View of Methodology

Total Page:16

File Type:pdf, Size:1020Kb

View of Methodology EXAMINATION OF THE CHANGE IN SCIENCE CONTENT KNOWLEDGE, PERSONAL SCIENCE TEACHER EFFICACY, AND SCIENCE TEACHING OUTCOME EXPECTANCY DUE TO PARTICIPATION IN MODELING INSTRUCTION PROFESSIONAL DEVELOPMENT Gloria Kreischer-Gajewicz A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF EDUCATION December 2019 Committee: Judith Jackson May, Advisor Starr E. Keyes Graduate Faculty Representative Tracy Huziak-Clark Colleen Megowan-Romanowicz Rachel Vannatta © 2019 Gloria Kreischer-Gajewicz All Rights Reserved iii ABSTRACT Judith Jackson May, Advisor Highly effective teachers have a positive impact on their students and their performance. Therefore, in-service teachers must continue to grow and develop their craft (Marzano, 2003). Research has shown factors influencing teacher effectiveness include their content knowledge, their self-efficacy, and their outcome expectancy (Bandura, 1977; Ohle, Boone, & Fischer, 2014; Sargent, Ferrell, Smith, & Scroggins, 2018; Tschannen-Moran & Hoy, 2001). Teachers who spend almost all of their class time teaching content and not working on improving student understanding have lower self-efficacy and outcome expectancy and struggle to improve their student’s academic success (Petty, 2009). According to research, professional development should focus on pedagogical content knowledge (PCK) to have a more significant impact on student achievement (Kleickmann, Richter, Kunter, Elsner, Besser, Krauss, & Baumert, 2013; Shulman, 1986). Modeling Instruction is a type of professional development focused on the improvement of science teaching pedagogy. There is significant research on the impact of Modeling Instruction (MI) on students. However, little research on the effects of MI on teachers exists (Brewe, 2008). The purpose of this research was to examine how Modeling Instruction professional development impacts teachers. Examining a t-test of dependent samples using a pretest-posttest design will help to determine if MI professional development for in-service science teachers in an appropriate means for improving teacher content knowledge, self-efficacy, and outcome expectancy. The sample for this study included 567 participants in physical science Modeling Instruction professional development workshops from 21 different states in the United States. The researcher utilized a quasi-experimental research design utilizing surveys iv disseminated through voluntary participation in the Modeling Instruction professional development from 2016 to 2018 to ascertain the level of content knowledge (CK), personal science teaching efficacy (PSTE), and science teaching outcome expectancy (STOE) for each of the teachers both pre and post participation. Paired t-tests revealed that Modeling Instruction professional development has a positive impact on content knowledge, self-efficacy, and outcome expectancy. Multiple regression analysis revealed several predictors for the dependent variables, with gender as a common thread throughout. This research also provides implications for leadership and teaching. v This dissertation is dedicated to my family who has stood by my side, giving me help, hope and motivation when the journey seemed never-ending. I want to thank my husband Chris, whose unwavering support throughout tremendous personal struggles, has taught me persistence, resiliency, and that laughter truly is the best medicine. To my son Jordan, whose gentle soul and amazing compassion has taught me how to love unconditionally. To my son Daniel, whose random acts of kindness and perpetual curiosity has made me a better teacher and mother. To my best friend, Amanda, who walked into this journey with me and never left my side. Life knocked me down a few times; I experienced sadness and failure. But you were there to help me get back up. To my parents, Randye and Michael, who showed me the power of education, dedication, and perseverance. I saw firsthand how hard you worked to put your family first while furthering your education. I thank you all for inspiring me to pursue my doctorate. vi ACKNOWLEDGMENTS The completion of my doctorate would not have been possible without the financial support generously extended to me by the Dr. Neil Pohlman award. I want to thank Dr. Patrick Pauken and Dr. Judith Jackson-May for nominating me and the Leadership Studies doctoral faculty at BGSU for selecting me to receive this award. Also, I would like to thank the Neil Pohlman family for initiating this award. I am humbled by the five incredible women that were part of my dissertation committee. I value their presence in my life and am lucky to have such amazing women share their experiences and be with me along this dissertation journey. I hope that one day I can do the same for other women in my life. I am grateful to the American Modeling Teacher’s Association senior advisor, Dr. Colleen Megowan-Romanowicz, who inspired me to become a Modeling Instruction teacher leader. Her unparalleled knowledge about Modeling Instruction and classroom discourse are inspirational. Colleen granted me access to AMTA data files that were instrumental to this project. AMTA has lit the fire for thousands of science teachers and transformed classrooms all over the world. I would like to thank my chair, Dr. Judith Jackson May, for her insightful comments and editor’s eye. She kept encouraging me to focus on the theoretical constructs that informed my research and pushing (sometimes dragging) me toward my goal of becoming a doctor. She has shown me, by her example, what a great leader looks like. Judith has a prodigious