(12) United States Patent (10) Patent No.: US 7,160,939 B2 Finnegan Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 7,160,939 B2 Finnegan Et Al US007160939B2 (12) United States Patent (10) Patent No.: US 7,160,939 B2 Finnegan et al. (45) Date of Patent: Jan. 9, 2007 (54) ACTIVE MASTERBATCH FOR (56) References Cited PRODUCTION OF CO2 GENERATING MASTERBATCH U.S. PATENT DOCUMENTS (76) Inventors: Michael J. Finnegan, 13855 Lake 3.950,484 A * 4, 1976 Egli .......................... 264/45.5 Shore Dr. Clive, IA (US) 50325: 2002fO1981 23 A1* 12/2002 Nitzsche ..................... 510,188 Wesley L. Boldt, 2870 Druid Hill Rd., Des Moines, IA (US) 50315 (*) Notice: Subject to any disclaimer, the term of this * cited by examiner patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. Primary Examiner Patrick D. Niland (21) Appl. No.: 10/879,784 (57) ABSTRACT (22) Filed: Jun. 29, 2004 (65) Prior Publication Data A compound permitting the economic production of pack US 2005/OOO1204 A1 Jan. 6, 2005 aging containers, which when activated produces concen trated amounts of CO2 gas for extended periods for preser Related U.S. Application Data Vation of perishable products therein, comprises a mixture (60) Provisional application No. 60/484.421, filed on Jul. including a CO2 generating portion incorporated within a 2, 2003. polymer matrix. Preferably, the mixture includes citric acid; calcium carbonate, and polyethylene resin. More preferably, (51) Int. C. the mixture includes a mixture of a carboxylic acid C83/100 (2006.01) (0.1–40%); a hydrogen carbonate (0.1–40%) and any poly CSK 3/00 (2006.01) olefin resin. Even more preferably, the mixture includes a CSK 3/20 (2006.01) mixture including (0.01–40%) Citric Acid; (0.01–40%); and CSK 5/09 (2006.01) 30–75% polyethylene resin. Most preferably, the mixture COSL 57/02 (2006.01) includes by weight 12% citric acid; 38% calcium carbonate: (52) U.S. Cl. ....................... 524/320: 264/45.3; 264/54; and 50% low density polyethylene resin with a melt index of 264/331.17; 428/34.1; 428/34.3; 428/35.2: 20 and a density of 0.924 g/cc. Alternatively, the carboxylic 428/35.7; 428/36.5: 524/284; 524/321:524/424; acid and hydrogen carbonate components are compounded 524/425; 524/499; 523/351; 521/97:521/142 into separate polymer matrixes, and later combined. The (58) Field of Classification Search ................ 524/284, compound may be packaged in containers that are formed of 524/321, 424, 425,499, 320: 264/45.3, 54, 264/331.17; 428/34.1, 34.3, 35.2, 35.7, 36.5; flexible or rigid material. 521/97, 142; 523/351 See application file for complete search history. 10 Claims, No Drawings US 7,160,939 B2 1. 2 ACTIVE MASTERBATCH FOR amounts of CO2 gas for extended periods, thereby facilitat PRODUCTION OF CO2 GENERATING ing the preservation of perishable products stored therein. MASTERBATCH Most commercial blown and cast film extrusion equip ment lacks the capability to effectively blend and mix direct CROSS-REFERENCE TO RELATED powdered additives into their melt streams without capital APPLICATION modifications. Even with materials handling equipment, typical extrusion screw designs are not engineered to pro This application claims the benefit of U.S. Provisional vide uniform dispersions of dry powdered additives in the Application No. 60/484.421, filed on Jul. 2, 2003. particle size range of 20–500 microns. 10 Technical Studies have proven the beneficial effect con BACKGROUND OF THE INVENTION trolled generation of carbon dioxide gas can have on pre serving post harvest fruits, vegetables, and other flora/ Conventional Modified Atmosphere Packaging (MAP) is agricultural crops. Further work confirms the value of produced by gas flushing barrier packages with a mixture of controlled generation of CO2 in the packaging and preser Gases including CO2. This requires capital investment in 15 Vation of meats, poultry, and seafood. The principle of this equipment, special packaging materials, and the gas. The invention is a cost effective method and formula to produce ability to packaging material or film to self generate an a Masterbatch that contains measured amounts of a carboxy efficacious amount of carbon dioxide upon activation would lic acid and a hydrogen carbonate that are designed to eliminate some of these costs but still deliver the benefits of survive the heat, pressure, and shear conditions common to CO2 in perishable product preservation. plastics processing, that when blended with appropriate Therefore, a principle object of the invention is to provide polyolefin resins can be converted into “Active' films or active packaging materials that