Comparación Y Análisis De Desempeño De Unidades De Procesamiento Gráfico Como Alternativa De Computación Paralela Para Procesos De Simulación En Ingeniería

Total Page:16

File Type:pdf, Size:1020Kb

Comparación Y Análisis De Desempeño De Unidades De Procesamiento Gráfico Como Alternativa De Computación Paralela Para Procesos De Simulación En Ingeniería Comparación y análisis de desempeño de unidades de procesamiento gráfico como alternativa de computación paralela para procesos de simulación en ingeniería. Yerman Jahir Avila Garzón Universidad Nacional de Colombia Facultad de Ingeniería, Departamento de Ingeniería Eléctrica y Electrónica Bogotá DC, Colombia 2015 Comparación y análisis de desempeño de unidades de procesamiento gráfico como alternativa de computación paralela para procesos de simulación en ingeniería. Yerman Jahir Avila Garzón Tesis presentada como requisito parcial para optar al título de: Magister en Ingeniería – Automatización Industrial Director: Ph.D., M.Sc. Ing. Electricista Johan Sebastián Eslava Garzón Línea de Investigación: Arquitectura de Computadores y Computación Paralela, Electrónica Digital, Optimización Grupo de Investigación: GMUN: Grupo de Microelectrónica Universidad Nacional Universidad Nacional de Colombia Facultad de Ingeniería, Departamento de Ingeniería Eléctrica y Electrónica Bogotá DC, Colombia 2015 El que ama la educación ama el saber; el que odia la educación es un tonto. Proverbios 12, 1 A mi esposa Jazmín y mi pequeño hijo Diego José quien está por nacer. A mis padres Ismael y María Antonia, y a mi hermano Arley. A mis abuelas Erminda y Nohemy. A mis abuelos Parmenio† y Celestino†. Resumen y Abstract VII Resumen La computación de propósito general en las unidades de procesamiento gráfico GPU es una área de en continuo crecimiento. Las arquitecturas actuales de las GPU permiten la optimización, a través de diferentes lenguajes de programación (p. ej. CUDA C, CUDA Fortran, OpenCL, entre otros) aplicaciones existentes o crear nuevas aplicaciones que permitan aprovechar el paralelismo natural de GPU. Se busca mejorar el tiempo de ejecución algoritmos complejos, un mejor uso de los recursos computacionales y mayor acceso a plataformas de computación de alto rendimiento. A través del uso de GPUs como procesadores SIMD (Single Instruction Multiple Data) se buscan mejoras en la metodología de diseño, modelo y proceso de simulación. Se busca comparar diferentes GPU que permitan ejecución de tareas en paralelo e incluirlas como coprocesadores en una tarea de diseño digital. Para tal fin se realizaron dos tareas principales: comparación de desempeño de tres GPUs mediante benchmark y una implementación de software paralelo y ejecución del mismo en GPU dentro de un proceso de diseño digital. En la comparación de desempeño de las GPU, se utiliza un benchmark llamado SHOC el cual permite realizar una serie de pruebas de manera iterativa sobre las tarjetas seleccionadas. Para la implementación en el proceso de diseño digital se seleccionó una parte del proceso conocida como Verificación funcional de hardware en el cual se implementaron diferentes combinaciones de ejecución de código tanto en CPU y GPU. La verificación funcional de hardware por simulación es un factor determinante en los tiempos de ejecución en el proceso de diseño digital. La verificación funcional se realiza aplicando estímulos o vectores de prueba al dispositivo bajo verificación (DUV) que generalmente es un sistema escrito en HDL y a un modelo de referencia que hace la misma tarea, pero que se codifica en un lenguaje de alto nivel de programación. Se crea un entorno de verificación funcional de hardware por simulación compuesto por: Un generador de estímulos aleatorios (C++) Un hardware a verificar que para este trabajo está escrito en Verilog. Este hardware es un sumador de 8 bits. Dos modelos de referencia o Golden Model escritos uno en C++ y otro en CUDA pero que cumplen con la misma función dispositivo bajo verificación Dos comparadores escritos uno en C++ y otro en CUDA con el fin de comparar los desempeños de CPU y GPU al cumplir con la misma tarea. Las unidades NVIDIA analizadas son: NVIDIA® GeForce GT 520M, NVIDIA® Quadro 600 y NVIDIA® Tesla C2075 y lasCPUs analizadas Intel® Core i5, Intel® Xeon.Como principal resultado se tiene que la mejor aplicación del proceso de verificación se da cuando el modelo de referencia está escrito en CUDA C y el comparador en C ++. Los tiempos de ejecución del proceso de verificación para