presence and I will remember to always take the cannoli. I am also indebted to Dr. Rachel Vannatta, whose expertise in quantitative methodology is invaluable. She has taught me a great deal about scientific research. Rachel’s patience, vii encouragement, and friendship bolstered the process of understanding complex statistical analyses into manageable ingredients for my research. Dr. Tracy Huziak-Clark inspired me to drink the Kool-Aid and started me on my path of transforming my classroom. She guided me to embrace Modeling Instruction and provided me with a topic idea for this research. Tracy has aided many teachers to transform their classrooms, but without her vision of bringing modeling to BGSU, I would not be the teacher I am today. Thank you for lighting my fire. Finally, I would like to thank Dr. Starr Keyes, my graduate representative. She has a keen eye for details and her suggestions made my research more succinct. Starr has shed light on areas of my research that guided my editing process and made my experience more robust. viii TABLE OF CONTENTS Page CHAPTER I. INTRODUCTION .......................................................................................... 1 Background ................................................................................................................ 3 Purpose of the Study ................................................................................................. 5 Research Questions ................................................................................................... 9 Theoretical Foundation .............................................................................................. 9 Overview of Methodology ........................................................................................ 12 Significance of the Study ........................................................................................... 13 Importance of Modeling Instruction in Professional Development .......................... 15 Researcher Assumptions ........................................................................................... 16 Definition of Key Terms ........................................................................................... 19 Organization of the Study .......................................................................................... 20 CHAPTER II. LITERATURE REVIEW ............................................................................. 22 Historical Background ............................................................................................... 23 Conceptual Framework ............................................................................................. 24 Review of the Literature ............................................................................................ 27 Content Knowledge ....................................................................................... 27 Development of content knowledge and its impact on student learning .............................................................................................. 28 Pedagogical Content Knowledge .................................................................. 31 Development of pedagogical content knowledge .............................. 33 Impact of pedagogical content knowledge on student learning ........ 33 Self-Efficacy .................................................................................................. 34 ix Development of self-efficacy ............................................................ 35 Impact of self-efficacy on student learning ....................................... 36 Collective Efficacy ........................................................................................ 36 Outcome Expectancy ..................................................................................... 38 Development of outcome
Recommended publications
  • PISA 2015 High and Low Achievers , File Type
    PISA 2015 high and low achievers Mae’r ddogfen yma hefyd ar gael yn Gymraeg. This document is also available in Welsh. Digital ISBN 978 1 78903 046 4 © Crown copyright December 2017 WG33717 Contents Introduction 2 PISA high- and low-achievers 4 Addendum: Original uncorrected tables 24 Introduction The three-yearly Programme for International Student Assessment (PISA), led by the Organisation for Economic Co-operation and Development (OECD), provides evidence on how the achievement and abilities of 15-year-olds vary across countries. To compare what pupils know and can do across the three core domains, or subjects (science, reading and mathematics), pupils sit a two-hour test that is designed to provide a comparative measure internationally. In each round, one of the core subjects is tested in more detail than the others; for 2015 this major domain was science. Pupils and their schools also complete a background questionnaire that enables more detailed analysis of how performance is shaped by pupils’ characteristics, perceptions and experiences of school and teaching within and across countries. Our participation in the PISA study enables us to benchmark the performance of pupils in Wales against their peers across the rest of the world, to understand the extent to which pupil performance varies and what drives this, and to spotlight particular strengths and weaknesses in our education system. The most recent PISA study was conducted in Wales in the autumn term of 2015. This research brief summarises the results of some further analysis of Wales’ PISA 2015 results. It examines the characteristics of high and low achievers across England, Northern Ireland and Wales.