generate CO2 on conven packaging on conventional plastics processing equipment. tional plastics processing equipment. A compound formed in accordance with the present Another object of the invention is to provide active invention permits the economic production of packaging packaging materials that generate CO2 on conventional 25 containers, which when activated will produce concentrated plastics processing equipment, where the carboxylic acid amounts of CO2 gas for extended periods for the preserva and hydrogen carbonate components are compounded into tion of perishable products therein. The compound com separate polymer matrixes, and later combined. prises a mixture including a CO2 generating portion incor These and other objects will be apparent to those skilled porated within a polymer matrix. Preferably, the mixture 30 includes citric acid; calcium carbonate, and polyethylene in the art. resin. More preferably, the mixture includes a mixture of a carboxylic acid (0.1–40%); a hydrogen carbonate (0.1–40%) SUMMARY OF THE INVENTION and any polyolefin resin. Even more preferably, the mixture includes a mixture including (0.01–40%) Citric Acid: A compound permitting the economic production of pack 35 (0.01–40%); and 30–75% polyethylene resin. Most prefer aging containers, which when activated produces concen ably, the mixture includes by weight 12% citric acid; 38% trated amounts of CO2 gas for extended periods for the calcium carbonate; and 50% low density polyethylene resin preservation of perishable products therein, comprises a with a melt index of 20 and a density of 0.924 g/cc. mixture including a CO2 generating portion incorporated The compound of the present invention may be packaged within a polymer matrix. Preferably, the mixture includes 40 in containers that when activated will produce concentrated citric acid; calcium carbonate, and polyethylene resin. More amounts of CO2 gas for extended periods for the preserva preferably, the mixture includes a mixture of a carboxylic tion of perishable products in the container. These containers acid (0.1–40%); a hydrogen carbonate (0.1–40%) and any may be formed of flexible or rigid material. polyolefin resin. Even more preferably, the mixture includes a mixture including (0.01–40%) Citric Acid; (0.01–40%); EXAMPLE 1. and 30–75% polyethylene resin. Most preferably, the mix 45 ture includes by weight 12% citric acid; 38% calcium Initial Masterbatch was 50% solids and 50% Polyethylene carbonate; and 50% low density polyethylene resin with a with a recipe of: BY WEIGHT Citric Acid+38% by weight melt index of 20 and a density of 0.924 g/cc. Alternatively, Calcium carbonate--50% Linear Low Density Polyethylene the carboxylic acid and hydrogen carbonate components are 50 resin with a Melt Index of 20 and a density of 0.924 g/cc. compounded into separate polymer matrixes, and later com Other samples produced at 55, 60, 65, and 70 percent solids bined. The compound may be packaged in containers that have also been produced. may be formed of flexible or rigid material. Alternatively, the carboxylic acid component and the hydrogen carbonate components may be compounded indi DESCRIPTION OF THE PREFERRED 55 vidually into separate polymer matrixes using the same EMBODIMENT mixtures described above, which are later combined into a final compound. This binary approach reduces processing This invention consists of a blend of materials that costs, increases flexibility in formulation developments, and includes a polyolefin resin intended for use in compounding, shelf stability in the presence of humidity. and powdered chemistry capable of reacting with moisture 60 Specifically, the carboxylic acid is dispersed within a first to generate Carbon Dioxide gas. This combination forms a polymer matrix to form a first compound. Preferably, the Masterbatch concentrate suitable for blending with other carboxylic acid within the first polymer matrix is 0.5–90% melt processable polymers for Subsequent forming into by weight of the first compound. More preferably, the first blown, cast or molded Plastic Products. compound comprises a mixture of 33% by weight Citric acid The purpose of the invention is to permit the economical 65 and 67% by weight polyethylene. production of both flexible films and rigid packaging con Likewise, the hydrogen carbonate base is dispersed within tainers that (when properly activated) produce controlled a second polymer matrix to form a second compound. US 7,160,939 B2 3 4 Preferably, the hydrogen carbonate base within the second droxymandelic acid, 4-Decynoic acid, 4-Ethyl-2-octenoic polymer matrix is 0.5–90% by weight of the second com acid, Dec-3-enoic acid, 6-Acetoxy-5-hexenoic acid, 6-Ac pound. More preferably, the second compound comprises etoxy-4-hexenoic acid, 4-Ethylcaprylic acid, Capric acid, 55% by weight calcium carbonate and 45% by weight Aconitic acid, Suberic acid, 5-Phenyl-pent-4-ynoic acid, polyethylene. 