Expectations and Reality Expectations and Reality 1 Introduction and Executive Summary

Total Page:16

File Type:pdf, Size:1020Kb

Expectations and Reality Expectations and Reality 1 Introduction and Executive Summary GOOD AND BAD NEWS ABOUT HOW WELL U.S. STUDENTS ARE PREPARED FOR SUCCESS IN OUR CHANGING WORLD II EXPECTATIONS AND REALITY EXPECTATIONS AND REALITY 1 INTRODUCTION AND EXECUTIVE SUMMARY Most U.S. parents are anxious that their children’s future could This report was authored by America Achieves be compromised if their education does not become more and represents the views of America Achieves. challenging. According to a new survey commissioned by America Achieves, 72 percent of parents worry that a middle class lifestyle INSIDE THIS REPORT will be harder to achieve for their children—and 71 percent worry America Achieves is a nonprofit organization SECTION 1 dedicated to inspiring and equipping Americans that their children could miss out on future opportunities—if PARENT EXPECTATIONS — AND CONCERNS—ABOUT their children’s education doesn’t become more challenging. to raise the bar in education and drive THEIR CHILDREN’S investment in what works so that each young Consistent with most prior surveys, most parents still express EDUCATION ...................6 person can succeed in a changing world. confidence in their own children’s schools, but 61 percent believe SECTION 2 their children’s standard of living may slip below theirs without a THE GAP BETWEEN EXPECTATIONS AND America Achieves gratefully acknowledges more demanding education. STUDENT ATTAINMENT ....8 SECTION 3 funding from Bloomberg Philanthropies, New findings by America Achieves suggest these anxieties may be well- INTERNATIONAL Charles Butt, and The Kern Family Foundation founded—given that real educational improvements for U.S. students may COMPARISONS to produce this report. not be keeping pace with parent hopes or with the rising educational bar in a OVER TIME ................... 11 changing economy. Results from a new parent survey reveal a significant gap SECTION 4 between parent expectations for their children’s educational futures and actual USING A GLOBAL educational attainment. Of every two families expecting their child to become a BENCHMARKING TOOL TO SPOTLIGHT LOCAL college graduate with a bachelor’s degree, more than one is likely to be wrong. SUCCESSES IN THE U.S. AND Moreover, new analyses of math and science achievement on the international GLOBALLY—AND SUPPORT IMPROVEMENTS .............16 Programme for International Student Assessment (PISA) exam demonstrate that U.S. students in the bottom socioeconomic quarter have made significant SECTION 5 CONCLUDING gains in both absolute and relative performance in recent years—but that this OBSERVATIONS ............. 20 improved performance is not yet enough to eliminate large skill gaps and broader opportunity gaps. APPENDIX ................... 24 FIGURE 1A,B ................... 24 These findings also show the need for educational progress for both FIGURE 2A,B,C,D,E,F ........... 25 disadvantaged and middle-income students. While the U.S. was one of only nine FIGURE 3A,B,C,D ............... 28 countries to decrease the impact of a student’s socioeconomic status on math FIGURE 4A,B,C,D............... 32 FIGURE 5A,B,C,D ............... 36 performance between 2003 and 2012, disadvantaged students remain several BENENSON STRATEGY grades behind their more advantaged U.S. peers. At the same time, U.S. middle GROUP SURVEY ............... 41 2 EXPECTATIONS AND REALITY EXPECTATIONS AND REALITY 3 and upper income students are outperformed by their socioeconomic peers in of students in the U.S. was outperformed in 2012 by international peers in 14 more industrialized countries than are U.S. students in the bottom socioeconomic countries in science and in 20 countries in math. When looking at the second- quarter. Our disadvantaged students face the most urgent need for continued to-top quarter of socioeconomic advantage—the quarter most analogous progress—but they are not the primary cause of our nation’s middling global to America’s definition of the middle class—15 countries outperformed the position in education. While vast majorities of low-income parents and Black and U.S. in science, and 20 countries outperformed the U.S. in math. The bottom Hispanic parents are likely to be wrong about their children’s educational future, socioeconomic quarter of U.S. students was outperformed by peers in 11 the majority of both middle-income and White families are likely to be wrong as countries in science and 17 countries in math. well. PROMISING RECENT DEVELOPMENTS FOR STUDENTS IN THE LOWEST In fact, these findings suggest that, just as we must accelerate improvements SOCIOECONOMIC QUARTER in basic and higher-order skills and expand opportunities inside and outside of EXPECTATION On the promising side, U.S. students in the bottom socioeconomic quarter school for our low-income students, we also need to broaden our progress so 74 percent of parents of have made significant gains in both absolute and relative performance