geometrically interesting statements, like the parallel postulate.1 One, in particular, is important here: The Continuum Hypothesis, CH, says that there are no infinite cardinals between the cardinality of the natural numbers and the cardinality of the real numbers. In Ben-David et al.’s "Learnability Can Be Undecidable," they prove an independence2 result in theoretical machine learning. In particular, they define a new type of learnability, called Estimating The Maximum (EMX) learnability. They argue that this type of learnability fits in with other notions such as PAC learnability, Vapnik’s statistical learning setting, and other general learning settings. However, using some set-theoretic techniques, they show that some learning problems in the EMX setting are independent of ZFC. Specifically they prove that ZFC3 cannot prove or disprove EMX learnability of the finite subsets arXiv:1909.08410v1 [cs.LG] 16 Sep 2019 on the [0,1] interval. Moreover, the way they prove it shows that there can be no characteristic dimension, in the sense defined in 2.1, for EMX; and, hence, for general learning settings. 1Which states that, in a plane, given a line and a point not on it, at most one line parallel to the given line can be drawn through the point.