Modeling Natural Anti-Inflammatory Compounds by Molecular Topology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Structure-Activity Relationships for Bergenin Analogues As Β-Secretase
Journal of Oleo Science Copyright ©2013 by Japan Oil Chemists’ Society J. Oleo Sci. 62, (6) 391-401 (2013) Structure-activity Relationships for Bergenin Analogues as β-Secretase (BACE1) Inhibitors Yusei Kashima and Mitsuo Miyazawa* Department of Applied Chemistry, Faculty of Science and Engineering, Kinki University (3-4-1, Kowakae, Higashiosaka-shi, Osaka 577-8502, JAPAN) Abstract: Here we evaluated the inhibitory effects of bergenin analogues (2-10), prepared from naturally occurring bergenin, (1) on β-secretase (BACE1) activity. All the bergenin analogues that were analyzed inhibited BACE1 in a dose-dependent manner. 11-O-protocatechuoylbergenin (5) was the most potent inhibitor, with an IC50 value of 0.6 ± 0.07 mM. The other bergenin analogues, in particular, 11-O-3′,4′- dimethoxybenzoyl)-bergenin (6), 11-O-vanilloylbergenin (7), and 11-O-isovanilloylbergenin (8), inhibited BACE1 activity with IC50 values of <10.0 mM. BACE1 inhibitory activity was influenced by the substituents of the benzoic acid moiety. To the best of our knowledge, this is the first report on the structure-activity relationships (SAR) in the BACE1 inhibitory activities of bergenin analogues. These bergenin analogues may be useful in studying the mechanisms of Alzheimer’s disease. Key words: bergenin, bergenin analogues, β-secretase, antioxidant activity, structure-activity relationships 1 INTRODUCTION in adult mice was without any significant effect on brain Alzheimer’s diseas(e AD)is a neurodegenerative disorder, neuregulin processing9), indicating that BACE1 inhibitors with symptoms such as memory loss and disruption in could be established as therapeutic targets for AD. judging, reasoning, and emotional stability. AD is pathologi- Oxidative stress also a cause of AD has been proposed to cally characterized by the accumulation of senile plaques, contribute to Aβ generation and the formation of NFT10). -
Transfer of Pseudomonas Plantarii and Pseudomonas Glumae to Burkholderia As Burkholderia Spp
INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Apr. 1994, p. 235-245 Vol. 44, No. 2 0020-7713/94/$04.00+0 Copyright 0 1994, International Union of Microbiological Societies Transfer of Pseudomonas plantarii and Pseudomonas glumae to Burkholderia as Burkholderia spp. and Description of Burkholderia vandii sp. nov. TEIZI URAKAMI, ’ * CHIEKO ITO-YOSHIDA,’ HISAYA ARAKI,’ TOSHIO KIJIMA,3 KEN-ICHIRO SUZUKI,4 AND MU0KOMAGATA’T Biochemicals Division, Mitsubishi Gas Chemical Co., Shibaura, Minato-ku, Tokyo 105, Niigata Research Laboratory, Mitsubishi Gas Chemical Co., Tayuhama, Niigatu 950-31, ’Plant Pathological Division of Biotechnology, Tochigi Agricultural Experiment Station, Utsunomiya 320, Japan Collection of Microorganisms, The Institute of Physical and Chemical Research, Wako-shi, Saitama 351-01,4 and Institute of Molecular Cell and Biology, The University of Tokyo, Bunkyo-ku, Tokyo 113,’ Japan Plant-associated bacteria were characterized and are discussed in relation to authentic members of the genus Pseudomonas sensu stricto. Bacteria belonging to Pseudomonas rRNA group I1 are separated clearly from members of the genus Pseudomonas sensu stricto (Pseudomonasfluorescens rRNA group) on the basis of plant association characteristics, chemotaxonomic characteristics, DNA-DNA hybridization data, rRNA-DNA hy- bridization data, and the sequences of 5s and 16s rRNAs. The transfer of Pseudomonas cepacia, Pseudomonas mallei, Pseudomonas pseudomallei, Pseudomonas caryophylli, Pseudomonas gladioli, Pseudomonas pickettii, and Pseudomonas solanacearum to the new genus Burkholderia is supported; we also propose that Pseudomonas plantarii and Pseudomonas glumae should be transferred to the genus Burkholderia. Isolate VA-1316T (T = type strain) was distinguished from Burkholderia species on the basis of physiological characteristics and DNA-DNA hybridization data. A new species, Burkholderia vandii sp. -
Caomatograpby