    [Show full text]
  • Climate Change on Wildfire Activity
    S. HRG. 110–228 CLIMATE CHANGE ON WILDFIRE ACTIVITY HEARING BEFORE THE COMMITTEE ON ENERGY AND NATURAL RESOURCES UNITED STATES SENATE ONE HUNDRED TENTH CONGRESS FIRST SESSION TO CONSIDER SCIENTIFIC ASSESSMENTS OF THE IMPACTS OF GLOBAL CLIMATE CHANGE ON WILDFIRE ACTIVITY IN THE UNITED STATES SEPTEMBER 24, 2007 ( Printed for the use of the Committee on Energy and Natural Resources U.S. GOVERNMENT PRINTING OFFICE 39–889 PDF WASHINGTON : 2007 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 COMMITTEE ON ENERGY AND NATURAL RESOURCES JEFF BINGAMAN, New Mexico, Chairman DANIEL K. AKAKA, Hawaii PETE V. DOMENICI, New Mexico BYRON L. DORGAN, North Dakota LARRY E. CRAIG, Idaho RON WYDEN, Oregon LISA MURKOWSKI, Alaska TIM JOHNSON, South Dakota RICHARD BURR, North Carolina MARY L. LANDRIEU, Louisiana JIM DEMINT, South Carolina MARIA CANTWELL, Washington BOB CORKER, Tennessee KEN SALAZAR, Colorado JOHN BARRASSO, Wyoming ROBERT MENENDEZ, New Jersey JEFF SESSIONS, Alabama BLANCHE L. LINCOLN, Arkansas GORDON H. SMITH, Oregon BERNARD SANDERS, Vermont JIM BUNNING, Kentucky JON TESTER, Montana MEL MARTINEZ, Florida ROBERT M. SIMON, Staff Director SAM E. FOWLER, Chief Counsel FRANK MACCHIAROLA, Republican Staff Director JUDITH K. PENSABENE, Republican Chief Counsel (II) C O N T E N T S STATEMENTS Page Barrasso, Hon. John, U.S. Senator From Wyoming ............................................. 2 Bartuska, Ann, Deputy Chief, Research and Development; Accompanied by Susan Conard, National Program Leader, Fire Ecology Research, Forest Service, Department of Agriculture ...................................................................
    [Show full text]
  • Drama and Learning Science: an Empty Space? Martin Braund* Cape Peninsula University of Technology, South Africa
    British Educational Research Journal Vol. 41, No. 1, February 2015, pp. 102–121 DOI: 10.1002/berj.3130 Drama and learning science: an empty space? Martin Braund* Cape Peninsula University of Technology, South Africa Constructivist teaching methods such as using drama have been promoted as productive ways of learning, especially in science. Specifically, role plays, using given roles or simulated and improvised enactments, are claimed to improve learning of concepts, understanding the nature of science and appreciation of science’s relationship with society (Ødegaard 2001, Unpublished Dr. scient., Dis- sertation, University of Oslo). So far, theorisation of drama in learning, at least in science, has been lacking and no attempt has been made to integrate drama theory in science education with that of theatre. This article draws on Peter Brook’s notion of the theatre as the ‘empty space’ (Brook 1968, The empty space, Harmondsworth, Penguin Books) to provide a new theoretical model acting as a lens through which drama activities used to teach science can be better understood and researched. An example of a physical role play is used to ground the theory. The paper concludes by suggesting areas for further research. Introduction It has been claimed that engaging in arts subjects such as music, dance and drama contributes to general cognition and can enhance learning in other subjects (Deasey, 2002; Dana Foundation, 2008). There is emerging evidence from neuroscience that these claims have some backing. Studies using functional magnetic resonance imag- ing (fMRI) to establish differential cognitive activity in the brain, for individuals car- rying out tasks on creative thinking and problem-solving, show advantages for those who have been involved in arts training such as, in music (Moreno, 2009), in dance (Cross & Ticini, 2012) and in drama/theatre (Hough & Hough, 2012).