in math that U.S. students across all income levels gain the deeper learning and problem- children in elementary or and science in recent years.2 Students in ten fewer countries outperformed solving skills that are at the core of PISA’s focus and crucial to their futures. We secondary school expect that U.S. students in the bottom socioeconomic quarter in science and those in also need to learn from and build on the eforts of educators, school leaders, their child will obtain a four- five fewer countries outperformed U.S. students in math compared to the first and district leaders nationwide who are looking for opportunities to benchmark year college degree. their schools against high standards and their peers across the state, country comparable year of PISA data (2006 for science and 2003 for math). These and world, and then make shifts, based on their findings, that improve student results align with a 2013 analysis by the OECD showing that the U.S. improved its outcomes. math performance and decreased the impact of socioeconomic status on math performance between 2003 and 2012—one of only nine countries to do so.3 GAP BETWEEN EXPECTATION AND STUDENT ATTAINMENT Our lowest income students, on average, still dramatically lag behind their more A 2014 survey commissioned by America Achieves of parents across all REALITY afuent peers in the U.S., and they and their schools urgently need continued income levels found a striking gap between parent expectations and student support. And achievement gains by themselves won’t fully address important Only 35 percent of young people postsecondary attainment. Overall, out of every two families who expect that opportunity gaps. Particularly if corroborated by future studies, however, these (aged 25-34) have obtained a their child will complete a four-year college degree, more than one is likely to be promising findings suggest that our nation’s focus in recent years on improving bachelor’s degree – meaning wrong.1 This holds particularly true for low-income and middle-income families educational outcomes for low-income students is leading to real progress. that the expectations of more earning less than $100,000: over half of these parents do not have their college than half of all parents are expectations met. Only the attainment of students from families who earn more likely to be wrong. than $100,000 even approaches parent expectations. However, all U.S. students, including our most advantaged, experience a skills gap. Math and science performance on the PISA over time shows that U.S. students at all socioeconomic levels continue to lag behind many of their international peers. On the most recent administration of the PISA, when looking at the 30 Organisation for Economic Co-operation and Development 2 U.S. second-to-top quarter students have made modest, although uneven, improvements in science, but these improvements are less significant than those seen by the bottom quarter. (OECD) countries that participated in the first comparable year in math (2003) 3 OECD. (2013). PISA 2012 Results: Excellence Through Equity: Giving Every Student the Chance to and the first comparable year in science (2006), the top socioeconomic quarter Succeed (Volume II). PISA, OECD Publishing. DOI:10.1787/9789264201132-en. These gains are consistent with reports showing educational progress for disadvantaged students in the U.S., including improved high school graduation rates, reduced drop-out rates, and improved 1 74 percent of surveyed parents responded that they are “absolutely certain” or believe it “very elementary and middle school achievement. A 2014 study by the Child Trends Hispanic Institute, likely” that their child will complete a four-year college degree. According to the OECD, 35 percent for example, found that math achievement among Hispanic fourth- and eighth-grade students of Americans aged 25-34 have obtained a bachelor’s degree. OECD. (2015). Education at a Glance overall has increased one grade level to two or more over the past decade. Pane, N. (2014). Math Interim Report: Update of Employment and Educational Attainment Indicators. http://www.oecd.org/ scores add up for Hispanic students: States and school districts notable for recent gains by Hispanic edu/EAG-Interim-report.pdf students in mathematics. Child Trends Hispanic Institute 4 EXPECTATIONS AND REALITY EXPECTATIONS AND REALITY 5 who led the world in education by many measures. This is because, over the last COMPARING STUDENTS BY SOCIOECONOMIC STATUS two decades, other countries have gotten better faster as the educational bar has been raised in a changing economy. In fact, according to research conducted In order to conduct an analysis of the relative performance of U.S. students over time, we looked at the by the OECD, although the overall percentage of young adults aged 25-34 who performance of the 30 OECD nations that participated in both the earliest available and comparable earned a bachelor’s degree has risen from 27 percent5 to 35 percent6 since 1998, PISA (2003 in math and 2006 in science) and the most recent PISA (2012).
