STRUCTURE of the EYEBALL Connective Tissue Layer = Sclera +

Total Page:16

File Type:pdf, Size:1020Kb

STRUCTURE of the EYEBALL Connective Tissue Layer = Sclera + HFA 213 Week 12 The Orbit STRUCTURE OF THE EYEBALL INTRA-OCULAR SMOOTH MUSCLE Connective tissue layer = Sclera + Cornea Ciliary muscle Vascular layer = Choroid + Iris Neural layer = Retina Accommodation (focussing) Circular and longitudinal fibres Both act to allow the lens to become more spherical (close up) Nerve supply: parasympathetic fibres in Oculomotor (CN III) nerve Pupillary muscles (sphincter and dilator) Control pupil size (aperture) Sphincter Pupillae Circular muscle in inner 1/3 of the iris Nerve supply: parasympathetic fibres in Oculomotor (CN III) nerve Dilator Pupillae Radial muscle in outer 2/3 of the iris Ciliary body, Suspensory ligament and lens Nerve supply: Sympathetic fibres from superior cervical ganglion Vitreous humor Light reflex Aqueous humor (Anterior and Posterior chambers) Increased light on retina (Optic nerve - CN II) Pupil constricts (Oculomotor nerve - CN III) Accommodation reflex CN III - focus, constrict, converge HFA 213 Week 12 The Orbit GEOMETRY OF THE ORBIT EXTRA-OCULAR STRIATED MUSCLES THE ORBITS DIVERGE but THE OPTIC AXES ARE PARALLEL The rectus muscles The origin of the rectus muscles is from a tendinous ring surrounding the optic foramen. The rectus muscles attach in front of the equator of the eye They pull posteriorly and medially. Therefore the superior and inferior rectus muscles adduct as Medial and lateral rectus are pure adductors and abductors well as elevate and depress the eye. Elevation is performed by superior rectus and inferior oblique The oblique muscles The oblique muscles attach behind the equator Depression is performed by inferior rectus and superior oblique They pull anteriorly and medially Therefore they abduct the eye Intorsion and extortion cancel each other out HFA 213 Week 12 The Orbit ELEVATION AND DEPRESSION NERVES OF THE ORBIT Acting alone, superior oblique will turn the eye “down and out”. The Optic nerve (II) enters through the optic canal BUT Other nerves enter through superior orbital fissure: People with a trochlear nerve lesion can’t look at the end of their nose. Three enter outside the tendinous ring: 1 BECAUSE Lacrimal nerve (V ) 1 Superior oblique never acts alone. Frontal nerve (V ) It works with inferior rectus to depress the eye. Trochlear nerve (IV) These are all found superficially just under the orbital roof If the eye is abducted Inferior rectus is an effective depressor Three enter inside the tendinous ring: Superior oblique can only cause intorsion Oculomotor nerve (III) 1 Nasociliary nerve (V ) Abducens nerve (VI) These are located deeper inside the cone of muscles If the eye is adducted 1 Inferior rectus can only cause extorsion The branches of the Ophthalmic (V ) are all sensory: Superior oblique is the effective depressor Frontal => Supraorbital and Supratrochlear Lacrimal supplies lateral part of upper eyelid (and receives some parasympathetic fibres from the pterygopalatine ganglion) The same applies to superior rectus and inferior The Nasociliary supplies the surface of the cornea (long oblique which couple to produce effective ciliary nerves) and