la configuración mencionada son: 0,05 [s], 0,0308 [s] y 0,0270 [s] para GeForce, Quadro y Tesla, respectivamente, frente a 1,3 [s] y 1,17 [s] de Intel® Core i5 y del Intel® Xeon.Processor respectivamente. Palabras clave: Computación GPU, Computación paralela, Diseño digital, CUDA, GPU, HDL, NVIDIA, Simulación, Verificación, Verificación funcional. Resumen y Abstract IX Abstract General Purpose Computing on graphics processing units is a wide area which is continually growing up. The actual architectures of GPU let the optimization, through many different programing languages (e.g. CUDA C, CUDA Fortran, OpenCL, among others), previous applications or made new ones that allow take an advantage of the native parallelism of GPU. It seeks to improve execution time of complex algorithm, better use of computational resources and bigger Access to platforms of high performance computing. Through the use of GPUs as SIMD (Single Instruction Multiple data) processors it has sought improvements in methodology of design, model and simulation process. This work looks for a comparison of different GPUs that allow the parallel execution and include them as co-processors in a task of the process of digital electronics design.. Two principal tasks were developed: a comparison of the performance for tree GPUs by the use of a benchmark and a hybrid implementation of task in CPU-GPU In the comparison of performance in the GPUs, a benchmark called SHOC is used. This benchmark allows doing various iterative tests on chosen GPUs. A part of the digital design process was chosen for the implementation, this part is known as Functional Verification of Hardware. In this part of the process different combinations of execution on GPU or CPU were implemented. Functional verification of Hardware by simulation is a determinant in the execution times in the process of digital design. Functional verification is done applying stimuli or vector test to the device under verification (DUV) that generally is a system in HDL and pass it to a golden model that do the same task but this model is coded on a high level language of programming. The parts of an environment of functional verification of hardware by simulation are: A random stimuli generator (C++)A Verilog module as a hardware for verification. In this case an 8 bit adder. Two golden models: first in C++ and the other in CUDA. Both of them have the same function. Two comparators: first in C++ and the other in CUDA. Two comparators because the performance of CPU vs. GPU need to be tested. NVIDIA GPU for the test: GeForce GT 520M, Quadro 600 and Tesla C2075; CPU for compare Intel® Core i5 e Intel® Xeon Processor. Principal results are: better implementation of verification process when the reference model is coded in CUDA C and the comparator is coded in C++. Results: 0.05 [s], 0,0308 [s] y 0.0270 [s] for GeForce, Quadro y Tesla respectively in front of 1.3 [s] of the Intel® Core i5 and 1.17[s] of the Intel® Xeon Processor. Keywords: CUDA, Digital Design, GPU, GPU Computing, HDL, NVIDIA, parallel computing, Functional Verification. Contenido XI Contenido Pág. Resumen ............................................................................................................... VII Abstract ................................................................................................................ IX Lista de figuras ............................................................................................................. XIII Lista de tablas .............................................................................................................. XV Lista de Abreviaturas .................................................................................................... 17 Introducción ............................................................................................................... 19 1. Computación Paralela y Computación de Propósito General con GPU ............. 23 1.1 Computación de Propósito General con GPU ................................................ 27 2. Historia y arquitectura GPU ................................................................................... 31 2.1 Arquitecturas GPU ......................................................................................... 35 2.2 Arquitecturas NVIDIA ..................................................................................... 39 2.3 Computación paralela usando CUDA ............................................................ 