Recommended publications
  • Hosted By: Science and Mathematics Education Conference Castel, St. Patrick's Campus, Dublin City University 16Th – 17Th
    Hosted by: Science and Mathematics Education Conference CASTeL, St. Patrick’s Campus, Dublin City University 16th – 17th June 2016 Acknowledgements The SMEC2016 organising committee gratefully acknowledges support from the Centre of the Advancement of STEM Teaching and Learning (CASTeL), the Institute of Physics in Ireland (IOPI), the Royal Society of Chemistry (RSC) and the Sustainable Energy Authority of Ireland (SEAI). ISBN: 978-1-873769-62-1 Address for correspondence: Centre for the Advancement of STEM Teaching and Learning (CASTeL), Faculty of Science and Health, Dublin City University, Dublin 9 Ireland E: [email protected] ii WELCOME ADDRESS SMEC 2016 took place in Dublin City University, St. Patrick’s Campus on the 16th and 17th June 2016. With a title of STEM Teacher Education - Initial and Continuing professional development, this conference focussed on teacher education in STEM with papers presented in the areas of: Initial teacher education; including professional knowledge of teachers; teaching and learning in initial teacher education; relating theory to practice; and issues related to teacher education programs, policy and reform; In-service education; including in-service education and training; curricular reform and new programmes Continuous professional development for all teachers; including teachers as lifelong learners; methods and innovation in professional development; evaluation of professional development practices; and reflective practice, teachers as researchers, and action research. SMEC 2016 was the seventh in a series of biennial international Science and Mathematics Education Conferences to be hosted by CASTeL – the Centre for the Advancement of STEM Teaching and Learning. The purpose of this conference series is to provide an international platform for teachers and educators to discuss practices and share their experiences in the teaching and learning of mathematics and science.
    [Show full text]
  • PISA 2015 High and Low Achievers , File Type
    PISA 2015 high and low achievers Mae’r ddogfen yma hefyd ar gael yn Gymraeg. This document is also available in Welsh. Digital ISBN 978 1 78903 046 4 © Crown copyright December 2017 WG33717 Contents Introduction 2 PISA high- and low-achievers 4 Addendum: Original uncorrected tables 24 Introduction The three-yearly Programme for International Student Assessment (PISA), led by the Organisation for Economic Co-operation and Development (OECD), provides evidence on how the achievement and abilities of 15-year-olds vary across countries. To compare what pupils know and can do across the three core domains, or subjects (science, reading and mathematics), pupils sit a two-hour test that is designed to provide a comparative measure internationally. In each round, one of the core subjects is tested in more detail than the others; for 2015 this major domain was science. Pupils and their schools also complete a background questionnaire that enables more detailed analysis of how performance is shaped by pupils’ characteristics, perceptions and experiences of school and teaching within and across countries. Our participation in the PISA study enables us to benchmark the performance of pupils in Wales against their peers across the rest of the world, to understand the extent to which pupil performance varies and what drives this, and to spotlight particular strengths and weaknesses in our education system. The most recent PISA study was conducted in Wales in the autumn term of 2015. This research brief summarises the results of some further analysis of Wales’ PISA 2015 results. It examines the characteristics of high and low achievers across England, Northern Ireland and Wales.