has branches to the ethmoid air cells, elevation of the eye nose and nasal cavity HFA 213 Week 12 The Orbit AUTONOMIC NERVES OF THE ORBIT MOTOR NERVES OF THE ORBIT Nerve lesions: 1. Intraocular smooth muscle (short ciliary nerves) Parasympathetic (Oculomotor nerve and ciliary ganglion) Trochlea nerve (IV) - Supplies superior oblique muscle Sphincter pupillae and ciliary muscle Patient has trouble depressing the adducted eye can’t look at Sympathetic (via internal carotid plexuses) tip of nose, or at feet going down stairs Dilator pupillae 2. Extraocular smooth muscle (Sympathetic) In order to avoid diplopia, the patient tends to tilt head Superior tarsal muscle (in levator palpebrae superioris) because the affected eye also becomes extorted (rotated “Muller’s” muscle (Not well understood – or seen) holds the eye in the by the unopposed action of inferior oblique) front of the orbit 3. Lacrimal gland Abducens nerve (VI) – Supplies lateral rectus muscle Parasympathetic fibres from pterygopalatine ganglion Patient has trouble abducting the affected eye. initially carried with the zygomatic nerve transfer to the In order to avoid diplopia, the patient tends to look sideways lacrimal nerve so that the affected eye can be used in adduction. Oculomotor nerve (III) – Supplies all other extra ocular muscles as well as parasympathetic innervation to intraocular muscles Patient has trouble with: Elevating the eye or upper eyelid Close-up vision: Horner’s Syndrome: Damage to the cervical sympathetic trunk: Lens accommodation 1. Ptosis - drooping of the upper eyelid (loss of superior tarsal muscle) Constricting the pupil 2. Miosis - pupillary constriction (loss of dilator pupillae) Adducting the eye 3. Enophthalmia – sunken eye (loss of Muller’s muscle) 4. Anhydrosis – loss of facial sweating and vasodilatation .
Recommended publications
  • Volume 1: the Upper Extremity
    Volume 1: The Upper Extremity 1.1 The Shoulder 01.00 - 38.20 (37.20) 1.1.1 Introduction to shoulder section 0.01.00 0.01.28 0.28 1.1.2 Bones, joints, and ligaments 1 Clavicle, scapula 0.01.29 0.05.40 4.11 1.1.3 Bones, joints, and ligaments 2 Movements of scapula 0.05.41 0.06.37 0.56 1.1.4 Bones, joints, and ligaments 3 Proximal humerus 0.06.38 0.08.19 1.41 Shoulder joint (glenohumeral joint) Movements of shoulder joint 1.1.5 Review of bones, joints, and ligaments 0.08.20 0.09.41 1.21 1.1.6 Introduction to muscles 0.09.42 0.10.03 0.21 1.1.7 Muscles 1 Long tendons of biceps, triceps 0.10.04 0.13.52 3.48 Rotator cuff muscles Subscapularis Supraspinatus Infraspinatus Teres minor Teres major Coracobrachialis 1.1.8 Muscles 2 Serratus anterior 0.13.53 0.17.49 3.56 Levator scapulae Rhomboid minor and major Trapezius Pectoralis minor Subclavius, omohyoid 1.1.9 Muscles 3 Pectoralis major 0.17.50 0.20.35 2.45 Latissimus dorsi Deltoid 1.1.10 Review of muscles 0.20.36 0.21.51 1.15 1.1.11 Vessels and nerves: key structures First rib 0.22.09 0.24.38 2.29 Cervical vertebrae Scalene muscles 1.1.12 Blood vessels 1 Veins of the shoulder region 0.24.39 0.27.47 3.08 1.1.13 Blood vessels 2 Arteries of the shoulder region 0.27.48 0.30.22 2.34 1.1.14 Nerves The brachial plexus and its branches 0.30.23 0.35.55 5.32 1.1.15 Review of vessels and nerves 0.35.56 0.38.20 2.24 1.2.
