Pesticide Residue Monitoring Program Fiscal Year 2015 Pesticide Report

Total Page:16

File Type:pdf, Size:1020Kb

Pesticide Residue Monitoring Program Fiscal Year 2015 Pesticide Report Pesticide Residue Monitoring Program Fiscal Year 2015 Pesticide Report U.S. Food and Drug Administration http://www.fda.gov/food/foodborneillnesscontaminants/pesticides/default.htm Contents Acknowledgments .................................................................................................................... 4 FDA Pesticide Residue Monitoring Program ........................................................................... 4 Executive Summary .................................................................................................................. 5 Glossary and Abbreviations ...................................................................................................... 7 FDA Pesticide Residue Monitoring Program ........................................................................... 9 Regulatory Monitoring and Enforcement ............................................................................. 9 Regulatory Monitoring Program Sampling Design ............................................................ 10 Focused Sampling ........................................................................................................... 12 Animal Food ................................................................................................................... 12 Analytical Methods and Pesticide Coverage ...................................................................... 12 FDA Total Diet Study ......................................................................................................... 13 Cooperative Agreements and International Activities ........................................................ 13 FDA-State Cooperation .................................................................................................. 13 International Activities ................................................................................................... 14 Results and Discussion ........................................................................................................... 15 Regulatory Monitoring of Human Foods ............................................................................ 15 Discussion ....................................................................................................................... 15 Geographic Coverage ..................................................................................................... 17 Comparison of Domestic/Import Violation Rates .......................................................... 20 Pesticides Found ............................................................................................................. 21 Regulatory Monitoring of Animal Foods ........................................................................... 23 Focused Sampling ............................................................................................................... 26 Total Diet Study .................................................................................................................. 27 Imported Products That May Warrant Special Attention ................................................... 29 References ............................................................................................................................... 31 Figures Figure 1 - Results of Domestic Samples by Commodity Group .................................... 16 Figure 2 - Results of Import Samples by Commodity Group ......................................... 17 Figure 3. Summary of Results of Domestic vs. Import Food Samples .......................... 20 Tables Table 1. Domestic Samples Collected and Analyzed per State/Territory ..................... 17 Table 2. Import Samples Collected and Analyzed per Country of Origin for Countries with Ten or More Samples Collected ............................................................................. 18 Table 2a. Countries from Which Fewer Than Ten Samples Were Collected and Analyzed ......................................................................................................................... 19 Table 3. Pesticides Found in Human Foods in FY 2015 ............................................... 21 Table 4. Summary of Animal Foods Analyzed for Pesticides ....................................... 24 Table 5. Pesticides Most Commonly Reported in Samples of Foods for Animals ....... 25 Table 6. Pesticides Found in Samples for EU Game Meat Assignment ......................... 26 Table 7. Frequency of Occurrence of Pesticide Residues in the Total Diet Study ........ 27 Table 8. Imported Commodities That May Warrant Special Attention ........................ 30 Appendices A. Pesticides Analyzed by FDA Pesticide Methods in FY 2015 ........................................ 33 B. Analysis of Domestic Human Foods by Commodity Group in FY 2015 ....................... 40 C. Analysis of Import Human Foods by Commodity Group in FY 2015 ........................... 