5 Vitamin C, alpha-Mercapto-caprylate, Diperoxyadipic acid, The first and second polymer matrixes can be formed of 4-Oxo-4-phenyl-butyric acid, 5-Phenyl valeric acid, Hende the same or different materials. The first compound and cynoic acid, 5-Cyclohexyl-2-pentenoic acid, Cyclohexyl second compound are later combined to disperse a mixture n-valerate. Undecylenic acid, 2-Hendenoic acid, 1-Naphthy including the carboxylic acid and the hydrogen carbonate lacetic acid, trans-10-Hydroxy-dec-8-enoic Acid, Unde base within a primary polymer matrix (being a mixture of 10 canoic acid, AZelaic acid, Peroxy decanoic acid, BenZo1.3 first and second polymer matrixes) to form a primary dioxol-5-yl-propynoic Acid, Hexanoic acid, carboxy compound.
Recommended publications
  • Figure S1. Heat Map of R (Pearson's Correlation Coefficient)
    Figure S1. Heat map of r (Pearson’s correlation coefficient) value among different samples including replicates. The color represented the r value. Figure S2. Distributions of accumulation profiles of lipids, nucleotides, and vitamins detected by widely-targeted UPLC-MC during four fruit developmental stages. The colors indicate the proportional content of each identified metabolites as determined by the average peak response area with R scale normalization. PS1, 2, 3, and 4 represents fruit samples collected at 27, 84, 125, 165 Days After Anthesis (DAA), respectively. Three independent replicates were performed for each stages. Figure S3. Differential metabolites of PS2 vs PS1 group in flavonoid biosynthesis pathway. Figure S4. Differential metabolites of PS2 vs PS1 group in phenylpropanoid biosynthesis pathway. Figure S5. Differential metabolites of PS3 vs PS2 group in flavonoid biosynthesis pathway. Figure S6. Differential metabolites of PS3 vs PS2 group in phenylpropanoid biosynthesis pathway. Figure S7. Differential metabolites of PS4 vs PS3 group in biosynthesis of phenylpropanoids pathway. Figure S8. Differential metabolites of PS2 vs PS1 group in flavonoid biosynthesis pathway and phenylpropanoid biosynthesis pathway combined with RNA-seq results. Table S1. A total of 462 detected metabolites in this study and their peak response areas along the developmental stages of apple fruit. mix0 mix0 mix0 Index Compounds Class PS1a PS1b PS1c PS2a PS2b PS2c PS3a PS3b PS3c PS4a PS4b PS4c ID 1 2 3 Alcohols and 5.25E 7.57E 5.27E 4.24E 5.20E
    [Show full text]
  • Molecular Docking Study on Several Benzoic Acid Derivatives Against SARS-Cov-2
    molecules Article Molecular Docking Study on Several Benzoic Acid Derivatives against SARS-CoV-2 Amalia Stefaniu *, Lucia Pirvu * , Bujor Albu and Lucia Pintilie National Institute for Chemical-Pharmaceutical Research and Development, 112 Vitan Av., 031299 Bucharest, Romania; [email protected] (B.A.); [email protected] (L.P.) * Correspondence: [email protected] (A.S.); [email protected] (L.P.) Academic Editors: Giovanni Ribaudo and Laura Orian Received: 15 November 2020; Accepted: 1 December 2020; Published: 10 December 2020 Abstract: Several derivatives of benzoic acid and semisynthetic alkyl gallates were investigated by an in silico approach to evaluate their potential antiviral activity against SARS-CoV-2 main protease. Molecular docking studies were used to predict their binding affinity and interactions with amino acids residues from the active binding site of SARS-CoV-2 main protease, compared to boceprevir. Deep structural insights and quantum chemical reactivity analysis according to Koopmans’ theorem, as a result of density functional theory (DFT) computations, are reported. Additionally, drug-likeness assessment in terms of Lipinski’s and Weber’s rules for pharmaceutical candidates, is provided. The outcomes of docking and key molecular descriptors and properties were forward analyzed by the statistical approach of principal component analysis (PCA) to identify the degree of their correlation. The obtained results suggest two promising candidates for future drug development to fight against the coronavirus infection. Keywords: SARS-CoV-2; benzoic acid derivatives; gallic acid; molecular docking; reactivity parameters 1. Introduction Severe acute respiratory syndrome coronavirus 2 is an international health matter. Previously unheard research efforts to discover specific treatments are in progress worldwide.