    [Show full text]
  • Anatomy of the Periorbital Region Review Article Anatomia Da Região Periorbital
    RevSurgicalV5N3Inglês_RevistaSurgical&CosmeticDermatol 21/01/14 17:54 Página 245 245 Anatomy of the periorbital region Review article Anatomia da região periorbital Authors: Eliandre Costa Palermo1 ABSTRACT A careful study of the anatomy of the orbit is very important for dermatologists, even for those who do not perform major surgical procedures. This is due to the high complexity of the structures involved in the dermatological procedures performed in this region. A 1 Dermatologist Physician, Lato sensu post- detailed knowledge of facial anatomy is what differentiates a qualified professional— graduate diploma in Dermatologic Surgery from the Faculdade de Medician whether in performing minimally invasive procedures (such as botulinum toxin and der- do ABC - Santo André (SP), Brazil mal fillings) or in conducting excisions of skin lesions—thereby avoiding complications and ensuring the best results, both aesthetically and correctively. The present review article focuses on the anatomy of the orbit and palpebral region and on the important structures related to the execution of dermatological procedures. Keywords: eyelids; anatomy; skin. RESU MO Um estudo cuidadoso da anatomia da órbita é muito importante para os dermatologistas, mesmo para os que não realizam grandes procedimentos cirúrgicos, devido à elevada complexidade de estruturas envolvidas nos procedimentos dermatológicos realizados nesta região. O conhecimento detalhado da anatomia facial é o que diferencia o profissional qualificado, seja na realização de procedimentos mini- mamente invasivos, como toxina botulínica e preenchimentos, seja nas exéreses de lesões dermatoló- Correspondence: Dr. Eliandre Costa Palermo gicas, evitando complicações e assegurando os melhores resultados, tanto estéticos quanto corretivos. Av. São Gualter, 615 Trataremos neste artigo da revisão da anatomia da região órbito-palpebral e das estruturas importan- Cep: 05455 000 Alto de Pinheiros—São tes correlacionadas à realização dos procedimentos dermatológicos.
    [Show full text]
  • SŁOWNIK ANATOMICZNY (ANGIELSKO–Łacinsłownik Anatomiczny (Angielsko-Łacińsko-Polski)´ SKO–POLSKI)
    ANATOMY WORDS (ENGLISH–LATIN–POLISH) SŁOWNIK ANATOMICZNY (ANGIELSKO–ŁACINSłownik anatomiczny (angielsko-łacińsko-polski)´ SKO–POLSKI) English – Je˛zyk angielski Latin – Łacina Polish – Je˛zyk polski Arteries – Te˛tnice accessory obturator artery arteria obturatoria accessoria tętnica zasłonowa dodatkowa acetabular branch ramus acetabularis gałąź panewkowa anterior basal segmental artery arteria segmentalis basalis anterior pulmonis tętnica segmentowa podstawna przednia (dextri et sinistri) płuca (prawego i lewego) anterior cecal artery arteria caecalis anterior tętnica kątnicza przednia anterior cerebral artery arteria cerebri anterior tętnica przednia mózgu anterior choroidal artery arteria choroidea anterior tętnica naczyniówkowa przednia anterior ciliary arteries arteriae ciliares anteriores tętnice rzęskowe przednie anterior circumflex humeral artery arteria circumflexa humeri anterior tętnica okalająca ramię przednia anterior communicating artery arteria communicans anterior tętnica łącząca przednia anterior conjunctival artery arteria conjunctivalis anterior tętnica spojówkowa przednia anterior ethmoidal artery arteria ethmoidalis anterior tętnica sitowa przednia anterior inferior cerebellar artery arteria anterior inferior cerebelli tętnica dolna przednia móżdżku anterior interosseous artery arteria interossea anterior tętnica międzykostna przednia anterior labial branches of deep external rami labiales anteriores arteriae pudendae gałęzie wargowe przednie tętnicy sromowej pudendal artery externae profundae zewnętrznej głębokiej
    [Show full text]
  • Simultaneous Advancement of the Levator Aponeurosis and Müller's
    The Open Ophthalmology Journal, 2010, 4, 71-75 71 Open Access Transcutaneous Blepharoptosis Surgery: Simultaneous Advancement of the Levator Aponeurosis and Müller’s Muscle (Levator Resection) Kazunami Noma1, Yasuhiro Takahashi2, Igal Leibovitch3 and Hirohiko Kakizaki*,2 1Noma Eye Clinic, Kokutaiji, Naka-ku, Hiroshima 730-0042, Japan 2Department of Ophthalmology, Aichi Medical University, Nagakute, Aichi 480-1195, Japan 3Division of Oculoplastic and Orbital Surgery, Department of Ophthalmology, Tel-Aviv Medical Center, Tel-Aviv University, Tel-Aviv, Israel Abstract: Transcutaneous blepharoptosis surgery with simultaneous advancement of the levator aponeurosis and Müller’s muscle (levator resection) is a popular surgery which is considered effective for all types of blepharoptosis except for the myogenic type. Repair of ptosis cases with good levator function yields excellent results. A good outcome can be also obtained in cases with poor levator function, however, in such cases; a large degree of levator advancement may be required, which may result in postoperative dry eyes, unnatural eyelid curvature and astigmatism. These cases are therefore better treated with sling surgery. With the right patient selection, the levator resection technique is an effective method for ptosis repair. Keywords: Transcutaneous blepharoptosis surgery, levator aponeurosis, Müller’s muscle, levator resection. INTRODUCTION muscle is divided into 2 branches in the periphery: the superior branch which continues to the levator aponeurosis, Blepharoptosis surgery is one of the most popular and the inferior branch from which Müller’s muscle operations in the field of ophthalmic plastic and originates. Although the thickness of each branch is almost reconstructive surgery. The specific surgical method for identical, the superior branch tends to be thicker than the repairing blepharoptosis is selected according to the degree inferior branch.