43 Acknowledgments This report was compiled through the efforts of the following FDA staff: Laurie A. Bates, Xuhui Zhao, Terry Councell, Mallory Kelly, Standra Purnell, Lauren Robin, Charlotte Liang, Chris Sack, and Kevin Robinson in the Center for Food Safety and Applied Nutrition; Krisztina Z. Atkinson and Randall Lovell, in the Center for Veterinary Medicine, and Susan Kelley, Siobhan Delancey, and Jason Strachman-Miller in the Office of Foods and Veterinary Medicine. FDA Pesticide Residue Monitoring Program For more information about FDA pesticide residue monitoring program reports, see http://www.fda.gov/Food/FoodborneIllnessContaminants/Pesticides/ucm2006797.htm. Since 1987, annual pesticide reports have been prepared to summarize results of the Food and Drug Administration’s (FDA or the Agency) pesticide residue monitoring program. Reports from Fiscal Year (FY) 1987 to FY 1993 were published in the Journal of the Association of Official Analytical Chemists/Journal of AOAC International. FY 1993 and FY 1994 reports were published in the journal and also made available on the public FDA website (www.fda.gov). Subsequent reports are only available on the FDA website. Each report is available in the format(s) used at the time they were written. In addition to the annual reports, specific pesticide monitoring data and statistical analyses of human foods for each year are also available in text format on the FDA website as “database” files. The database files include statistical analysis of findings by multiple country/commodity/pesticide combinations, along with data for individual samples from which the summary information was compiled. Instructions and explanations of the data and statistical analyses are provided for each database file. The database files are available from FY 1996 on. Page | 4 Executive Summary Growers often use pesticides to protect their products from insects, weeds, fungi, and other pests. U.S. regulators help ensure that food produced with the use of pesticides is safe to eat by setting allowable levels for pesticide chemical residues and monitoring foods in the market to determine if those levels are being met. The role of the Environmental Protection Agency (EPA) is to establish pesticide tolerances, or limits on the amount of a pesticide chemical residue a food can contain. The Food and Drug Administration (FDA) is responsible for enforcing those tolerances for domestic foods shipped in interstate commerce and foods imported into the U.S.i This report summarizes the results of FDA’s pesticide monitoring program for FY 2015. The findings show that the levels of pesticide chemical residues measured by FDA in the U.S. food supply are generally in compliance with EPA pesticide tolerances. FDA employs a three-fold strategy to enforce EPA’s pesticide tolerances in human and animal foods. In its regulatory pesticide residue monitoring program, FDA selectively monitors a broad range of imported and domestic commodities for residues of about 700 different pesticides and selected industrial compounds. FDA may also carry out focused sampling surveys for specific commodities or selected pesticides of special interest. In addition, FDA monitors the levels of pesticide chemical residues in foods prepared for consumption in its Total Diet Study (TDS), an ongoing program that monitors contaminants and nutrients in the average U.S. diet. In FY 2015 (October 1, 2014 through September 30, 2015), FDA analyzed 5,989 samples in its regulatory monitoring program: 5,572 human foods and 417 animal foods. Because the violation rates of import samples are generally higher than for domestic samples, FDA tests more imported than domestic commodities (4,737 import and 835 domestic samples). We collected imported human food samples from 111 countries and domestic human food samples from 39 states, the District of Columbia, and U.S. territories. FDA found over 98% of domestic and 90% of imported foods were compliant with federal standards; and no pesticide chemical residues were found in 49.8% of the domestic and 56.8% of the imported human food samples that we analyzed. We found residues in violation of federal standards (residues above the tolerance or residues for which no tolerance has been established) in less than 2 percent of domestic samples and less than 10 percent of import samples. In FY 2015, FDA also analyzed 417 animal food samples (215 domestic and 202 imported) for pesticides. The Agency found no pesticide chemical residues in 51.6% of the domestic and 57.9% of the import animal food samples. Most of these samples were
Recommended publications
  • Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and New Insecticidal Chemistries
    Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and New Insecticidal Chemistries. Peter Jentsch Extension Associate Department of Entomology Cornell University's Hudson Valley Lab 3357 Rt. 9W; PO box 727 Highland, NY 12528 email: [email protected] Phone 845-691-7151 Mobile: 845-417-7465 http://www.nysaes.cornell.edu/ent/faculty/jentsch/ 2 Historical Perspectives on Fruit Production: Fruit Tree Pest Management, Regulation and New Chemistries. by Peter Jentsch I. Historical Use of Pesticides in Apple Production Overview of Apple Production and Pest Management Prior to 1940 Synthetic Pesticide Development and Use II. Influences Changing the Pest Management Profile in Apple Production Chemical Residues in Early Insect Management Historical Chemical Regulation Recent Regulation Developments Changing Pest Management Food Quality Protection Act of 1996 The Science Behind The Methodology Pesticide Revisions – Requirements For New Registrations III. Resistance of Insect Pests to Insecticides Resistance Pest Management Strategies IV. Reduced Risk Chemistries: New Modes of Action and the Insecticide Treadmill Fermentation Microbial Products Bt’s, Abamectins, Spinosads Juvenile Hormone Analogs Formamidines, Juvenile Hormone Analogs And Mimics Insect Growth Regulators Azadirachtin, Thiadiazine Neonicotinyls Major Reduced Risk Materials: Carboxamides, Carboxylic Acid Esters, Granulosis Viruses, Diphenyloxazolines, Insecticidal Soaps, Benzoyl Urea Growth Regulators, Tetronic Acids, Oxadiazenes , Particle Films, Phenoxypyrazoles, Pyridazinones, Spinosads, Tetrazines , Organotins, Quinolines. 3 I Historical Use of Pesticides in Apple Production Overview of Apple Production and Pest Management Prior to 1940 The apple has a rather ominous origin. Its inception is framed in the biblical text regarding the genesis of mankind. The backdrop appears to be the turbulent setting of what many scholars believe to be present day Iraq.