    [Show full text]
  • Climate Change on Wildfire Activity
    S. HRG. 110–228 CLIMATE CHANGE ON WILDFIRE ACTIVITY HEARING BEFORE THE COMMITTEE ON ENERGY AND NATURAL RESOURCES UNITED STATES SENATE ONE HUNDRED TENTH CONGRESS FIRST SESSION TO CONSIDER SCIENTIFIC ASSESSMENTS OF THE IMPACTS OF GLOBAL CLIMATE CHANGE ON WILDFIRE ACTIVITY IN THE UNITED STATES SEPTEMBER 24, 2007 ( Printed for the use of the Committee on Energy and Natural Resources U.S. GOVERNMENT PRINTING OFFICE 39–889 PDF WASHINGTON : 2007 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 COMMITTEE ON ENERGY AND NATURAL RESOURCES JEFF BINGAMAN, New Mexico, Chairman DANIEL K. AKAKA, Hawaii PETE V. DOMENICI, New Mexico BYRON L. DORGAN, North Dakota LARRY E. CRAIG, Idaho RON WYDEN, Oregon LISA MURKOWSKI, Alaska TIM JOHNSON, South Dakota RICHARD BURR, North Carolina MARY L. LANDRIEU, Louisiana JIM DEMINT, South Carolina MARIA CANTWELL, Washington BOB CORKER, Tennessee KEN SALAZAR, Colorado JOHN BARRASSO, Wyoming ROBERT MENENDEZ, New Jersey JEFF SESSIONS, Alabama BLANCHE L. LINCOLN, Arkansas GORDON H. SMITH, Oregon BERNARD SANDERS, Vermont JIM BUNNING, Kentucky JON TESTER, Montana MEL MARTINEZ, Florida ROBERT M. SIMON, Staff Director SAM E. FOWLER, Chief Counsel FRANK MACCHIAROLA, Republican Staff Director JUDITH K. PENSABENE, Republican Chief Counsel (II) C O N T E N T S STATEMENTS Page Barrasso, Hon. John, U.S. Senator From Wyoming ............................................. 2 Bartuska, Ann, Deputy Chief, Research and Development; Accompanied by Susan Conard, National Program Leader, Fire Ecology Research, Forest Service, Department of Agriculture ...................................................................
    [Show full text]
  • Drama and Learning Science: an Empty Space? Martin Braund* Cape Peninsula University of Technology, South Africa
    British Educational Research Journal Vol. 41, No. 1, February 2015, pp. 102–121 DOI: 10.1002/berj.3130 Drama and learning science: an empty space? Martin Braund* Cape Peninsula University of Technology, South Africa Constructivist teaching methods such as using drama have been promoted as productive ways of learning, especially in science. Specifically, role plays, using given roles or simulated and improvised enactments, are claimed to improve learning of concepts, understanding the nature of science and appreciation of science’s relationship with society (Ødegaard 2001, Unpublished Dr. scient., Dis- sertation, University of Oslo). So far, theorisation of drama in learning, at least in science, has been lacking and no attempt has been made to integrate drama theory in science education with that of theatre. This article draws on Peter Brook’s notion of the theatre as the ‘empty space’ (Brook 1968, The empty space, Harmondsworth, Penguin Books) to provide a new theoretical model acting as a lens through which drama activities used to teach science can be better understood and researched. An example of a physical role play is used to ground the theory. The paper concludes by suggesting areas for further research. Introduction It has been claimed that engaging in arts subjects such as music, dance and drama contributes to general cognition and can enhance learning in other subjects (Deasey, 2002; Dana Foundation, 2008). There is emerging evidence from neuroscience that these claims have some backing. Studies using functional magnetic resonance imag- ing (fMRI) to establish differential cognitive activity in the brain, for individuals car- rying out tasks on creative thinking and problem-solving, show advantages for those who have been involved in arts training such as, in music (Moreno, 2009), in dance (Cross & Ticini, 2012) and in drama/theatre (Hough & Hough, 2012).
    [Show full text]
  • DES Curriculum and Assessment Unit
    Primary & Secondary Education The background paper has very little reference to STEM education in the primary and post-primary sectors. Without a firm foundation in their STEM education at both primary and post-primary there will not be third or further education students interested in seeking to continue their STEM studies. There is a lot going on in the STEM area at present, particularly at post primary level for mathematics and the sciences, but review and revision is commencing in the primary sector. The SSTI (2006 – 2013) outlined how we must build a strong science foundation in both primary and second level education. The SSTI called for a strengthening of the links between primary and post- primary. These will continue to guide work on the STEM agenda for primary and post-primary. In addition, the links between post-primary and third level education must also be strengthened so that there is a bridge and not a chasm between the two sectors. There also must continue to be links nurtured between scientific institutions – both from the academic and business sectors – so as to motivate young people to realise the importance of STEM education for their futures and for the Irish economy. The work of SFI in this agenda is vital. Initiatives such as the annual Young Scientist and Technology exhibition and Scifest also play a key role in raising awareness of the STEM agenda and provide an opportunity for students to be creative, innovative and entrepreneurial. It also assists in promoting a positive attitude to careers in the STEM areas. The Department of Education and Skills is currently overseeing a significant amount of curricular reform in the STEM area.