    [Show full text]
  • MR and CT Imaging of the Normal Eyelid and Its Application in Eyelid Tumors
    cancers Article MR and CT Imaging of the Normal Eyelid and its Application in Eyelid Tumors 1, , 2, 3 1,4 Teresa A. Ferreira * y, Carolina F. Pinheiro y , Paulo Saraiva , Myriam G. Jaarsma-Coes , Sjoerd G. Van Duinen 5, Stijn W. Genders 4, Marina Marinkovic 4 and Jan-Willem M. Beenakker 1,4 1 Department of Radiology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; [email protected] (M.G.J.-C.); [email protected] (J.-W.M.B.) 2 Department of Neuroradiology, Centro Hospitalar e Universitario de Lisboa Central, Rua Jose Antonio Serrano, 1150-199 Lisboa, Portugal; [email protected] 3 Department of Radiology, Hospital da Luz, Estrada Nacional 10, km 37, 2900-722 Setubal, Portugal; [email protected] 4 Department of Ophthalmology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; [email protected] (S.W.G.); [email protected] (M.M.) 5 Department of Pathology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; [email protected] * Correspondence: [email protected] Co-first author. y Received: 17 January 2020; Accepted: 24 February 2020; Published: 12 March 2020 Abstract: T-staging of most eyelid malignancies includes the assessment of the integrity of the tarsal plate and orbital septum, which are not clinically accessible. Given the contribution of MRI in the characterization of orbital tumors and establishing their relations to nearby structures, we assessed its value in identifying different eyelid structures in 38 normal eyelids and evaluating tumor extension in three cases of eyelid tumors.
    [Show full text]
  • Head and Neck 3
    Head and Neck 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 Dr. J.E. Bruni B.Sc., M.Sc., Ph.D., University of Manitoba ACROSS pterygoid plate fossa means pulley muscle 25 Smallest of the major salivary 46 Sinus into which transverse 7 Glands maintaining serum 32 Foramen at which internal 2 Tympanic membrane (2 wds) glands sinuses drain calcium levels jugular vein originates 4 Superficial neck muscle 26 Foramen transmitting middle 48 Tear gland 8 Ganglion associated with CN 33 Gingiva 6 Motor nerve of the tongue meningeal artery 49 Division of CN V assosiated V2 35 Double-bellied neck muscle 9 Nerve whose branches 29 Anterior nasal openings with otic ganglion 10 Pharyngeal tonsils 36 Artery from which middle emerge from the anterior 30 Nerve inervating levator 50 "Windpipe" 11 Muscle that protrudes tongue menigeal a. arises broder of parotid palpebrae superioris 51 Cranial nerve traversing 13 Nerve sensory to anterior 37 Branch of CN V1 giving rise 12 Nerve sensory to cheek 34 Roots of nerve encircling posterior triangle of neck (2 tongue to supraorbital and 14 Nerve innervating lateral middle meningeal a. wds) 16 Cartilage of ``Adam`s Apple`` supratrochlear nerves rectus muscle 38 Cranial fossa lodging 17 Opening between vocal folds 40 Nerve innervating superior 15 Part of ear with pharyngeal cavernous sinus DOWN 18 Tonsils within the fauces oblique muscle connection 39 Results from denervation of 22 Extrinsic tongue muscle 41 Artery traveling
    [Show full text]
  • Anatomy Anatomy