47 3. Selección y Caracterización de GPUs .................................................................. 51 3.1 Selección de GPUs: ....................................................................................... 51 3.2 Caracterización de GPUs: ............................................................................. 55 3.2.1 Hardware Seleccionado ...................................................................... 55 3.2.2 Ambiente de desarrollo y pruebas básicas a las GPU seleccionadas. 57 3.2.3 Especificaciones de las GPUs seleccionadas ..................................... 61 4. Desempeño con Benchmark SHOC ...................................................................... 69 5. Ejemplo de implementación de computación paralela en un proceso de diseño digital. ............................................................................................................... 83 5.1 Verificación
Recommended publications
  • Metadefender Core V4.12.2
    MetaDefender Core v4.12.2 © 2018 OPSWAT, Inc. All rights reserved. OPSWAT®, MetadefenderTM and the OPSWAT logo are trademarks of OPSWAT, Inc. All other trademarks, trade names, service marks, service names, and images mentioned and/or used herein belong to their respective owners. Table of Contents About This Guide 13 Key Features of Metadefender Core 14 1. Quick Start with Metadefender Core 15 1.1. Installation 15 Operating system invariant initial steps 15 Basic setup 16 1.1.1. Configuration wizard 16 1.2. License Activation 21 1.3. Scan Files with Metadefender Core 21 2. Installing or Upgrading Metadefender Core 22 2.1. Recommended System Requirements 22 System Requirements For Server 22 Browser Requirements for the Metadefender Core Management Console 24 2.2. Installing Metadefender 25 Installation 25 Installation notes 25 2.2.1. Installing Metadefender Core using command line 26 2.2.2. Installing Metadefender Core using the Install Wizard 27 2.3. Upgrading MetaDefender Core 27 Upgrading from MetaDefender Core 3.x 27 Upgrading from MetaDefender Core 4.x 28 2.4. Metadefender Core Licensing 28 2.4.1. Activating Metadefender Licenses 28 2.4.2. Checking Your Metadefender Core License 35 2.5. Performance and Load Estimation 36 What to know before reading the results: Some factors that affect performance 36 How test results are calculated 37 Test Reports 37 Performance Report - Multi-Scanning On Linux 37 Performance Report - Multi-Scanning On Windows 41 2.6. Special installation options 46 Use RAMDISK for the tempdirectory 46 3. Configuring Metadefender Core 50 3.1. Management Console 50 3.2.
    [Show full text]
  • Linuxvilag-66.Pdf 8791KB 11 2012-05-28 10:27:18
    Magazin Hírek Java telefon másképp Huszonegyedik századi autótolvajok Samsung okostelefon Linuxszal Magyarországon még nem jellemzõ, Kínában már kapható de tõlünk nyugatabbra már nem tol- a Samsung SCH-i819 mo- vajkulccsal vagy feszítõvassal, hanem biltelefonja, amely Prizm laptoppal járnak az autótolvajok. 2.5-ös Linuxot futtat. Ot- Mindezt azt teszi lehetõvé, hogy tani nyaralás esetén nyu- a gyújtás, a riasztó és az ajtózárak is godtan vásárolhatunk távirányíthatóak, így egy megfelelõen belõle, hiszen a CDMA felszerelt laptoppal is irányíthatóak 800 MHz-e mellett az ezek a rendszerek. európai 900/1800 MHz-et http://www.leftlanenews.com/2006/ is támogatja. A kommunikációt egy 05/03/gone-in-20-minutes-using- Qualcomm MSM6300-as áramkör bo- laptops-to-steal-cars/ nyolítja, míg az alkalmazások egy 416 MHz-es Intel PXA270-es processzoron A Lucent Technologies és a SUN Elephants Dream futnak. A készülék Class 10-es GPRS elkészítette a Jasper S20-at, ami adatátvitelre képes, illetve tartalmaz alapvetõen más koncepcióval GPS (globális helymeghatározó) vevõt © Kiskapu Kft. Minden jog fenntartva használja a Java-t, mint a mostani is. Az eszköz 64 megabájt SDRAM-ot és telefonok. Joggal kérdezheti a kedves 128 megabájt nem felejtõ flash memóri- Olvasó, hogy megéri-e, van-e hely át kapott, de micro-SD memóriakártyá- a jelenlegi Symbian, Windows Mobile val ezt tovább bõvíthetjük. A kijelzõje és Linux trió mellett. A jelenlegi 2.4 hüvelykes, felbontása pedig „csak” telefonoknál kétféleképpen futhat 240x320 képpont 65 ezer színnel. egy program: natív vagy Java mód- Május 19-én elérhetõvé tette az Orange Természetesen a trendeknek megfele- ban. A Java mód ott szükségessé Open Movie Project elsõ rövidfilmjét lõen nem maradt ki a 2 megapixeles tesz pár olyan szintet, amely Creative Commons jogállással.