    [Show full text]
  • Phenolic Acid Profiles of Endemic Species Verbascum Anisophyllum
    ISSN 1314-6246 Nikolova et al. 2016 J. BioSci. Biotech. 2017, 6(3): 163-167 RESEARCH ARTICLE Milena Nikolova Phenolic acid profiles of endemic species Strahil Berkov Marina Dimitrova Verbascum anisophyllum and Verbascum Boryana Sidjimova davidoffii Stoyan Stoyanov Marina Stanilova Authors’ addresses: ABSTRACT 1 Institute of Biodiversity and The profiles of methanol extractable and methanol insoluble bound phenolic acids of Ecosystem Research, Bulgarian Academy of Sciences 23, Acad. G. two species: Verbascum anisophyllum Murb (Balkan endemic) and Verbascum Bonchev Str., 1113 Sofia, Bulgaria. davidoffii Murb. (Bulgarian endemic) were determined. Free radical scavenging activity and total phenolic content of studied extracts and fractions were evaluated by Correspondence: DPPH antioxidant method and Folin–Ciocalteu reagent, respectively. Phenolic acid Milena Nikolova Institute of Biodiversity and Ecosystem profiles were analyzed by GC/MS. Sixteen phenolic acids and their derivatives were Research, Bulgarian Academy of detected. Ferulic acid was the major individual phenolic acid presented in all extracts Sciences 23, Acad. G. Bonchev Str., and fractions. Hydroxycinnamic, vanillic and p-hydroxybenzoic acids were also 1113 Sofia, Bulgaria. Tel.: +359 2 9793758 abundant in the studied phenolic acid profiles. The presence of gentisic, syringic, Fax: +359 2 8705498 isoferulic, dihydroferulic, eudesmic, 3,5-di-tert-butyl-4-hydroxybenzoic acids were e-mail: [email protected] reported for the first time to Verbascum species. The greatest variety of phenolic acids was found in the fractions containing methanol insoluble bound hydrolysable phenolic Article info: Received: 8 December 2017 acids. The highest free radical scavenging activity and total phenolic content were Accepted: 31 December 2017 established for methanol extractable alkaline hydrolysable fractions.