    ANATOMY ANATOMY HEAD HEAD AREAS BONES MUSCLES NERVES ORGANS JOINTS VESSELS OTHER • Scalp • Skull • The Tongue • Sympathetic • The Ear • TMJ • Arterial Supply • Lacrimal Gland • Pterygopalatine • Bony Orbit • Facial Expression Innervation • The Eye • Venous Drainage • Eyelids Fossa • Extraocular • Parasympathetic • Nose and • Lymphatics • Teeth • Sphenoid • Infratemporal • Mastication Innervation Sinuses • Palate Fossa Bone • Ophthalmic • Salivary Glands • Cranial Fossae • Ethmoid Bone Nerve • Oral Cavity • Temporal • Mandibular Bone Nerve • Maxillary Nerve • Mandible • Nasal Skeleton • Cranial Foramina Organs of the The External Ear Head Contents 1 Auricle 1.1 Clinical Relevance: Auricular Haematoma 2 External Acoustic Meatus 3 Tympanic Membrane The External 3.1 Clinical Relevance: Perforation of the Tympanic Membrane Ear 4 Vasculature 5 Innervation 6 Lymphatics • The ear can be divided into three parts; external, middle and inner. This article will focus on the anatomy of the external ear – its structure, neurovasculature, and its clinical correlations. The External • The external ear can be divided functionally and structurally into two parts; the auricle (or pinna), and Ear the external acoustic meatus – which ends at the tympanic membrane. EAR Division Auricle • The auricle is a paired structure found on either side of the head. It functions to capture and direct sound waves towards the external acoustic meatus. • It is a mostly cartilaginous structure, with the lobule being the only part not supported by cartilage. The cartilaginous part of the auricle forms an outer curvature, known as the helix. A second innermost curvature runs in parallel with the helix – the antihelix. The antihelix divides into two The External cura; the inferoanterior crus, and the superoposterior crus. Ear • In the middle of the auricle is a hollow depression, called the concha.
    [Show full text]
  • Muscles-Of-The-Head
    ANATOMY ANATOMY HEAD HEAD AREAS BONES MUSCLES NERVES ORGANS JOINTS VESSELS OTHER • Scalp • Skull • The Tongue • Sympatheti • The Ear • TMJ • Arterial • Lacrimal • Pterygopal • Bony Orbit • Facial c • The Eye Supply Gland atine Fossa • Sphenoid Expression Innervation • Nose and • Venous • Eyelids • Infratempo Bone • Extraocular • Parasympat Sinuses Drainage • Teeth ral Fossa • Ethmoid • Mastication hetic • Salivary • Lymphatics • Palate • Cranial Bone Innervation Glands Fossae • Temporal • Ophthalmic • Oral Cavity Bone Nerve • Mandible • Mandibular Nerve • Nasal Skeleton • Maxillary Nerve • Cranial Foramina Contents 1 Orbital Group • 1.1 Clinical Relevance: Paralysis to the Orbital THE MUSCLES Muscles OF FACIAL • 2 Nasal Group • 3 Oral Group EXPRESSION • 3.1 Clinical Relevance: Paralysis to the Oral Muscles HEAD Muscle of Facial Expression • The muscles of facial expression are located in the Subcutaneous tissue, originating from bone or fascia, and inserting onto the skin. By contracting, the muscles pull on the skin and exert their effects. They are THE MUSCLES the only group of muscles that insert into skin. • These muscles have a common embryonic origin – The OF FACIAL 2nd pharyngeal arch. They migrate from the arch, taking their nerve supply with them. As such, all the muscles EXPRESSION of facial expression are innervated by the Facial Nerve. • The facial muscles can broadly be split into three groups; orbital, nasal and oral. Muscles of Facial Expression Muscle Of facial Expression Orbicularis Oculi Muscle of Facial Expression Orbicularis Oculi Orbital Group • The orbital group of facial muscles contains two muscles associated with the eye socket. These muscles control the movements of the eyelids, important in protecting the cornea from damage. They are both innervated by the facial nerve.