rOURNAL DF LIQUID CaOMATOGRAPBY VOLUME 18 NUMBER 7 1995 ~ditor: DR. JACK CAZES ~ssociate Editors: DR. HALEEM J. ISSAQ DR. STEVEN H. WONG Special Section on CAPILlARY ZONE ELECTROPHORESIS AND REIATED TECHNIQUES Edited by HALEEM J. ISSAQ NCI-Frederick Cancer Research & Development Center Frederick, Maryland JOURNAL OF LIQUID CHROMATOGRAPHY April 1995 Aims and Scope. The journal publishes papers involving the applications of liquid chromatography to the solution of problems in all areas of science and technology, both analytical and preparative, as well as papers that deal specifically with liquid chromatography as a science within itself. Included will be thin-layer chromatography and all models of liquid chromatography. IdentiilCation Statement. Journal of Liquid Chromatography (lSSN: 0148-3919) is published semimonthly except monthly in May, August, October, and December for the institutional rate of $1,450.00 and the individual rate of $725.00 by Marcel Dekker, Inc., P.O. Box 5005, Monticello, NY 12701-5185. Second Class postage paid at Monticello, NY. POSTMASTER: Send address changes to Journal ofLiquid Chromatography, P.O. Box 5005, Monticello, NY 12701-5185. Individual Foreign Postage Professionals' Institutional and Student Airmail Airmail Volume Issues Rate Rate Surface to Europe to Asia 18 20 $1,450.00 $725.00 $70.00 $110.00 $130.00 Individual professionals' and student orders must be prepaid by personal check or may be charged to MasterCard, VISA, or American Express. Please mail payment with your order to: Marcel Dekker Journals, P.O. Box 5017, Monticello, New York 12701-5176. CODEN: JLCHD8 18(7) i-iv, 1273-1494 (1995) ISSN: 0148-3919 Printed in the U.S.A. -
Figure S1. Heat Map of R (Pearson's Correlation Coefficient)
Figure S1. Heat map of r (Pearson’s correlation coefficient) value among different samples including replicates. The color represented the r value. Figure S2. Distributions of accumulation profiles of lipids, nucleotides, and vitamins detected by widely-targeted UPLC-MC during four fruit developmental stages. The colors indicate the proportional content of each identified metabolites as determined by the average peak response area with R scale normalization. PS1, 2, 3, and 4 represents fruit samples collected at 27, 84, 125, 165 Days After Anthesis (DAA), respectively. Three independent replicates were performed for each stages. Figure S3. Differential metabolites of PS2 vs PS1 group in flavonoid biosynthesis pathway. Figure S4. Differential metabolites of PS2 vs PS1 group in phenylpropanoid biosynthesis pathway. Figure S5. Differential metabolites of PS3 vs PS2 group in flavonoid biosynthesis pathway. Figure S6. Differential metabolites of PS3 vs PS2 group in phenylpropanoid biosynthesis pathway. Figure S7. Differential metabolites of PS4 vs PS3 group in biosynthesis of phenylpropanoids pathway. Figure S8. Differential metabolites of PS2 vs PS1 group in flavonoid biosynthesis pathway and phenylpropanoid biosynthesis pathway combined with RNA-seq results. Table S1. A total of 462 detected metabolites in this study and their peak response areas along the developmental stages of apple fruit. mix0 mix0 mix0 Index Compounds Class PS1a PS1b PS1c PS2a PS2b PS2c PS3a PS3b PS3c PS4a PS4b PS4c ID 1 2 3 Alcohols and 5.25E 7.57E 5.27E 4.24E 5.20E -
Journal of Inorganic Biochemistry 187 (2018) 73–84
Journal of Inorganic Biochemistry 187 (2018) 73–84 Contents lists available at ScienceDirect Journal of Inorganic Biochemistry journal homepage: www.elsevier.com/locate/jinorgbio New heterobimetallic ferrocenyl derivatives: Evaluation of their potential as prospective agents against trypanosomatid parasites and Mycobacterium T tuberculosis Feriannys Rivasa, Andrea Medeirosb,c, Esteban Rodríguez Arcea, Marcelo Cominib, ⁎ Camila M. Ribeirod, Fernando R. Pavand, Dinorah Gambinoa, a Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay b Group Redox Biology of Trypanosomes, Institut Pasteur Montevideo, Montevideo, Uruguay c Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay d Faculdade de Ciências Farmacêuticas, UNESP, Araraquara, Brazil ARTICLE INFO ABSTRACT