    [Show full text]
  • SKA-Athena Synergy White Paper
    SKA-Athena Synergy White Paper SKA-Athena Synergy Team July 2018. Edited by: Francisco J. Carrera and Silvia Martínez-Núñez on behalf of the Athena Community Office. Revisions provided by: Judith Croston, Andrew C. Fabian, Robert Laing, Didier Barret, Robert Braun, Kirpal Nandra Authorship Authors Rossella Cassano (INAF-Istituto di Radioastronomia, Italy). • Rob Fender (University of Oxford, United Kingdom). • Chiara Ferrari (Observatoire de la Côte d’Azur, France). • Andrea Merloni (Max-Planck Institute for Extraterrestrial Physics, Germany). • Contributors Takuya Akahori (Kagoshima University, Japan). • Hiroki Akamatsu (SRON Netherlands Institute for Space Research, The Netherlands). • Yago Ascasibar (Universidad Autónoma de Madrid, Spain). • David Ballantyne (Georgia Institute of Technology, United States). • Gianfranco Brunetti (INAF-Istituto di Radioastronomia, Italy) and Maxim Markevitch (NASA-Goddard • Space Flight Center, United States). Judith Croston (The Open University, United Kingdom). • Imma Donnarumma (Agenzia Spaziale Italiana, Italy) and E. M. Rossi (Leiden Observatory, The • Netherlands). Robert Ferdman (University of East Anglia, United Kingdom) on behalf of the SKA Pulsar Science • Working Group. Luigina Feretti (INAF-Istituto di Radioastronomia, Italy) and Federica Govoni (INAF Osservatorio • Astronomico,Italy). Jan Forbrich (University of Hertfordshire, United Kingdom). • Giancarlo Ghirlanda (INAF-Osservatorio Astronomico di Brera and University Milano Bicocca, Italy). • Adriano Ingallinera (INAF-Osservatorio Astrofisico di Catania, Italy). • Andrei Mesinger (Scuola Normale Superiore, Italy). • Vanessa Moss and Elaine Sadler (Sydney Institute for Astronomy/CAASTRO and University of Sydney, • Australia). Fabrizio Nicastro (Osservatorio Astronomico di Roma,Italy), Edvige Corbelli (INAF-Osservatorio As- • trofisico di Arcetri, Italy) and Luigi Piro (INAF, Istituto di Astrofisica e Planetologia Spaziali, Italy). Paolo Padovani (European Southern Observatory, Germany). • Francesca Panessa (INAF/Istituto di Astrofisica e Planetologia Spaziali, Italy).
    [Show full text]
  • Download Free from the Itunes App Store Today!
    HHMI BULLETIN F ALL ’12 V OL .25 • N O . 03 • 4000 Jones Bridge Road Chevy Chase, Maryland 20815-6789 Hughes Medical Institute Howard www.hhmi.org Out of Africa • This beauty is Aedes aegypti, a mosquito that can transmit www.hhmi.org dengue and yellow fever viruses, among others. Originally from Africa, it is now found in tropical and subtropical regions around the world. While this mosquito prefers to feast on animals over humans, it lives in close proximity to blood-hungry relatives that will choose a human meal every time. HHMI investigator Leslie Vosshall and her lab group are studying the evolutionary changes behind the insects’ diverse dietary habits. Their research may help reduce mosquito-borne illnesses. Read about Vosshall and the arc of her scientific career in “Avant Garde Scientist,” page 18. perils of fatty liver vosshall on the scent über cameras vol. vol. 25 / no. / no. Leslie Vosshall 03 ObservatiOns tHe traininG PiPeLine to prepare and retain a topnotch, diverse scientific workforce, increasingly necessary if the market for biomedical researchers trainees should be introduced to multiple career paths, according to strengthens outside of the United States in coming years). a June report by the niH biomedical Workforce Working Group. One of those options—the staff scientist—could use a boost. Co-chaired Today, these scientists bring stability to many labs and provide by Princeton University President shirley tilghman (see “the Future important functions as part of institutional core facilities, but have a of science,” HHMI Bulletin, May 2011) and sally rockey, niH deputy wide variety of titles and employment conditions.