    [Show full text]
  • Tam Sayı Dosyası
    VOLUME 1 ISSUE 1 YEAR 2015 e-ISSN 2149-214X Journal of Education in Science, Environment and Health Volume 1, Issue 1, 2015 e-ISSN:2149-214X EDITORIAL BOARD Editors Valarie L. Akerson- Indiana University, U.S.A Sinan Erten, Hacettepe University, Turkey Wenxia (Joy) Wu, Eastern Virginia Medical School, U.S.A Section Editors Manuel Fernandez - Universidad Europea de Madrid, Spain Muhammet Demirbilek, Suleyman Demirel University, Turkey Editorial Board Allen A. Espinosa- Philippine Normal University, Philippines Angelia Reid-Griffin- University of North Carolina, United States Aylin Hasanova Ahmedova- University of Economics, Bulgaria Bill COBERN - Western Michigan University, U.S.A. Ching-San Lai- National Taipei University of Education, Taiwan Emma BULLOCK- Utah State University, United States Ingo Eilks - University of Bremen, Germany Iwona Bodys-Cupak-Jagiellonian University, Poland Jennifer Wilhelm- University of Kentucky, United States Lloyd Mataka-Lewis-Clark State College, United States Luecha Ladachart- University of Phayao, Thailand Natalija ACESKA -Ministry of Education and Science, Macedonia Osman Çardak - Necmettin Erbakan University Patrice Potvin- Université du Québec à Montréal, Canada P.N. Iwuanyanwu-University of the Western Cape, S.Africa Sandra Abegglen- London Metropolitan University, England Sofie Gårdebjer, Chalmers University of Technology, Sweden Steven Sexton-College of Education, University of Otago,New Zealand Tammy R. McKeown- Virginia Commonwealth University, U.S.A. Wan Ng- University of Technology Sydney, Australia Zalpha Ayoubi- Lebanese University, Lebanon Kamisah OSMAN - National University of Malaysia, Malaysia Technical Support S.Ahmet Kiray – Necmettin Erbakan University Journal of Education in Science, Environment and Health (JESEH) The Journal of Education in Science, Environment and Health (JESEH) is a peer-reviewed and online free journal.
    [Show full text]
  • Knowledge Production in the Arab World
    Knowledge Production in the Arab World Over recent decades we have witnessed the globalization of research. However, this has yet to translate into a worldwide scientific network across which compe- tencies and resources can flow freely. Arab countries have strived to join this globalized world and become a “knowledge economy,” yet little time has been invested in the region’s fragmented scientific institutions; institutions that should provide opportunities for individuals to step out on the global stage. Knowledge Production in the Arab World investigates research practices in the Arab world using multiple case studies from the region, with particular focus on Lebanon and Jordan. It depicts the Janus- like face of Arab research, poised between the negative and the positive and faced with two potentially opposing strands: local relevance alongside its internationalization. The book critically assesses the role and dynamics of research and poses questions that are crucial to furthering our understanding of the very particular case of knowledge production in the Arab region. The book explores research’s relevance and whom it serves, as well as the methodological flaws behind academic rankings and the meaning and application of key concepts such as knowledge society/economy. Providing a detailed and comprehensive examination of knowledge produc- tion in the Arab world, this book is of interest to students, scholars and policy- makers working on the issues of research practices and status of science in contemporary developing countries. Sari Hanafi is Professor of Sociology and Chair of the Department of Soci- ology, Anthropology and Media Studies at the American University of Beirut.