Keywords: Searching for prospective agents against infectious diseases, four new ferrocenyl derivatives, [M(L)(dppf)4] Ferrocenyl compounds (PF6), with M = Pd(II) or Pt(II), dppf = 1,1′-bis(dipheny1phosphino) ferrocene and HL = tropolone (HTrop) or Tropolone derivatives hinokitiol (HHino), were synthesized and characterized. Complexes and ligands were evaluated against the Trypanosoma brucei bloodstream form of T. brucei, L. infantum amastigotes, M. tuberculosis (MTB) sensitive strain and MTB clinical Mycobacterium tuberculosis isolates. Complexes showed a significant increase of the anti-T. brucei activity with respect to the free ligands Leishmaniasis (> 28- and > 46-fold for Trop and 6- and 22-fold for Hino coordinated to Pt-dppf and Pd-dppf, respectively), yielding IC50 values < 5 μM. The complexes proved to be more potent than the antitrypanosomal drug Nifurtimox. The new ferrocenyl derivatives were more selective towards the parasite than the free ligands. The Pt compounds were less toxic on J774 murine macrophages (mammalian cell model), than the Pd ones, showing selectivity index values (SI = IC50 murine macrophage/IC50 T. -
Antiplasmodial Natural Products: an Update Nasir Tajuddeen and Fanie R
Tajuddeen and Van Heerden Malar J (2019) 18:404 https://doi.org/10.1186/s12936-019-3026-1 Malaria Journal REVIEW Open Access Antiplasmodial natural products: an update Nasir Tajuddeen and Fanie R. Van Heerden* Abstract Background: Malaria remains a signifcant public health challenge in regions of the world where it is endemic. An unprecedented decline in malaria incidences was recorded during the last decade due to the availability of efective control interventions, such as the deployment of artemisinin-based combination therapy and insecticide-treated nets. However, according to the World Health Organization, malaria is staging a comeback, in part due to the develop- ment of drug resistance. Therefore, there is an urgent need to discover new anti-malarial drugs. This article reviews the literature on natural products with antiplasmodial activity that was reported between 2010 and 2017. Methods: Relevant literature was sourced by searching the major scientifc databases, including Web of Science, ScienceDirect, Scopus, SciFinder, Pubmed, and Google Scholar, using appropriate keyword combinations. Results and Discussion: A total of 1524 compounds from 397 relevant references, assayed against at least one strain of Plasmodium, were reported in the period under review. Out of these, 39% were described as new natural products, and 29% of the compounds had IC50 3.0 µM against at least one strain of Plasmodium. Several of these compounds have the potential to be developed into≤ viable anti-malarial drugs. Also, some of these compounds could play a role in malaria eradication by targeting gametocytes. However, the research into natural products with potential for block- ing the transmission of malaria is still in its infancy stage and needs to be vigorously pursued. -
Molecular Docking Study on Several Benzoic Acid Derivatives Against SARS-Cov-2
molecules Article Molecular Docking Study on Several Benzoic Acid Derivatives against SARS-CoV-2 Amalia Stefaniu *, Lucia Pirvu * , Bujor Albu and Lucia Pintilie National Institute for Chemical-Pharmaceutical Research and Development, 112 Vitan Av., 031299 Bucharest, Romania; [email protected] (B.A.); [email protected] (L.P.) * Correspondence: [email protected] (A.S.); [email protected] (L.P.) Academic Editors: Giovanni Ribaudo and Laura Orian Received: 15 November 2020; Accepted: 1 December 2020; Published: 10 December 2020 Abstract: Several derivatives of benzoic acid and semisynthetic alkyl gallates were investigated by an in silico approach to evaluate their potential antiviral activity against SARS-CoV-2 main protease. Molecular docking studies were used to predict their binding affinity and interactions with amino acids residues from the active binding site of SARS-CoV-2 main protease, compared to boceprevir. Deep structural insights and quantum chemical reactivity analysis according to Koopmans’ theorem, as a result of