    [Show full text]
  • Lewis University Dr. James Girard Summer Undergraduate Research Program 2021 Faculty Mentor - Project Application
    Lewis University Dr. James Girard Summer Undergraduate Research Program 2021 Faculty Mentor - Project Application Exploring the Use of High-level Parallel Abstractions and Parallel Computing for Functional and Gate-Level Simulation Acceleration Dr. Lucien Ngalamou Department of Engineering, Computing and Mathematical Sciences Abstract System-on-Chip (SoC) complexity growth has multiplied non-stop, and time-to- market pressure has driven demand for innovation in simulation performance. Logic simulation is the primary method to verify the correctness of such systems. Logic simulation is used heavily to verify the functional correctness of a design for a broad range of abstraction levels. In mainstream industry verification methodologies, typical setups coordinate the validation e↵ort of a complex digital system by distributing logic simulation tasks among vast server farms for months at a time. Yet, the performance of logic simulation is not sufficient to satisfy the demand, leading to incomplete validation processes, escaped functional bugs, and continuous pressure on the EDA1 industry to develop faster simulation solutions. In this research, we will explore a solution that uses high-level parallel abstractions and parallel computing to boost the performance of logic simulation. 1Electronic Design Automation 1 1 Project Description 1.1 Introduction and Background SoC complexity is increasing rapidly, driven by demands in the mobile market, and in- creasingly by the fast-growth of assisted- and autonomous-driving applications. SoC teams utilize many verification technologies to address their complexity and time-to-market chal- lenges; however, logic simulation continues to be the foundation for all verification flows, and continues to account for more than 90% [10] of all verification workloads.
    [Show full text]
  • Review of FPD's Languages, Compilers, Interpreters and Tools
    ISSN 2394-7314 International Journal of Novel Research in Computer Science and Software Engineering Vol. 3, Issue 1, pp: (140-158), Month: January-April 2016, Available at: www.noveltyjournals.com Review of FPD'S Languages, Compilers, Interpreters and Tools 1Amr Rashed, 2Bedir Yousif, 3Ahmed Shaban Samra 1Higher studies Deanship, Taif university, Taif, Saudi Arabia 2Communication and Electronics Department, Faculty of engineering, Kafrelsheikh University, Egypt 3Communication and Electronics Department, Faculty of engineering, Mansoura University, Egypt Abstract: FPGAs have achieved quick acceptance, spread and growth over the past years because they can be applied to a variety of applications. Some of these applications includes: random logic, bioinformatics, video and image processing, device controllers, communication encoding, modulation, and filtering, limited size systems with RAM blocks, and many more. For example, for video and image processing application it is very difficult and time consuming to use traditional HDL languages, so it’s obligatory to search for other efficient, synthesis tools to implement your design. The question is what is the best comparable language or tool to implement desired application. Also this research is very helpful for language developers to know strength points, weakness points, ease of use and efficiency of each tool or language. This research faced many challenges one of them is that there is no complete reference of all FPGA languages and tools, also available references and guides are few and almost not good. Searching for a simple example to learn some of these tools or languages would be a time consuming. This paper represents a review study or guide of almost all PLD's languages, interpreters and tools that can be used for programming, simulating and synthesizing PLD's for analog, digital & mixed signals and systems supported with simple examples.