    [Show full text]
  • Impact of Pesticide Use on Health in Developing Countries
    Impact of pesticide use on health in developing countries Proceedings of a symposium held in Ottawa, Canada, 1 7-20 September 1990 IDRC CRDI International Development Research Centre Centre de recherches pour le devetoppement international 1 March 1993 Dear Reader/Librarian, IDRC is a public corporation created by the Canadian parliament in 1970 to help developing countries find viable solutions to their problems through research. At the 1992 Earth Summit, IDRC's mandate was broadened to emphasize sustainable development issues. As part of IDRC's strengthened commitment to global action and harüony, we are pleased to send you a complimentary copy of our most recent publication: The impact of pesticide use on health in developing countries (March 1993, 352 pages, 0-88936-560-1, $17.95). The first part of this book presents a brief survey of the global situation and the results of twelve epidemiological studies carried out by researchers from Africa, Latin America, Asia and the Middle East. These focus on poisonings resulting from organophosphates, herbicides, and pyrethroids. The second part illustrates the role of the process of development, production, spraying techniques and legislation in protecting the health of workers. A discussion of the benefits and modalities of access to pertinent information for the prevention of pesticide poisonings is provided in the third section. Finally, in the fourth section, consideration is given to the advantages and disadvantages of certain alternatives to the use of synthetic pesticides in agriculture and public health, such as botanical pesticides and integrated pest management strategies. We hope this book is a valuable addition to your collection.
    [Show full text]
  • Mitochondrial Toxicity of Triclosan on Mammalian Cells
    Toxicology Reports 2 (2015) 624–637 Contents lists available at ScienceDirect Toxicology Reports j ournal homepage: www.elsevier.com/locate/toxrep Mitochondrial toxicity of triclosan on mammalian cells a,∗,1 a,1 b,1 c Charmaine Ajao , Maria A. Andersson , Vera V. Teplova , Szabolcs Nagy , d e f g Carl G. Gahmberg , Leif C. Andersson , Maria Hautaniemi , Balazs Kakasi , h a Merja Roivainen , Mirja Salkinoja-Salonen a Department of Food and Environmental Sciences, Haartman Institute, University of Helsinki, POB 56, FI-00014, Finland b Institute of Theoretical and Experimental Biophysics, RAS, Puschino, Moscow Region, Russia c Department of Animal Science and Animal Husbandry, University of Pannonia, Georgikon Faculty, Deak F. u.,16, H8360 Keszthely, Hungary d Dept. of Bio- and Environmental Sciences, Haartman Institute, University of Helsinki, FI-00014, Finland e Dept. of Pathology, Haartman Institute, University of Helsinki, FI-00014, Finland f Finnish Food Safety Authority (EVIRA), Research and Laboratory Department, Veterinary Virology Research Unit, Mustialankatu 3, FI 00790 Helsinki, Finland g Institute of Environmental Sciences, University of Pannonia, Egyetem u. 10, H-8200 Veszprem, Hungary h National Institute for Health and Welfare, Department of Virology, Mannerheimintie 166, 00300 Helsinki, Finland a r t a b i c s t l r e i n f o a c t Article history: Effects of triclosan (5-chloro-2 -(2,4-dichlorophenoxy)phenol) on mammalian cells were Received 28 January 2015 investigated using human peripheral blood mono nuclear cells (PBMC), keratinocytes Received in revised form 29 March 2015 (HaCaT), porcine spermatozoa and kidney tubular epithelial cells (PK-15), murine pan- Accepted 30 March 2015 creatic islets (MIN-6) and neuroblastoma cells (MNA) as targets.