    [Show full text]
  • Developing a Regional Learning Center for Engineering
    Pepperdine University Pepperdine Digital Commons Theses and Dissertations 2008 Developing a regional learning center for engineering Kenneth W. Santarelli Follow this and additional works at: https://digitalcommons.pepperdine.edu/etd Recommended Citation Santarelli, Kenneth W., "Developing a regional learning center for engineering" (2008). Theses and Dissertations. 6. https://digitalcommons.pepperdine.edu/etd/6 This Dissertation is brought to you for free and open access by Pepperdine Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Pepperdine Digital Commons. For more information, please contact [email protected] , [email protected]. Pepperdine University Graduate School of Education and Psychology DEVELOPING A REGIONAL LEARNING CENTER FOR ENGINEERING A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Education in Organizational Leadership by Kenneth W. Santarelli September 2008 Diana Hiatt-Michael, Ed.D. – Dissertation Chairperson This dissertation, written by Kenneth W. Santarelli under the guidance of a Faculty Committee and approved by its members, has been submitted to and accepted by the Graduate Faculty in partial fulfillment of the requirements for the degree of DOCTOR OF EDUCATION June 9, 2008 Faculty Committee: ____________________________________ Diana B. Hiatt-Michael, Ed.D., Chairperson ______________________________________ John F. McManus, Ph.D., Committee Member ______________________________________
    [Show full text]
  • The Development of Environmental Awareness Through School Science: Problems and Possibilities
    International Journal of Environmental & Science Education (2013), 8, 405-426 The development of environmental awareness through school science: Problems and possibilities Yannis Hadzigeorgiou and Michael Skoumios University of The Aegean Received 30 May 2012; Accepted 7 April 2013 Doi: 10.12973/ijese.2013.212a This paper focuses upon the problem of raising environmental awareness in the con- text of school science. By focusing, as it does, on the relationship between the self and the natural environment, the paper discusses the difficulties that exist, such as the students’ involvement with the natural world, as their object of study, the empirical treatment and the modeling of the natural world, and the purpose of learning science, as well as the possibilities for promoting the development of such relationship by keeping the natural world, as an object of study, in the foreground of the teaching- learning process. Such possibilities refer to the awareness of the personal and wider significance of science ideas and socio-scientific issues, the wonder evoked by sci- ence ideas and by natural forms and phenomena, the aesthetic appreciation of the natural world, and the ‘story of the universe’, as a story that addresses the intercon- nection of science and human life. The educational importance of ‘awareness’ is also discussed in the paper. Key words: environmental awareness, environmental education, school science, problems, possibilities, wonder, aesthetics, storytelling Introduction Promoting environmental awareness is considered a crucial goal in the context of contemporary education (Slattery, 2003; Slattery & Rapp, 2003). The importance of this goal lies in the interde- pendence between humankind and the natural world (Richards, 2001; Orr, 2003).