    [Show full text]
  • Verilog Synthesis and Formal Verification with Yosys Clifford Wolf
    Verilog Synthesis and Formal Verification with Yosys Clifford Wolf Easterhegg 2016 Overview A) Quick introduction to HDLs, digital design flows, ... B) Verilog HDL Synthesis with Yosys 1. OSS iCE40 FPGA Synthesis flow 2. Xilinx Verilog-to-Netlist Synthesis with Yosys 3. OSS Silego GreenPAK4 Synthesis flow 4. Synthesis to simple Verilog or BLIF files 5. ASIC Synthesis and custom flows C) Formal Verification Flows with Yosys 1. Property checking with build-in SAT solver 2. Property checking with ABC using miter circuits 3. Property checking with yosys-smtbmc and SMT solvers 4. Formal and/or structural equivalence checking Quick Introduction ● What is Verilog? What are HDLs? ● What are HDL synthesis flows? ● What are verification, simulation, and formal verification? ● What FOSS tools exist for working with Verilog designs? ● How to use Yosys? Where is the documentation? What is Verilog? What are HDLs? ● Hardware Description Languages (HDLs) are computer languages that describe digital circuits. ● The two most important HDLs are VHDL and Verilog / SystemVerilog. (SystemVerilog is Verilog with a lot of additional features added to the language.) ● Originally HDLs where only used for testing and documentation. But nowadays HDLs are also used as design entry (instead of e.g. drawing schematics). ● Converting HDL code to a circuit is called HDL Synthesis. Simple Verilog Example module example000 ( input clk, output [4:0] gray_counter ); localparam PRESCALER = 100; reg [$clog2(PRESCALER)-1:0] fast_counter = 0; reg [4:0] slow_counter = 0; always @(posedge clk) begin if (fast_counter == PRESCALER) begin fast_counter <= 0; slow_counter <= slow_counter + 1; end else begin fast_counter <= fast_counter + 1; end end assign gray_counter = slow_counter ^ (slow_counter >> 1); endmodule Simple Verilog Example .
    [Show full text]
  • Eee4120f Hpes
    The background details to FPGAs were covered in Lecture 15. This Lecture 16 lecture launches into HDL coding. Coding in Verilog module myveriloglecture ( wishes_in, techniques_out ); … // implementation of today’s lecture … endmodule Lecturer: Learning Verilog with Xilinx ISE, Icarus Verilog or Simon Winberg Altera Quartus II Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) Why Verilog? Basics of Verilog coding Exercise Verilog simulators Intro to Verilog in ISE/Vivado Test bench Generating Verilog from Schematic Editors Because it is… Becoming more popular than VHDL!! Verilog is used mostly in USA. VHDL is used widely in Europe, but Verilog is gaining popularity. Easier to learn since it is similar to C Things like SystemC and OpenCL are still a bit clunky in comparison (although in years to come they become common) I think it’s high time for a new & better HDL language!! (Let’s let go of C! And scrap ADA for goodness sake. Maybe I’ll present some ideas in a later lecture.) break free from the constraints of the old language constructs History of Verilog 1980 Verilog developed by Gateway Design Automation (but kept as their own ‘secret weapon’) 1990 Verilog was made public 1995 adopted as IEEE standard 1364-1995 (Verilog 95) 2001 enhanced version: Verilog 2001 Particularly built-in operators +, -, /, *, >>>. Named parameter overrides, always, @* 2005 even more refined version: Verilog 2005 (is not same as SystemVerilog!) SystemVerilog (superset of Verilog-2005) with new features. SystemVerilog and Verilog language standards were merged into SystemVerilog 2009 (IEEE Standard 1800-2009, the current version is IEEE standard 1800-2012).
    [Show full text]
  • Open-Source Tools for FPGA Development
    Open-Source tools for FPGA development Marek Vaˇsut <[email protected]> October 13, 2016 Marek Vaˇsut <[email protected]> Open-Source tools for FPGA development Marek Vasut I Software engineer at DENX S.E. since 2011 I Embedded and Real-Time Systems Services, Linux kernel and driver development, U-Boot development, consulting, training I Versatile Linux kernel hacker I Custodian at U-Boot bootloader I oe-core contributor Marek Vaˇsut <[email protected]> Open-Source tools for FPGA development Structure of the talk I Introduction to FPGA technology I Compiling the FPGA content, from HDL to bitstream: I Analysis and Synthesis tools I Place and Route tools I Assembler tools I Simulation/Visualisation tools I Demonstration I Why are open-source FPGA tools hard? Marek Vaˇsut <[email protected]> Open-Source tools for FPGA development FPGA I Field Programmable Gate Array I High-Speed Programmable logic I Plenty of I/O options I Extremely parallel architecture I Usually used for: I Digital Signal Processing (DSP) I Parallel data processing I Custom hardware interfaces I ASIC prototyping I ... I Common vendors { Xilinx, Altera, Lattice, Microsemi. Marek Vaˇsut <[email protected]> Open-Source tools for FPGA development Internal structure BLUE Global interconnect GREEN Local interconnect RED Logic element Marek Vaˇsut <[email protected]> Open-Source tools for FPGA development Programming the FPGA I Each vendor has his own set of tools: Altera Quartus, Xilinx Vivado/ISE, Lattice Diamond, . I Tools are generally closed source I Flow is very similar between tools: Analysis and Synthesis HDL ! Netlist Pack, Place and Route Netlist ! Technology Assembler Technology ! Bitstream Timing Analysis Analyze design timing Check timing constraints Simulation and Visualisation Simulate and analyze the design on the host Marek Vaˇsut <[email protected]> Open-Source tools for FPGA development Analysis and Synthesis I HDL ! Netlist I Behavioral model ! Circuit schematic I Analysis { Parsing of HDLs, validation, .