    [Show full text]
  • Natural Products As Chemopreventive Agents by Potential Inhibition of the Kinase Domain in Erbb Receptors
    Supplementary Materials: Natural Products as Chemopreventive Agents by Potential Inhibition of the Kinase Domain in ErBb Receptors Maria Olivero-Acosta, Wilson Maldonado-Rojas and Jesus Olivero-Verbel Table S1. Protein characterization of human HER Receptor structures downloaded from PDB database. Recept PDB resid Resolut Name Chain Ligand Method or Type Code ues ion Epidermal 1,2,3,4-tetrahydrogen X-ray HER 1 2ITW growth factor A 327 2.88 staurosporine diffraction receptor 2-{2-[4-({5-chloro-6-[3-(trifl Receptor uoromethyl)phenoxy]pyri tyrosine-prot X-ray HER 2 3PP0 A, B 338 din-3-yl}amino)-5h-pyrrolo 2.25 ein kinase diffraction [3,2-d]pyrimidin-5-yl]etho erbb-2 xy}ethanol Receptor tyrosine-prot Phosphoaminophosphonic X-ray HER 3 3LMG A, B 344 2.8 ein kinase acid-adenylate ester diffraction erbb-3 Receptor N-{3-chloro-4-[(3-fluoroben tyrosine-prot zyl)oxy]phenyl}-6-ethylthi X-ray HER 4 2R4B A, B 321 2.4 ein kinase eno[3,2-d]pyrimidin-4-ami diffraction erbb-4 ne Table S2. Results of Multiple Alignment of Sequence Identity (%ID) Performed by SYBYL X-2.0 for Four HER Receptors. Human Her PDB CODE 2ITW 2R4B 3LMG 3PP0 2ITW (HER1) 100.0 80.3 65.9 82.7 2R4B (HER4) 80.3 100 71.7 80.9 3LMG (HER3) 65.9 71.7 100 67.4 3PP0 (HER2) 82.7 80.9 67.4 100 Table S3. Multiple alignment of spatial coordinates for HER receptor pairs (by RMSD) using SYBYL X-2.0. Human Her PDB CODE 2ITW 2R4B 3LMG 3PP0 2ITW (HER1) 0 4.378 4.162 5.682 2R4B (HER4) 4.378 0 2.958 3.31 3LMG (HER3) 4.162 2.958 0 3.656 3PP0 (HER2) 5.682 3.31 3.656 0 Figure S1.
    [Show full text]
  • Supplementary Materials
    Figure S1: Metabolite distribution by PCA analysis in sweet corn cultivars. A clear distinction can be observed among the three cultivars. The three dots in each group are representative of the pooled samples performed for this study. In total, 30 biological replications were performed per cultivar, every ten of which were pooled to give one pooled sample. Mix is the mixture of JZY, JBT and CPL. Figure S2. HCA analysis of sweetcorn kernels from the three accessions. Figure S3. OPLS-DA analysis of sweetcorn kernels from the three accessions in pairs. (A), OPLS-DA model; (B), OPLS-DA scores plot, the three dots in each group are representative of the pooled samples performed for this study. In total, 30 biological replications were performed per cultivar, every ten of which were pooled to give one pooled sample; (C), OPLS-DA S-plot, red dots indicate the distinctive compounds (VIP≥1); (D), OPLS-DA permutation test (n=200), the horizontal lines indicate R2Y and Q2 in the original model, red dot and blue dot represent R2Y’ and Q2’ of the model after Y replacement, respectively. All R2Y’ dots are below the original R2Y line, and all Q2’ dots are below the original Q2 line, indicating the OPLS-DA model is validate and suitable. Figure S4. Mass spectrum of potential metabolite markers related to grain quality traits in sweet corn. (A), skimmin; (B), N’,N’’-diferuloylspermidine; (C), 3-hydroxyanthranilic acid. Table S1. The gradient program for HPLC analysis in various sweet corn kernels. Time Flow rate % A % B (min) (mL/min) 0.0 0.4 95 5 Gradient program 11.0 0.4 5 95 12.0 0.4 5 95 12.1 0.4 95 5 15.0 0.4 95 5 Table S2.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2009/0269772 A1 Califano Et Al
    US 20090269772A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0269772 A1 Califano et al. (43) Pub. Date: Oct. 29, 2009 (54) SYSTEMS AND METHODS FOR Publication Classification IDENTIFYING COMBINATIONS OF (51) Int. Cl. COMPOUNDS OF THERAPEUTIC INTEREST CI2O I/68 (2006.01) CI2O 1/02 (2006.01) (76) Inventors: Andrea Califano, New York, NY G06N 5/02 (2006.01) (US); Riccardo Dalla-Favera, New (52) U.S. Cl. ........... 435/6: 435/29: 706/54; 707/E17.014 York, NY (US); Owen A. (57) ABSTRACT O'Connor, New York, NY (US) Systems, methods, and apparatus for searching for a combi nation of compounds of therapeutic interest are provided. Correspondence Address: Cell-based assays are performed, each cell-based assay JONES DAY exposing a different sample of cells to a different compound 222 EAST 41ST ST in a plurality of compounds. From the cell-based assays, a NEW YORK, NY 10017 (US) Subset of the tested compounds is selected. For each respec tive compound in the Subset, a molecular abundance profile from cells exposed to the respective compound is measured. (21) Appl. No.: 12/432,579 Targets of transcription factors and post-translational modu lators of transcription factor activity are inferred from the (22) Filed: Apr. 29, 2009 molecular abundance profile data using information theoretic measures. This data is used to construct an interaction net Related U.S. Application Data work. Variances in edges in the interaction network are used to determine the drug activity profile of compounds in the (60) Provisional application No. 61/048.875, filed on Apr.