    [Show full text]
  • Validation Report 28
    EURL for Cereals and Feeding stuff National Food Institute Technical University of Denmark Validation Report 28 Determination of pesticide residues in hay by LC-MS/MS and GC-MS/MS (QuEChERS method) Susan Strange Herrmann Mette Erecius Poulsen February 2018 Page 2 of 67 CONTENT: 1. Introduction ...................................................................................................................................... 3 2. Principle of analysis......................................................................................................................... 3 3. Validation design ............................................................................................................................. 4 4. Calibration curves............................................................................................................................ 4 5. Validation parameters...................................................................................................................... 4 6. Criteria for the acceptance of validation results ............................................................................. 5 7. Results and conclusion ..................................................................................................................... 6 9. References ........................................................................................................................................ 6 Appendix 1a. GCMSMS transitions used for validation of pesticides in Hay ....................................
    [Show full text]
  • Bottle Bioassays of Field Collected Mosquitoes for Level of Etofenprox Resistance in Central Massachusetts 2019 Update
    BOTTLE BIOASSAYS OF FIELD COLLECTED MOSQUITOES FOR LEVEL OF ETOFENPROX RESISTANCE IN CENTRAL MASSACHUSETTS 2019 UPDATE FRANK H. CORNINE III Central Mass. Mosquito Control Project 111 Otis Street Northborough, MA 01532 (508) 393-3055 • www.cmmcp.org • [email protected] ABSTRACT Using protocols and supplies distributed from the Centers for Disease Control and Prevention, CMMCP conducted bottle bioassays on locally collected adult mosquitoes against the active ingredient etofenprox. The overwhelming majority of these specimens were of the species Coquillettidia perturbans. Resistance to etofenprox was examined because the primary adulticide product of CMMCP is Zenivex® E4, of which etofenprox is the sole active ingredient. Results from these ongoing bottle bioassays are given to the CDC in an effort to help expand the understanding of pesticide resistance in mosquitoes of the United States. BACKGROUND Although examples of pesticide resistance have been well documented, Pesticide resistance in this age of vector- the scope of the issue and its real world borne disease can hamper the ability of impact on public health control activities public health officials to successfully is not known. This is partially due to control threats. Potential resistance may varying levels of resistance surveillance also lead to the reemergence of several programs that currently exist. This factor diseases that would have been otherwise is shown in Massachusetts where some contained through control measures organized mosquito control agencies (Brogdon 1998). Current resistance in conduct zero resistance surveillance, select mosquito populations may be the while others have limited to well- result of historical insecticide use in the developed programs collecting data on agricultural and pest control industries pesticide resistance in mosquitoes.
    [Show full text]
  • Malathion Human Health and Ecological Risk Assessment Final Report
    SERA TR-052-02-02c Malathion Human Health and Ecological Risk Assessment Final Report Submitted to: Paul Mistretta, COR USDA/Forest Service, Southern Region 1720 Peachtree RD, NW Atlanta, Georgia 30309 USDA Forest Service Contract: AG-3187-C-06-0010 USDA Forest Order Number: AG-43ZP-D-06-0012 SERA Internal Task No. 52-02 Submitted by: Patrick R. Durkin Syracuse Environmental Research Associates, Inc. 5100 Highbridge St., 42C Fayetteville, New York 13066-0950 Fax: (315) 637-0445 E-Mail: [email protected] Home Page: www.sera-inc.com May 12, 2008 Table of Contents Table of Contents............................................................................................................................ ii List of Figures................................................................................................................................. v List of Tables ................................................................................................................................. vi List of Appendices ......................................................................................................................... vi List of Attachments........................................................................................................................ vi ACRONYMS, ABBREVIATIONS, AND SYMBOLS ............................................................... vii COMMON UNIT CONVERSIONS AND ABBREVIATIONS.................................................... x CONVERSION OF SCIENTIFIC NOTATION ..........................................................................