    [Show full text]
  • Climate Change and the Power Industry - a Literature Research
    Climate Change And The Power Industry - A Literature Research - by Dr. rer. nat. Rüdiger Beising October 2006 1st Revision, March 2007 Issued by: VGB PowerTech e.V. To be obtained from: VGB PowerTech Service GmbH Publishing house for technological-scientific papers Postfach 10 39 32, D-45039 Essen Tel. +49-(0)201 8128-200 Fax +49-(0)201 8128-329 Email: [email protected] 2 3 Table of contents Preface / Summary 7 1 The Climate of the Earth 18 1.1 Atmosphere 18 1.2 Hydrosphere 20 1.3 Cryosphere 21 1.4 Geosphere 21 1.5 Biosphere 21 2 The Carbon Dioxide Circulation 23 2.1 Geosphere 24 2.2 Ocean 24 2.3 Atmosphere 25 2.4 Biosphere 25 3 The Radiation Budget and the Greenhouse Effect 27 3.1 Radiation Balance 27 3.2 Radiative Forcing 28 3.3 The Greenhouse Effect 29 4 Natural Influencing Factors on the Climate 33 4.1 The Sun 33 4.1.1 Solar Radiation 34 4.1.2 Cosmic Particle Radiation and Geomagnetic Field 38 4.2 Volcanoes 41 4.3 North Atlantic Oscillation - NAO 43 4.4 Southern Oscillation El Niño – ENSO 46 4.5 Thermohaline Circulation (THC) 47 4.6 Natural Greenhouse Gases 49 5 Anthropogenic Influencing Factors on the Climate 50 5.1 Anthropogenic Greenhouse Gases 50 5.1.1 Water Vapour (H2O) 54 5.1.2 Carbon Dioxide (CO2) 55 5.1.3 Methane (CH4) 57 5.1.4 Nitrous Oxide (N2O) 60 5.1.5 Ozone 61 5.1.6 F-Gases and Halogenated Hydrocarbons (FC, CFC, HFC) 62 5.1.7 Sulphur Hexafluoride (SF6) 64 5.1.8 Indirect, Ozone-Forming Greenhouse Gases 64 5.1.8.1 Nitrogen Oxides (NOx) without Dinitrogen Oxide 64 5.1.8.2 Organic Compounds without Methane (NMVOC) 65 5.1.8.3 Carbon Monoxide (CO) 65 5.2 Sulphur Dioxide (SO2) 66 5.3.
    [Show full text]
  • Lowellobserver
    THE ISSUE 113 SPRING 2018 LOWELL OBSERVER THE QUARTERLY NEWSLETTER OF LOWELL OBSERVATORY HOME OF PLUTO Dr. Jennifer Hanley in the Astrophysical Materials Laboratory at Northern Arizona University. IN THIS ISSUE 2 Director’s Update 2 Trustee’s Update Meet Jennifer Hanley 4 All Systems GODO! By Jennifer Hanley, Astronomer *Effective January 1, Jennifer Hanley conditions. I’m currently working on a and Michael Mommert accepted tenure-track grant funded by NASA to map chlorine astronomer positions at Lowell. To introduce salts on the surface of Mars using spectra themselves to you, each of them has contributed acquired from the Mars Reconnaissance an article to this edition of The Lowell Orbiter. Observer. Michael’s story is on page 3. While a graduate student I interned at the Jet Propulsion Laboratory (JPL) My research interests span across the in Pasadena, California. My project was 5 GODO Funding Opportunities solar system, focusing on the stability to measure spectra of chlorine salts at 6 The Man Who Saved the Universe of liquids on Mars, Titan and Europa. low temperatures and see if they were Before accepting this position, I had 7 Eicher Joins Advisory Board present on Jupiter’s moon Europa. This been working at Lowell with Drs. Will started my interest in the outer solar Grundy and Henry Roe since fall 2015 as a system. Since then I have continued my postdoctoral researcher on a grant from the research into the composition of Europa, John and Maureen Hendricks Charitable observing the moon with NASA’s Foundation. Infrared Telescope Facility (IRTF) and I earned a B.A.