    [Show full text]
  • Bioactive Compounds in Waste By-Products from Olive Oil Production: Applications and Structural Characterization by Mass Spectrometry Techniques
    foods Review Bioactive Compounds in Waste By-Products from Olive Oil Production: Applications and Structural Characterization by Mass Spectrometry Techniques Ramona Abbattista 1, Giovanni Ventura 1 , Cosima Damiana Calvano 2,3,* , Tommaso R. I. Cataldi 1,2 and Ilario Losito 1,2,* 1 Chemistry Department, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; [email protected] (R.A.); [email protected] (G.V.); [email protected] (T.R.I.C.) 2 Interdepartmental Centre SMART, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy 3 Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy * Correspondence: [email protected] (C.D.C.); [email protected] (I.L.) Abstract: In recent years, a remarkable increase in olive oil consumption has occurred worldwide, favoured by its organoleptic properties and the growing awareness of its health benefits. Currently, olive oil production represents an important economic income for Mediterranean countries, where roughly 98% of the world production is located. Both the cultivation of olive trees and the production of industrial and table olive oil generate huge amounts of solid wastes and dark liquid effluents, including olive leaves and pomace and olive oil mill wastewaters. Besides representing an economic problem for producers, these by-products also pose serious environmental concerns, thus their partial reuse, like that of all agronomical production residues, represents a goal to pursue. This Citation: Abbattista, R.; Ventura, G.; aspect is particularly important since the cited by-products are rich in bioactive compounds, which, Calvano, C.D.; Cataldi, T.R.I.; Losito, once extracted, may represent ingredients with remarkable added value for food, cosmetic and I.
    [Show full text]
  • A Review on Phytochemical Constituents of Abutilon Indicum (Link) Sweet – an Important Medicinal Plant in Ayurveda
    Plantae Scientia – An International Research Journal in Botany Publishing Bimonthly Open Access Journal Plantae Scientia : Volume 03, Issue 03, May 2020 REVIEW ARTICLE A Review on Phytochemical constituents of Abutilon indicum (Link) Sweet – An Important Medicinal Plant in Ayurveda 1Suryawanshi Venkat S. and 2Umate Suvarna R. 1Department of Chemistry, P.G. and Research Centre, Shri Chhatrapati Shivaji College, Omerga. Dist. Osmanabad 2Department of Botany, Adarsh College, Omerga, Dist. Osmanabad (MS), India Corresponding Author: [email protected] Manuscript Details ABSTRACT Manuscript Submitted : 12/05/2020 Manuscript Revised : 13/05/2020 Abutilon indicum (Link) Sweet is a medicinal shrub belonging to the Manuscript Accepted : 14/05/2020 family Malvaceae; It has been extensively used as a traditional Manuscript Published : 20/05/2020 medicine to cure different diseases. It is considered invasive on certain tropical islands. The plant is very much used in Ayurveda & Available On Siddha medicines in Tamilnadu. In fact, the bark, root, leaves, flowers and seeds are all used for medicinal purposes. The phytochemical https://plantaescientia.com/ojs analysis showed the Presence of alkaloid, saponins, amino acid, flavonoids, glycosides and steroids. Some important essential oil Cite This Article As constituents like α-pinene, mucilage, tannins, caryophyllene, asparagines, caryophylleneoxide, endesmol, farnesol, borenol, Surywanshi V. S. & S. R. Umate, (2020). A review on Phytochemical constituents of geraniol, geranyl acetate, elemene and α-cineole have been reported Abutilon indicum (Link) Sweet – An from plant. Phytoconstituents like β‐Sitosterol, caffeic acid, fumaric important medicinal plant in Ayurveda., Pla. acid, vanillin, p‐coumaricacid, p‐hydroxybenzoic acid, sesquiterpene Sci. 2020; Vol. 03 Iss. 03:15-19.