    [Show full text]
  • Educators' Perceptions of Integrated STEM: a Phenomenological Study
    Journal of STEM Teacher Education Volume 53 | Issue 1 Article 3 April 2018 Educators’ Perceptions of Integrated STEM: A Phenomenological Study Brian K. Sandall University of Nebraska at Omaha, [email protected] Darrel L. Sandall Florida Institute of Technology, [email protected] Abram L. J. Walton Florida Institute of Technology, [email protected] Follow this and additional works at: https://ir.library.illinoisstate.edu/jste Part of the Curriculum and Instruction Commons, Engineering Education Commons, Other Education Commons, Other Teacher Education and Professional Development Commons, Science and Mathematics Education Commons, and the Secondary Education and Teaching Commons Recommended Citation Sandall, Brian K.; Sandall, Darrel L.; and Walton, Abram L. J. (2018) "Educators’ Perceptions of Integrated STEM: A Phenomenological Study," Journal of STEM Teacher Education: Vol. 53 : Iss. 1 , Article 3. DOI: doi.org/10.30707/JSTE53.1Sandall Available at: https://ir.library.illinoisstate.edu/jste/vol53/iss1/3 This Article is brought to you for free and open access by ISU ReD: Research and eData. It has been accepted for inclusion in Journal of STEM Teacher Education by an authorized editor of ISU ReD: Research and eData. For more information, please contact [email protected]. Journal of STEM Teacher Education 2018, Vol. 53, No. 1, 27–42 Educators’ Perceptions of Integrated STEM: A Phenomenological Study Brian K. Sandall University of Nebraska at Omaha Darrel L. Sandall and Abram L. J. Walton Florida Institute of Technology ABSTRACT The study utilized a semistructured interview approach to identify phenomena that are related to integrated STEM education by addressing the question: What are the critical components of an integrated STEM definition and what critical factors are necessary for an integrated STEM definition’s implementation? Thirteen expert practitioners were identified and interviewed.
    [Show full text]
  • STEM Education in Rural Schools: Implications of Untapped Potential
    National Youth-At-Risk Journal Volume 3 Issue 1 Fall 2018 Article 2 December 2018 STEM Education in Rural Schools: Implications of Untapped Potential Rachel S. Harris Georgia Southern University Charles B. Hodges Georgia Southern University Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/nyar Recommended Citation Harris, R. S., & Hodges, C. B. (2018). STEM Education in Rural Schools: Implications of Untapped Potential. National Youth-At-Risk Journal, 3(1). https://doi.org/10.20429/nyarj.2018.030102 This essay is brought to you for free and open access by the Journals at Digital Commons@Georgia Southern. It has been accepted for inclusion in National Youth-At-Risk Journal by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. STEM Education in Rural Schools: Implications of Untapped Potential Abstract A large number of students in American public schools attend rural schools. In this paper, the authors explore rural science, technology, engineering, and math (STEM) education and the issues associated with STEM education for students, teachers, and parents in rural communities. Characteristics of rural STEM education are examined to highlight unique considerations for this context. The authors conclude with the recommendation that more research is needed that specifically addresses rural STEM education. Keywords rural education, STEM education, rural STEM education, STEM funding, education funding Cover Page Footnote This study was supported in part by funds from the Office of the Vice esidentPr for Research & Economic Development and the Jack N. Averitt College of Graduate Studies at Georgia Southern University. This essay is available in National Youth-At-Risk Journal: https://digitalcommons.georgiasouthern.edu/nyar/vol3/ iss1/2 Harris and Hodges: STEM Education in Rural Schools STEM Education in Rural Schools: Implications of Untapped Potential Rachel S.