    [Show full text]
  • Verilator: Fast, Free, but for Me?
    Verilator: Fast, Free, But for Me? http://www.veripool.org/papers Wilson Snyder Cavium Networks [email protected] Agenda • Why Open Source Simulation? • Introduction to Verilator • Getting Started with Verilator • Verilator Futures • Other Tools • Conclusion •Q & A 2 Verilator: Fast, Free, but for Me? wsnyder 2010-09 Where’s Open Source From? • Generally, not from Hobbyists • Every company has a pile of hackware, often i ne ffici en tly re inven ting the same so lu tion – Instead they contribute, borrow and improve • Verilator was of this mode – When written, there’ sswas was no “Application owns the main-loop” Verilog compiler 3 Verilator: Fast, Free, but for Me? wsnyder 2010-09 Why Write Open Source? • Authoring open source is often more cost effective than licenses – Even if one person spends lots of time (I’m below 10%) • Contributions by others later benefit employer – Certainly more cost effective to share labor with others – Other authors wrote many features later needed by my employer • Much higher documentation quality • Much higher test quality • Learn great techniques from other companies 4 Verilator: Fast, Free, but for Me? wsnyder 2010-09 Open Source Advantages (1) • Financial – CtCost – iff it does c lose to w ha t you nee d • Else, need a cost-benefit analysis – Not worth rewriting rarely used commercial tools – Open License – Required for some applications • Example: NXP needed a solution they could provide to software developers, and couldn’t contact a license server • Example: Running simulations on cloud machines –
    [Show full text]
  • Hardware Description Language Modelling and Synthesis of Superconducting Digital Circuits
    Hardware Description Language Modelling and Synthesis of Superconducting Digital Circuits Nicasio Maguu Muchuka Dissertation presented for the Degree of Doctor of Philosophy in the Faculty of Engineering, at Stellenbosch University Supervisor: Prof. Coenrad J. Fourie March 2017 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Signature: N. M. Muchuka Date: March 2017 Copyright © 2017 Stellenbosch University All rights reserved i Stellenbosch University https://scholar.sun.ac.za Acknowledgements I would like to thank all the people who gave me assistance of any kind during the period of my study. ii Stellenbosch University https://scholar.sun.ac.za Abstract The energy demands and computational speed in high performance computers threatens the smooth transition from petascale to exascale systems. Miniaturization has been the art used in CMOS (complementary metal oxide semiconductor) for decades, to handle these energy and speed issues, however the technology is facing physical constraints. Superconducting circuit technology is a suitable candidate for beyond CMOS technologies, but faces challenges on its design tools and design automation. In this study, methods to model single flux quantum (SFQ) based circuit using hardware description languages (HDL) are implemented and thereafter a synthesis method for Rapid SFQ circuits is carried out.