    [Show full text]
  • The Five-Minute Neurological Examination
    THE FIVE-MINUTE NEUROLOGICAL EXAMINATION Ralph F. Józefowicz, MD Introduction The neurologic examination is considered by many to be daunting. It may seem tedious, time consuming, overly detailed, idiosyncratic, and even capricious. Every neurologist has his/her own version of the examination, and may appear to use “magical thinking” to come up with a diagnosis at the end. In reality, the examination is quite simple. When performing the neurological examination, it is important to keep the purpose of the examination in mind, namely to localize the lesion. A basic knowledge of neuroanatomy is necessary to interpret the examination. The key to performing an efficient neurological examination is observation. More than half of the neurological examination is performed by simply observing the patient – how he/she speaks, thinks, walks, moves, and simply interacts with the examiner. A skillful observer will already localize a lesion, based on simple observations. Formalized testing merely refines the diagnosis, and may only require several additional steps. Performing an overly detailed neurological examination without a purpose in mind is a waste of time, and often yields incidental findings that cloud the picture. The following three pages contain an outline of the components of the five-minute neurological examination, followed by a suggested order for performing this examination. I have also included a detailed handout describing the components of a comprehensive neurological examination, as well as the significance of abnormal findings. Numerous tables are included in this handout to aid in neurological diagnosis. Finally, a series of short cases are included, which illustrate how an efficient and focused neurological examination allows one to make an accurate neurological diagnosis.
    [Show full text]
  • Lab 4: Orbit and Cavernous Sinus
    Lab 4: Orbit and Cavernous Sinus Review ”The Basics” and ”The Details” for the following cranial nerves in the Cranial Nerve PowerPoint Handout. • Oculomotor n. (CN III) • Trochlear n. (CN IV) • Ophthalmic division trigeminal (CN V1) • Maxillary division trigeminal (CN V2) • Abducens n. (CN VI) Slide Title Slide Number Slide Title Slide Number Osseous Orbit Slide 3 Optic Disc and Optic Nerve Slide 21 Osseous Orbit (Continued) Slide4 Central Artery of Retina Slide 22 Osseous Orbit (Continued) Slide 5 Macula Lutea and Fovea Centralis Slide 23 Palpebrae Slide 6 Papilledema Slide 24 Palpebrae: Tarsi, Glands, and Muscles Slide 7 Extraocular Eye Muscles: Optical Axis versus Orbital Axis Slide 25 Palpebrae: Muscles Slide 8 Extraocular Eye Muscles: Axes of Movement Slide 26 Palpebrae: Orbital Septum Slide 9 Conjunctiva Slide 10 Extraocular Eye Muscles: Muscles that Move the Eyes Slide 27 Lacrimal Apparatus Slide 11 Extraocular Eye Muscles: Complete Anatomy Slide 28 Lacrimal Apparatus (Continued) Slide 12 Extraocular Eye Muscles: Actions Slide 29 Lacrimal Gland Innervation Slide 13 H Eye Exam Slide 30 The Eye: Major Layers Slide 14 Extraocular Eye Muscles: Muscles That Move Eyelids Slide 31 Fibrous Tunic Slide 15 Extraocular & Eyelid Cranial Nerve Mnemonics Slide 32 Uvea (Vascular Tunic): Choroid, Ciliary Body, Ciliary Slide 16 Processes, and Ciliary Muscles Cavernous Sinus & Associated Cranial Nerves Slide 33 Lens Accommodation Slide 17 Cavernous Sinus & Venous Blood Slide 34 Uvea (Vascular Tunic): Iris Slide 18 Cavernous Sinus & Venous Blood (Continued) Slide 35 Autonomic Innervation to Pupillae and Ciliary Muscles Slide 19 Cavernous Sinus & Thrombosis Slide 36 Review: Oculomotor Nerve (CN III): The Details Slide 20 Osseous Orbit The following bones form the walls of the the bony orbit (Figure 3).