    [Show full text]
  • Download File
    Learning the Rules of the Game: The Nature of Game and Classroom Supports When Using a Concept-Integrated Digital Physics Game in the Middle School Science Classroom Phillip Michael Stewart, Jr. Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee and the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2013 © 2013 Phillip Michael Stewart, Jr. All rights reserved ABSTRACT Learning the Rules of the Game: The Nature of Game and Classroom Supports When Using a Concept-Integrated Digital Physics Game in the Middle School Science Classroom Phillip Michael Stewart, Jr. Games in science education is emerging as a popular topic of scholarly inquiry. The National Research Council recently published a report detailing a research agenda for games and science education entitled Learning Science Through Computer Games and Simulations (2011). The report recommends moving beyond typical proof-of-concept studies into more exploratory and theoretically-based work to determine how best to integrate games into K-12 classrooms for learning , as well as how scaffolds from within the game and from outside the game (from peers and teachers) support the learning of applicable science. This study uses a mixed-methods, quasi-experimental design with an 8th grade class at an independent school in southern Connecticut to answer the following questions: 1. What is the nature of the supports for science content learning provided by the game, the peer, and the teacher, when the game is used in a classroom setting? 2. How do the learning gains in the peer support condition compare to the solo play condition, both qualitatively and quantitatively? The concept-integrated physics game SURGE (Scaffolding Understanding through Redesigning Games for Education) was selected for this study, as it was developed with an ear towards specific learning theories and prior work on student understandings of impulse, force, and vectors.
    [Show full text]
  • Science Teaching Efficacy Beliefs of 5Th and 8Th Grade Science Teachers
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aquila Digital Community The University of Southern Mississippi The Aquila Digital Community Dissertations Spring 5-2011 Science Teaching Efficacy Beliefs of 5th and 8th adeGr Science Teachers Susan Melony Hanson University of Southern Mississippi Follow this and additional works at: https://aquila.usm.edu/dissertations Part of the Curriculum and Instruction Commons, Elementary and Middle and Secondary Education Administration Commons, and the Science and Mathematics Education Commons Recommended Citation Hanson, Susan Melony, "Science Teaching Efficacy Beliefs of 5th and 8th adeGr Science Teachers" (2011). Dissertations. 863. https://aquila.usm.edu/dissertations/863 This Dissertation is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Dissertations by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. The University of Southern Mississippi SCIENCE TEACHING EFFICACY BELIEFS OF 5 TH AND 8 TH GRADE SCIENCE TEACHERS by Susan Melony Hanson A Dissertation Submitted to the Graduate School of The University of Southern Mississippi in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Approved: Dr. Rose Jones ___________________ Director Dr. J.T. Johnson ___________________ Dr. Marybeth Evans ________________ Dr. Hani Morgan ___________________ Dr. Stacy Reeves __________________ Dr. Barbara Stanford
    [Show full text]
  • The Fire-Climate Connection
    FIRE SCIENCE DIGEST ISSUE 1 OCTOBER 2007 ISSUE 1 OCTOBER 2007 The Fire-Climate Connection JFSP-funded research is exploring and quantifying relationships among the large-scale drivers of climate and the occurrence and extent of wildfire in the various regions of the western United States. In recent decades, large fires in the West have become periodic fire. Climate, interacting with the ecosystem to more frequent, more widespread, and potentially more produce wildfire regimes, is largely responsible for the deadly. In 2003, a particularly severe fire season, wildfires considerable differences in the forest types that exist across burned about 4 million acres, destroyed 5,000 structures, the West at various latitudes and elevations. Factors such as and took the lives of 30 firefighters. precipitation, temperature, and topography (which, over the In addition, dealing with wildfires is becoming more long haul, is also driven by climate) combine to influence and more expensive. The 2003 fire season racked up more the vegetation that can grow in a given place, as well as the than $1 billion in suppression costs. The bill for suppressing timing, severity, and extent of burns. These in turn influence wildfires on public lands has exceeded the amount the type of forest that gets established. Forests thus owe appropriated almost every year since 1990, according to the their distinctive identities to historical patterns of climate General Accounting Office. and recurring fire. Pre-twentieth-century fire was highly variable across 1,800 Dollars in millions (adjusted for inflation) different landscapes. Large, stand-replacing fires were 1,600 typical of forests in cool, wet climates, such as coastal 1,400 Douglas-fir and interior, high-elevation lodgepole pine 1,200 1,000 and Engelmann spruce.
    [Show full text]