    [Show full text]
  • Who Specifications and Evaluations for Public
    WHO SPECIFICATIONS AND EVALUATIONS FOR PUBLIC HEALTH PESTICIDES ETOFENPROX 2-(4-ethoxyphenyl)-2-methylpropyl 3-phenoxybenzyl ether TABLE OF CONTENTS PAGE DISCLAIMER 3 INTRODUCTION 4 PART ONE SPECIFICATIONS FOR ETOFENPROX ETOFENPROX INFORMATION 6 ETOFENPROX TECHNICAL MATERIAL (JULY 2007) 7 ETOFENPROX WETTABLE POWDER (JULY 2007) 8 ETOFENPROX EMULSION, OIL IN WATER (JULY 2007) 10 PART TWO 2006 EVALUATION REPORT FOR ETOFENPROX 14 SUPPORTING INFORMATION 18 ANNEX 1: HAZARD SUMMARY PROVIDED BY THE PROPOSER 22 ANNEX 2: REFERENCES 27 Page 2 of 29 Disclaimer1 WHO specifications are developed with the basic objective of promoting, as far as practicable, the manufacture, distribution and use of pesticides that meet basic quality requirements. Compliance with the specifications does not constitute an endorsement or warranty of the fitness of a particular pesticide for a particular purpose, including its suitability for the control of any given pest, or its suitability for use in a particular area. Owing to the complexity of the problems involved, the suitability of pesticides for a particular purpose and the content of the labelling instructions must be decided at the national or provincial level. Furthermore, pesticides which are manufactured to comply with these specifications are not exempted from any safety regulation or other legal or administrative provision applicable to their manufacture, sale, transportation, storage, handling, preparation and/or use. WHO disclaims any and all liability for any injury, death, loss, damage or other prejudice of any kind that may be arise as a result of, or in connection with, the manufacture, sale, transportation, storage, handling, preparation and/or use of pesticides which are found, or are claimed, to have been manufactured to comply with these specifications.
    [Show full text]
  • 744 Hydrolysis of Chiral Organophosphorus Compounds By
    [Frontiers in Bioscience, Landmark, 26, 744-770, Jan 1, 2021] Hydrolysis of chiral organophosphorus compounds by phosphotriesterases and mammalian paraoxonase-1 Antonio Monroy-Noyola1, Damianys Almenares-Lopez2, Eugenio Vilanova Gisbert3 1Laboratorio de Neuroproteccion, Facultad de Farmacia, Universidad Autonoma del Estado de Morelos, Morelos, Mexico, 2Division de Ciencias Basicas e Ingenierias, Universidad Popular de la Chontalpa, H. Cardenas, Tabasco, Mexico, 3Instituto de Bioingenieria, Universidad Miguel Hernandez, Elche, Alicante, Spain TABLE OF CONTENTS 1. Abstract 2. Introduction 2.1. Organophosphorus compounds (OPs) and their toxicity 2.2. Metabolism and treatment of OP intoxication 2.3. Chiral OPs 3. Stereoselective hydrolysis 3.1. Stereoselective hydrolysis determines the toxicity of chiral compounds 3.2. Hydrolysis of nerve agents by PTEs 3.2.1. Hydrolysis of V-type agents 3.3. PON1, a protein restricted in its ability to hydrolyze chiral OPs 3.4. Toxicity and stereoselective hydrolysis of OPs in animal tissues 3.4.1. The calcium-dependent stereoselective activity of OPs associated with PON1 3.4.2. Stereoselective hydrolysis commercial OPs pesticides by alloforms of PON1 Q192R 3.4.3. PON1, an enzyme that stereoselectively hydrolyzes OP nerve agents 3.4.4. PON1 recombinants and stereoselective hydrolysis of OP nerve agents 3.5. The activity of PTEs in birds 4. Conclusions 5. Acknowledgments 6. References 1. ABSTRACT Some organophosphorus compounds interaction of the racemic OPs with these B- (OPs), which are used in the manufacturing of esterases (AChE and NTE) and such interactions insecticides and nerve agents, are racemic mixtures have been studied in vivo, ex vivo and in vitro, using with at least one chiral center with a phosphorus stereoselective hydrolysis by A-esterases or atom.