    [Show full text]
  • Biobiopha Cat 1.Xlsx
    BBP No. Chemical Name CAS No. Structure M. F. M. W. Descr. Type O H H N BBP00001 Gelsemine 509-15-9 C20 H22 N2O2 322.4 Powder Alkaloids N O H N H BBP00002 Koumine 1358-76-5 C20 H22 N2O 306.4 Powder Alkaloids H N O H O BBP00003 Humantenmine 82354-38-9 N C19 H22 N2O3 326.4 Cryst. Alkaloids NO O N N H H H BBP00004 Ajmalicine 483-04-5 C21 H24 N2O3 352.4 Cryst. Alkaloids H O O O O OH N BBP00005 Vasicinolone 84847-50-7 C11 H10 N2O3 218.2 Powder Alkaloids N OH O BBP00011 Humantenine 82375-29-9 N C21 H26 N2O3 354.5 Powder Alkaloids NO O OO OH BBP00012 (Z)-Akuammidine 113973-31-2 N C21 H24 N2O3 352.4 Cryst. Alkaloids N H H H N BBP00018 Vasicine 6159-55-3 N C11 H12 N2O 188.2 Powder Alkaloids OH N BBP00023 Vindoline 2182-14-1 H C25 H32 N2O6 456.5 Oil Alkaloids O N OAc H OH COOMe N N H HH BBP00054 Tetrahydroalstonine 6474-90-4 C21 H24 N2O3 352.4 Solid Alkaloids H O O O O OH BBP00058 1H-Indole-3-carboxylic acid 771-50-6 C9H7NO 2 161.2 Powder Alkaloids N H N Pale yellow BBP00061 Canthin-6-one 479-43-6 N C H N O 220.2 Alkaloids 14 8 2 needles O O N BBP00064 Gelsevirine 38990-03-3 C21 H24 N2O3 352.4 Solid Alkaloids NO O + N N BBP00065 Sempervirine 6882-99-1 C19 H16 N2 272.4 Yellow powder Alkaloids OH N BBP00067 Vasicinol 5081-51-6 N C11 H12 N2O2 204.2 Powder Alkaloids OH O H N H BBP60007 Matrine 519-02-8 C15 H24 N2O 248.4 Powder Alkaloids H H N O H N H BBP60008 Oxymatrine 16837-52-8 C15 H24 N2O2 264.4 Powder Alkaloids H H N O OH + N O BBP60009 Jatrorrhizine 3621-38-3 O C20 H20 NO 4 338.4 Yellow powder Alkaloids O O + N O Yellow powder BBP60010 Palmatine
    [Show full text]
  • Isolation and Identification of Phenolic Compounds from Boswellia Ovalifoliolata Bal
    Available online on www.ijddt.com International Journal of Drug Delivery Technology 2014; 4(1); 14-21 ISSN: 0975 4415 Research Article Isolation and Identification of Phenolic Compounds from Boswellia ovalifoliolata Bal. & Henry and Their Free Radical Scavenger Activity Savithramma N, *Linga Rao M, Venkateswarlu P Department of Botany, S.V. University, Tirupati-517502, A.P, India Available online: 1st January 2014 ABSTRACT Boswellia ovalifoliolata Bal. and Henry (Burseraceae) is a potential medicinal tree used traditionally in the treatment of ulcers, inflammation, arthritis, obesity and diabetes. The present study aimed to isolate phenolic compounds from stem bark and gum and test for the ability of the extracted phenols of Boswellia ovalifoliolata. Total 78 phenolic compounds were obtained when the plant materials were processed through 70% acetone and poly vinyl poly pyrrolidone; and characterized by U.V. Visible spectrometry, High performance liquid chromatography/ electrospray ionization mass spectrometry. Among the isolated phenols, 28 phenolic compounds have been identified based on their retention time and m/z values. These phenols have showed good antioxidant activity the highest hydrogen peroxide (H2O2) radical scavenging effect of the isolated phenolic compounds has been recorded at 81.8% when compared to the DPPH; and superoxide ion activities with reference to ascorbic acid. This study illustrate the rich array of phenolic compounds and their free radical scavenging activity of stem bark and gum of Boswellia ovalifoliolata could be utility as health beneficial bioactive compounds. Key words: Boswellia ovalifoliolata, stembark, gum, phenolic compounds, Electro Spray Ionization mass spectrometry, hydrozen peroxide INTRODUCTION orally in small quantities (10 ml) two times a day to cure Boswellia ovalifoliolata Bal.