    [Show full text]
  • Welcome to 6.111! Hardware – Nothing in the Cloud
    6.111 Introductory Digital Systems Lab • Learn digital systems through lectures, labs and a final project using FPGAs and Verilog. • Gain experience with hands on course with real Welcome to 6.111! hardware – nothing in the cloud. • Introductions, course mechanics Handouts • 6.111 satisfies • Course overview • lecture slides, – Course 6: DLAB2, II, EECS, AUS2 • Digital signaling • LPset #1, • info form – Course 16: Laboratory requirement, Professional Area • Combinational logic subject Lecture material: Prof Anantha Chandrakasan and Dr. Chris Terman. Lecture 1 6.111 Fall 2019 1 Lecture 1 6.111 Fall 2019 2 Introductions 38-600 Lab hours: S 1-11:45p M-R 9-11:45p 49 Stations F 9-5p Stata 38-644 Conference GH room Gim Hom Joe Steinmeyer Sarah Flanagan Mike Wang Diana Wofk TA Lectures Lectures TA TA Sam Cherna Isabelle Liu Lydia SunMark Theng August Trollback LA’s Lecture 1 6.111 Fall 2019 3 Lecture 1 6.111 Fall 2019 4 Course Website: web.mit.edu/6.111 Assignments - Grading Lab: 38-600 Participation Presentation 2% Lecture & report Problems 13% 16% Announcements, updates, etc Technical information and data sheet Online copies of lecture notes, lpsets and labs Final project info On‐line grades Labs 34% * PDF submissions Final Project 35% Verilog submissions Policies and important dates A large number of students do "A" level work and are, indeed, rewarded Tools with a grade of "A". The corollary to this is that, since average On‐line Q&A performance levels are so high, punting any part of the subject can lead to a disappointing grade.
    [Show full text]
  • DVS:An Object Oriented System for Distributed Verilog Simulation
    DVS: An Object-Oriented Framework for Distributed Verilog Simulation Lijun Li, Hai Huang and Carl Tropper School of Computer Science McGill University Montreal, Canada lli22, hhuang17, [email protected] Abstract need for decreased simulation time, it is necessary to make use of distributed and parallel computer systems[18]. Net- There is a wide-spread usage of hardware design lan- works of workstations provide a cost-effective environment guages(HDL) to speed up the time-to-market for the design for distributed simulation. of modern digital systems. Verification engineers can sim- Verilog and VHDL are both important VLSI design lan- ulate hardware in order to verify its performance and cor- guages. However, research efforts to date have focused rectness with help of an HDL. However, simulation can’t on distributed VHDL simulators[7, 12, 13]. This paper keep pace with the growth in size and complexity of circuits presents a description of our research to date on a distributed and has become a bottleneck of the design process. Dis- Verilog simulation framework. To the best of our knowl- tributed HDL simulation on a cluster of workstations has edge, ours is the first distributed Verilog simulator. the potential to provide a cost-effective solution to this prob- Writing a Verilog compiler represents a substantial com- lem. mitment. Consequently, we made use of Icarus Verilog, an In this paper, we describe the design and implementa- open source Verilog compiler and simulator. We also re- tion of DVS, an object-oriented framework for distributed designed Clustered Time Warp[2] and used it as our back- Verilog simulation.
    [Show full text]
  • Implementació D'un Mòdul De Comptadors Hardware En El Processador Openrisc 1200
    Implementació d'un mòdul de comptadors hardware en el processador OpenRISC 1200 Autor: Albert Batallé García Grau en Enginyeria Informàtica Especialitat en Enginyeria de Computadors Director: Ramon Canal Corretger Codirector: Roger Espasa Sans Departament d'Arquitectura de Computadors (DAC) Facultat d'Informàtica de Barcelona (FIB) Universitat Politècnica de Catalunya (UPC) – Barcelona Tech Dijous 6 de febrer de 2014 RESUM Els comptadors hardware són uns registres interns al processador que compten esdeveniments. D’aquesta manera es pot recopilar informació del que està passant internament al processador. Després d’una selecció sobre diferents processadors existents, s’analitza i es genera documentació per al processador OR1200 basat en OpenRISC. Finament s’implementa un mòdul de comptadors hardware en el processador i es presenten resultats del correcte funcionament de la implementació basant-se en uns jocs de proves. i RESUMEN Los contadores hardware son unos registros internos al procesador que cuentan eventos. De esta forma se recopila información de lo que está sucediendo internamente al procesador. Tras una selección sobre diferentes procesadores existentes, se analiza y genera documentación para el procesador OR1200 basado en OpenRISC. Finalmente se implementa un módulo de contadores hardware en el procesador y se presentan resultados del correcto funcionamiento de la implementación basándose en unos test. ii ABSTRACT Performance counters are internal registers in the processor that count events. Thereby information about what is happening in the core is collected. After selecting a processor from a variety of them, documentation for OR1200 processor, which is based on OpenRISC, has been analyzed and generated. Lastly, a performance counters module has been implemented in the processor and results of the implementation correctness are provided through executed tests.
    [Show full text]