    [Show full text]
  • Tam Sayı Dosyası
    VOLUME 1 ISSUE 1 YEAR 2015 e-ISSN 2149-214X Journal of Education in Science, Environment and Health Volume 1, Issue 1, 2015 e-ISSN:2149-214X EDITORIAL BOARD Editors Valarie L. Akerson- Indiana University, U.S.A Sinan Erten, Hacettepe University, Turkey Wenxia (Joy) Wu, Eastern Virginia Medical School, U.S.A Section Editors Manuel Fernandez - Universidad Europea de Madrid, Spain Muhammet Demirbilek, Suleyman Demirel University, Turkey Editorial Board Allen A. Espinosa- Philippine Normal University, Philippines Angelia Reid-Griffin- University of North Carolina, United States Aylin Hasanova Ahmedova- University of Economics, Bulgaria Bill COBERN - Western Michigan University, U.S.A. Ching-San Lai- National Taipei University of Education, Taiwan Emma BULLOCK- Utah State University, United States Ingo Eilks - University of Bremen, Germany Iwona Bodys-Cupak-Jagiellonian University, Poland Jennifer Wilhelm- University of Kentucky, United States Lloyd Mataka-Lewis-Clark State College, United States Luecha Ladachart- University of Phayao, Thailand Natalija ACESKA -Ministry of Education and Science, Macedonia Osman Çardak - Necmettin Erbakan University Patrice Potvin- Université du Québec à Montréal, Canada P.N. Iwuanyanwu-University of the Western Cape, S.Africa Sandra Abegglen- London Metropolitan University, England Sofie Gårdebjer, Chalmers University of Technology, Sweden Steven Sexton-College of Education, University of Otago,New Zealand Tammy R. McKeown- Virginia Commonwealth University, U.S.A. Wan Ng- University of Technology Sydney, Australia Zalpha Ayoubi- Lebanese University, Lebanon Kamisah OSMAN - National University of Malaysia, Malaysia Technical Support S.Ahmet Kiray – Necmettin Erbakan University Journal of Education in Science, Environment and Health (JESEH) The Journal of Education in Science, Environment and Health (JESEH) is a peer-reviewed and online free journal.
    [Show full text]
  • Knowledge Production in the Arab World
    Knowledge Production in the Arab World Over recent decades we have witnessed the globalization of research. However, this has yet to translate into a worldwide scientific network across which compe- tencies and resources can flow freely. Arab countries have strived to join this globalized world and become a “knowledge economy,” yet little time has been invested in the region’s fragmented scientific institutions; institutions that should provide opportunities for individuals to step out on the global stage. Knowledge Production in the Arab World investigates research practices in the Arab world using multiple case studies from the region, with particular focus on Lebanon and Jordan. It depicts the Janus- like face of Arab research, poised between the negative and the positive and faced with two potentially opposing strands: local relevance alongside its internationalization. The book critically assesses the role and dynamics of research and poses questions that are crucial to furthering our understanding of the very particular case of knowledge production in the Arab region. The book explores research’s relevance and whom it serves, as well as the methodological flaws behind academic rankings and the meaning and application of key concepts such as knowledge society/economy. Providing a detailed and comprehensive examination of knowledge produc- tion in the Arab world, this book is of interest to students, scholars and policy- makers working on the issues of research practices and status of science in contemporary developing countries. Sari Hanafi is Professor of Sociology and Chair of the Department of Soci- ology, Anthropology and Media Studies at the American University of Beirut.
    [Show full text]
  • Cognitive Conflict in Science: Demonstrations in What Scientists Talk About and Study
    Cognitive Conflict in Science: Demonstrations in what scientists talk about and study. Dissertation der Mathematisch-Naturwissenschaflichen Fakultat der Eberhard Karls Universitat Tübingen zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt von Brett Buttliere, M.Sc., B.A. aus Oak Brook, Illinois Vereinigte Staaten Tübingen 2017 2 Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen. Tag der mündlichen Qualifikation: 15.12.2017 Dekan: Prof. Dr. Wolfgang Rosenstiel 1. Berichterstatter: Prof. Dr. Friedrich Hesse 2. Berichterstatter: Prof. Dr. Sonja Utz 3 Table of Contents 1.0 Introduction...........................................................................................................................9 1.1 Improving Science...........................................................................................................10 1.2 Studies of how Science should work...............................................................................11 1.3 The Psychology in the Science........................................................................................12 1.4 Cognitive Conflict in Psychology and Science...............................................................13 1.5 This, a study in two parts................................................................................................16 Cognitive Conflict in what scientists talk about................................................................16 Negativity
    [Show full text]