    [Show full text]
  • Identificación De Nuevos Compuestos Lideres Con Actividad Antileishmaniásica a Través De Estudios “In Silico”
    UNIVERSIDAD CENTRAL “MARTA ABREU” DE LAS VILLAS FACULTAD DE QUÍMICA-FARMACIA DEPARTAMENTO DE FARMACIA Identificación de nuevos compuestos lideres con actividad Antileishmaniásica a través de estudios “in silico” Tesis para optar por el Título de Licenciada en Ciencias Farmacéuticas Autora: Judith Louvina Sayers Tutores: Lic. Naiví Flores Balmaseda Dr. Yovani Marrero Ponce Curso 2009-2010 After climbing a great hill, one only finds that there are many more hills to climb. Nelson Mandela Dedicatoria A mi hijo con mucha dedicación y amor. A mis padres por traerme al mundo y luego enseñarme a vivir. Agradecimientos Es un placer para mí expresar mis sinceros agradecimientos a todas aquellas personas de una forma u otra me ha ayudado a culminar exitosamente mis estudios y este trabajo. Quisiera agradecer especialmente por todo el apoyo y el amor que me han brindado durante todo el transcurso de mi carrera. A mis tutores Naiví y Yavani por su apoyo, ánimo y dirección durante el desarrollo de este trabajo. Al Grupo de Diseño de Fármacos por su atención y toda la ayuda que me ha brindado para el desarrollo de esta tesis. A mis compañeros de aula especialmente mis amigas que viven con migo por estar conmigo en los momentos buenos y malos durante estos cinco años de mi vida estudiantil. A mi esposo y su familia que cuidan el hijo mio permitiendome terminar mis estudios. A todos muchas gracias. RESUMEN La leishmaniasis es una enfermedad zoonótica causada por diferentes especies de protozoos del género Leishmania. Sus manifestaciones clínicas van desde úlceras cutáneas, que cicatrizan espontáneamente, hasta formas fatales en las cuales se presenta inflamación severa del hígado y el bazo, pudiendo interesarse otros órganos como los riñones y la médula ósea.
    [Show full text]
  • Stern-Volmer Plot (Dopac-BSA)
    A Comparative Study of the Binding Constants of Several Polyphenols with BSA and LDL-VLDL through Fluorescence Quenching: A Potential Tool in the Fight against Atherosclerosis A thesis presented to the faculty of the Chemistry Department of the University of Scranton as a prerequisite for the degree of Master of Arts in Biochemistry By: Dana Poloni Date: June 9, 2015 Table of Contents Table of Contents………………………………………………………………………...III List of Figures………………………………………………………………………….VIII List of Tables………………………………………………………………………..........X Acknowledgements………………………………………………………………………XI Abstract…………………………………………………………………………………XII 1.0 Introduction……………………………………………………………………………1 1.1 Phenolic acids: Benzoic Acids and their Derivatives…………………………5 1.2 Phenolic acids: Phenylacetic Acids and their Derivatives…………………...12 1.3 Phenolic acids: Cinnamic Acids and their Derivatives………………………15 1.4 Stilbenoids: Stilbenes………………………………………………………...25 1.5 Flavonoids: Flavones………………………………………………………...28 1.6 Flavonoids: Isoflavones……………………………………………………...30 1.7 Flavonoids: Flavonols………………………………………………………..32 1.8 Flavonoids: Anthocyanidins…………………………………………………34 1.9 Thesis Overview……………………………………………………………..35 2.0 Materials and Methods……………………………………………………………….41 2.1 Reagents……………………………………………………………………...41 2.2 Polyphenols…………………………………………………………………..41 2.3 Materials……………………………………………………………………..42 2.4 PBS Solution Preparation……………………………………………………43 2.5 Polyphenol Standards Preparation…………………………………………...44 2.6 BSA Standard Preparation…………………………………………………...44 2.7 Isolation of Porcine
    [Show full text]