    [Show full text]
  • [별표 1] 유독물(제2조 관련) 1. 과산화 나트륨 [Sodium Peroxide] 및 이를 함유한 제제
    [별표 1] 유독물(제2조 관련) 1. 과산화 나트륨 [Sodium peroxide] 및 이를 함유한 제제. 다만, 이를 5%이하 함유한 것은 제외한다. 2. 과산화 수소 [Hydrogen peroxide] 및 이를 함유한 제제. 다만, 이를 6%이하 함유한 것은 제외한다. 3. 과산화 요소 [Urea peroxide] 및 이를 함유한 제제. 다만, 이를 17%이하 함유한 것은 제외한다. 4. 나트륨 [Sodium] 5. β-나프톨 [β-Naphthol] 및 이를 함유한 제제. 다만, 이를 1%이하 함유한 것은 제외한다. 6. 1-나프틸 메틸카르밤산 [1-Naphthyl methylcarbamate : Carbaryl, Sevin, Arylam] 및 이를 함유한 제제. 다만, 이를 5%이하 함유한 것은 제외한다. 7. α-나프틸 티오우레아 [α-Naphthyl thiourea : ANTU, Bantu, Krysid] 및 이를 함유한 제제 8. 납 화합물 [Lead compound]. 다만, 시산화 심납(Lead tetroxide), 황산 납(Lead sulfate), 염기성 탄산납(Basic lead carbonate)은 제외한다. 9. 니켈 카르보닐 [Nickel carbonyl] 및 이를 함유한 제제 10. 니코틴 [Nicotine]과 그 염류 및 그중 하나를 함유한 제제 11. 니트로벤젠 [Nitrobenzene] 12. 1-(4-니트로페닐)-3-(3-피라딜메틸)우레아 [1-(4-Nitrophenyl)-3-(3-pyridylmethyl)urea : Priminil, Vacor] 및 이를 함유한 제제 13. 2,4-디니트로-6-메틸프로필페닐디메틸 아크릴산 [2,4-Dinitro-6-methyl propylphenyldimethyl acrylate : Binapacryl, Morocide] 및 이를 함유한 제제 14. 4,6-디니트로-o-크레솔 [4,6-Dinitro-o-cresol : DNOC, Antinonnin, Sinox]과 그 염류 및 그중 하나를 함유한 제제 15. 3-(디메톡시포스핀일옥시)-N-메틸이소크로톤아미드 [3-(Dimethoxyphosphinyloxy)-N-methylisocrotonamide : Azodrin, Monocrotophos, Apadrin] 및 이를 함유한 제제 16. O,O-디메틸 O-p-니트로페닐 티오인산 [O,O-Dimethyl O-p-nitrophenyl thiophosphate : Methyl parathion, Metaphos, Metacide] 및 이를 함유한 제제 17. 디메틸 (E)-2-디메틸카르바모일-1-메틸비닐 인산 [Dimethyl (E)-2-dimethylcarbamoyl-1-methylvinyl phosphate : Ektafos, Dicrotophos, Bidrin, Carbicron] 및 이를 함유한 제제 18.