    [Show full text]
  • The Orbits—Anatomical Features in View of Innovative Surgical Methods
    487 The Orbits—Anatomical Features in View of Innovative Surgical Methods Carl-Peter Cornelius, MD, DDS1 Peter Mayer, MD, DDS1 Michael Ehrenfeld, MD, DDS1 Marc Christian Metzger, MD, DDS2 1 Department of Oral and Maxillofacial Surgery, Ludwig Maximilians Address for correspondence Carl-Peter Cornelius, MD, DDS, University, Munich, Germany Department of Oral and Maxillofacial Surgery, Ludwig Maximilians 2 Department of Oral and Maxillofacial Surgery, Albert Ludwigs University, Lindwurmstr 2a, 80337 Munich, Germany University, Freiburg, Germany (e-mail: [email protected]). Facial Plast Surg 2014;30:487–508. Abstract The aim of this article is to update on anatomical key elements of the orbits in reference to surgical innovations. This is a selective literature review supplemented with the Keywords personal experience of the authors, using illustrations and photographs of anatomical ► anatomy of internal dissections. The seven osseous components of the orbit can be conceptualized into a orbit simple geometrical layout of a four-sided pyramid with the anterior aditus as a base and ► osseous structures the posterior cone as apex. All neurovascular structures pass through bony openings in ► bony surface contours the sphenoid bone before diversification in the mid and anterior orbit. A set of ► periorbita landmarks such as the optic and maxillary strut comes into new focus. Within the ► extraocular muscles topographical surfaces of the internal orbit the lazy S-shaped floor and the poster- ► connective tissue omedial bulge are principal determinants for the ocular globe position. The inferome- compartments dial orbital strut represents a discernible sagittal buttress. The periorbita and orbital soft ► nerve and vessel tissue contents—extraocular muscles, septae, neurovasculature—are detailed and put supply into context with periorbital dissection.
    [Show full text]
  • Neuroscience Flash Cards, Second Edition, Is a Logical Follow-Up to Netter’S Atlas of Neuroscience, Second Edition
    Netter’s Neuroscience Flash Cards Second Edition David L. Felten, MD, PhD Acknowledgments Netter’s Neuroscience Flash Cards, second edition, is a logical follow-up to Netter’s Atlas of Neuroscience, second edition. Both publications are intended to provide a visually oriented, succinct roadmap to the basic neurosciences and their application to human disease and its treatment. I have thoroughly enjoyed working with Julie Goolsby (Associate Developmental Editor), Marybeth Thiel (Senior Developmental Editor), and Elyse O’Grady (Editor, Netter Products) from Elsevier in the long and challenging process of producing the Flash Cards and Atlas. Their helpfulness, diligence, professionalism, and commitment to bringing the Netter illustrations to yet more generations of physicians and health care professionals are inspirational. I also gratefully acknowledge the mentorship and wonderful teaching of Institute Professor Walle J.H. Nauta, M.D., Ph.D. from the Massachusetts Institute of Technology; his superb organization of the nervous system, brilliant insights, and use of overviews has inspired generations of neurosciences researchers, educators, and practitioners. I gratefully acknowledge the love, support, and encouragement of my wife, Dr. Mary Maida, who continues to tolerate mountains of books and papers piled all over the house and office while I work on my Netter projects. And finally, I acknowledge the inspiration that my mother, Jane E. Felten, provided through her long challenge with the aftermath of polio. Although she was badly crippled by the disease at the age of 8, she never let this neurological disease interfere with a full and happy life. Her example demonstrates that the strength of human determination, will power, and faith can be powerful motivators for successful living, and that the indomitable human spirit can overcome even the most daunting challenges.
    [Show full text]