    [Show full text]
  • Aldicarb by Caroline Cox Pulses Across the Junctions Between Nerves
    Aldicarb By Caroline Cox pulses across the junctions between nerves. (given over a one-year period). The high- This causes loss of muscular coordination, est dose at which no adverse effects were In 1966, four years before the insecticide convulsions, and ultimately death.5 The observed (called the NOEL) was 0.02 mg/ 11 aldicarb was registered for use in the United AChE inhibition is said to be reversible be- kg/day, about one-tenth of the LD50. States, researchers were using the chemical cause the aldicarb disassociates from the There is evidence that people may suf- on an experimental basis.1 One researcher AChE within several hours. This occurs even fer acute symptoms when exposed to even brought a small amount home and his wife if death has occurred. Organophosphate in- lower levels of aldicarb. In humans who applied it to the soil under a backyard rose secticides (malathion and diazinon, for ex- consumed aldicarb-contaminated water- bush. Over three weeks later she ate a sprig ample) have the same mode of action ex- melons, clinical signs of aldicarb poison- of mint from a plant growing nearby. Within cept that the AChE inhibition is not as ing were found in individuals consuming half an hour she was suffering from vomit- readily reversible.7 as little as 0.002 mg/kg of the aldicarb ing, diarrhea, and involuntary urination. Her Aldicarb is a systemic insecticide. It is metabolite aldicarb sulfoxide. This pupils closed to pinpoints, her muscles applied as granules below the soil surface amount is one-tenth the NOEL in the twitched, and her breathing was difficult.
    [Show full text]
  • Evaluation of Biorational and Natural Products for Vegetable Crop Management in Commercial Market Gardens and Home Gardens
    Report to the Ohio IPM Program on a Vegetable Team Project funded by the Ohio IPM Block Grant Program, 2005 Title: Evaluation of biorational and natural products for vegetable crop management in commercial market gardens and home gardens Investigators: Celeste Welty (entomologist), Sally Miller (plant pathologist), Doug Doohan (weed scientist); Mark Bennett, Matt Kleinhenz, Bob Precheur (horticulturists). Background: The insect pests and diseases that affect vegetable crops are the same whether grown on large farms for commercial production or on small diversified farms or home gardens, but the management tactics preferred by growers are often different for the different scale operations. Many market gardeners prefer to avoid using conventional pesticides because of concern about human safety and environmental contamination. During the past few years, many biorational crop protection products have become available. While it is known that biorational products are safer to humans than conventional pesticides, it is not known whether they are effective in controlling the target pests that they claim to control. In addition to products for insect and disease control, there are many products that promote plant growth, such as microbial soil inoculants. There is little to no unbiased data available on efficacy of these products. This deficit is a limiting factor in formulating up-to-date extension recommendations for market gardens and home gardens. This project was an important first step in the development of a set of recommended garden IPM tactics that will include cultural controls to prevent or delay pest problems, along with biological controls and selective chemical controls. Objective: To evaluate efficacy of biorational products that are available for vegetable crop management, in comparison with standard conventional materials.
    [Show full text]
  • TM-C Annexes.Pdf
    DESTRUCTION AND DECONTAMINATION TECHNOLOGIES FRO PCBs AND OTHER POPs WASTES UNDER THE BASEL CONVENTION A Training Manual for Hazardous Waste Project Managers Volume C - Annexes Secretariat of the Basel Convention Autoclaving Name of Process: Autoclaving Status: Autoclaving is a technology that has been around for many years now and is Applicable POPs wastes: well proven. In general for PCBs, only the oil and transformer components such PCB’s and not for other POPs as ceramics, cardboard and wood are incinerated. After decontamination, the various metals such as copper, steel and aluminium are sent to the metals recycling industry. In fact, the autoclaving cannot be compared with the other technologies dealt with, as it does not treat the PCB itself, but its objective is the clean-up and re- use of the with PCB contaminated materials, which is a completely different purpose as the other technologies. One has to consider that 98% of the contaminated oil is not going into the autoclaving but directly to the incinerator! Technology description: Autoclaving is a solvent decontamination process that extracts PCBs from contaminated material. The process is most often used in projects in conjunction with high temperature incineration. For capacitors the process involves shredding and placing all the material into the autoclaving chamber and by vacuum extraction with solvent remove the PCB. The condensers solid materials, after sawing and decontamination, are totally treated in the incineration plant through the solid burden way, and only the ceramics can then be landfilled. The extracted oil and PCBs is sent for HTI incineration, Alkali metal reduction or other alternative technologies.
    [Show full text]