density functional theory (DFT) computations, are reported. Additionally, drug-likeness assessment in terms of Lipinski’s and Weber’s rules for pharmaceutical candidates, is provided. The outcomes of docking and key molecular descriptors and properties were forward analyzed by the statistical approach of principal component analysis (PCA) to identify the degree of their correlation. The obtained results suggest two promising candidates for future drug development to fight against the coronavirus infection. Keywords: SARS-CoV-2; benzoic acid derivatives; gallic acid; molecular docking; reactivity parameters 1. Introduction Severe acute respiratory syndrome coronavirus 2 is an international health matter. Previously unheard research efforts to discover specific treatments are in progress worldwide. -
Identification and Analysis of Hepatitis C Virus NS3 Helicase Inhibitors Using Nucleic Acid Binding Assays Sourav Mukherjee1, Alicia M
Published online 27 June 2012 Nucleic Acids Research, 2012, Vol. 40, No. 17 8607–8621 doi:10.1093/nar/gks623 Identification and analysis of hepatitis C virus NS3 helicase inhibitors using nucleic acid binding assays Sourav Mukherjee1, Alicia M. Hanson1, William R. Shadrick1, Jean Ndjomou1, Noreena L. Sweeney1, John J. Hernandez1, Diana Bartczak1, Kelin Li2, Kevin J. Frankowski2, Julie A. Heck3, Leggy A. Arnold1, Frank J. Schoenen2 and David N. Frick1,* 1Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, 2University of Kansas Specialized Chemistry Center, University of Kansas, 2034 Becker Dr., Lawrence, KS 66047 and 3Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA Received March 26, 2012; Revised May 30, 2012; Accepted June 4, 2012 Downloaded from ABSTRACT INTRODUCTION Typical assays used to discover and analyze small All cells and viruses need helicases to read, replicate and molecules that inhibit the hepatitis C virus (HCV) repair their genomes. Cellular organisms encode NS3 helicase yield few hits and are often con- numerous specialized helicases that unwind DNA, RNA http://nar.oxfordjournals.org/ founded by compound interference. Oligonucleotide or displace nucleic acid binding proteins in reactions binding assays are examined here as an alternative. fuelled by ATP hydrolysis. Small molecules that inhibit After comparing fluorescence polarization (FP), helicases would therefore be valuable as molecular homogeneous time-resolved fluorescence (HTRFÕ; probes to understand the biological role of a particular Cisbio) and AlphaScreenÕ (Perkin Elmer) assays, helicase, or as antibiotic or antiviral drugs (1,2). For an FP-based assay was chosen to screen Sigma’s example, several compounds that inhibit a helicase Library of Pharmacologically Active Compounds encoded by herpes simplex virus (HSV) are potent drugs in animal models (3,4). -
Phenolic Acid Profiles of Endemic Species Verbascum Anisophyllum
ISSN 1314-6246 Nikolova et al. 2016 J. BioSci. Biotech. 2017, 6(3): 163-167 RESEARCH ARTICLE Milena Nikolova Phenolic acid profiles of endemic species Strahil Berkov Marina Dimitrova Verbascum anisophyllum and Verbascum Boryana Sidjimova davidoffii Stoyan Stoyanov Marina Stanilova Authors’ addresses: ABSTRACT 1 Institute of Biodiversity and The profiles of methanol extractable and methanol insoluble bound phenolic acids of Ecosystem Research, Bulgarian Academy of Sciences 23, Acad. G. two species: Verbascum anisophyllum Murb (Balkan endemic) and Verbascum Bonchev Str., 1113 Sofia, Bulgaria. davidoffii Murb. (Bulgarian endemic) were determined. Free radical scavenging activity and total phenolic content of studied extracts and fractions were evaluated by Correspondence: DPPH antioxidant method and Folin–Ciocalteu reagent, respectively. Phenolic acid Milena Nikolova Institute of Biodiversity and Ecosystem profiles were analyzed by GC/MS. Sixteen phenolic acids and their derivatives were Research, Bulgarian Academy of detected. Ferulic acid was the major individual phenolic acid presented in all extracts Sciences 23, Acad. G. Bonchev Str., and fractions. Hydroxycinnamic, vanillic and p-hydroxybenzoic acids were also 1113 Sofia, Bulgaria. Tel.: +359 2 9793758 abundant in the studied phenolic acid profiles. The presence of gentisic, syringic, Fax: +359 2 8705498 isoferulic, dihydroferulic, eudesmic, 3,5-di-tert-butyl-4-hydroxybenzoic acids were e-mail: [email protected] reported for the first time to Verbascum species. The greatest variety of phenolic acids was found in the fractions containing methanol insoluble bound hydrolysable phenolic Article info: Received: 8 December 2017 acids. The highest free radical scavenging activity and total phenolic content were Accepted: 31 December 2017 established for methanol extractable alkaline hydrolysable fractions. -
Contribution of Flavonoids and Iridoids to the Hypoglycaemic, Antioxidant, and Nitric Oxide (NO) Inhibitory Activities of Arbutus Unedo L
antioxidants Article Contribution of Flavonoids and Iridoids to the Hypoglycaemic, Antioxidant, and Nitric Oxide (NO) Inhibitory Activities of Arbutus unedo L. Maria Concetta Tenuta 1,2, Brigitte Deguin 2,*, Monica Rosa Loizzo 1 , Annabelle Dugay 2, Rosaria Acquaviva 3, Giuseppe Antonio Malfa 3 , Marco Bonesi 1, Chouaha Bouzidi 2 and Rosa Tundis 1 1 Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (Cosenza), Italy; [email protected] (M.C.T.); [email protected] (M.R.L.); [email protected] (M.B.); [email protected] (R.T.) 2 Université de Paris, UFR de Pharmacie de Paris, U.M.R. n◦8038, -CiTCoM- (CNRS, Université de Paris), F-75006 Paris, France; [email protected] (A.D.); [email protected] (C.B.) 3 Department of Drug Science - Biochemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; [email protected] (R.A.); [email protected] (G.A.M.) * Correspondence: [email protected] Received: 7 February 2020; Accepted: 20 February 2020; Published: 22 February 2020 Abstract: This study aims at investigating the contribution of two classes of compounds, flavonoids and iridoids, to the bioactivity of Arbutus unedo L. leaves and fruits. The impact of different extraction procedures on phytochemicals content and hypoglycemic, antioxidant, and nitric oxide (NO) inhibitory activities of A. unedo fresh and dried plant materials was investigated. Ellagic acid 4-O-β-D-glucopyranoside, kaempferol 3-O-glucoside, and norbergenin were identified for the first time in this genus by using liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry (LC-ESI-QTOF-MS). -
Ethanol, Catecholamines and Alkaloids: Interface of Neurochemistry and Alcoholism
Loyola University Chicago Loyola eCommons Dissertations Theses and Dissertations 1974 Ethanol, Catecholamines and Alkaloids: Interface of Neurochemistry and Alcoholism Joel Allen Rubenstein Loyola University Chicago Follow this and additional works at: https://ecommons.luc.edu/luc_diss Part of the Pharmacology, Toxicology and Environmental Health Commons Recommended Citation Rubenstein, Joel Allen, "Ethanol, Catecholamines and Alkaloids: Interface of Neurochemistry and Alcoholism" (1974). Dissertations. 1428. https://ecommons.luc.edu/luc_diss/1428 This Dissertation is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Dissertations by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 1974 Joel Allen Rubenstein ETHANOL, CATECHOLAMINES AND ALKALOIDS : INTERFACE OF NEUROCHEMISTRY AND ALCOHOLISM by Joel Allen Rubenstein A Dissertation Submitted to the Faculty of the Graduate School of Loyola University of Chicago in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy June 1974 Joel Allen Rubenstein Loyola University of Chicago ETHANOL, CATECHOI.AMINES AND ALKALOIDS: INTERFACE Of NEUROCHEMISTRY AND ALCOHOLISM The theory has been advanced that tetrahydroisoquinoline (TIQ) alkaloids may form in neuronal and chrornaffin cells during alcohol metab olism via condensation of catecholamines (CAs) and alcohol-derived aldehydes. The cyclic CA-type alkaloids could assume a physiological role in the development of alcohol dependence (G.Cohen and M. Collins, Science 167: 1749-1751). As groundwork for in vivo studies on TIQs during alcoholism, the following questions required study. -
Personal Care Products Are Only One of Many Exposure Routes of Natural Toxic Substances to Humans and the Environment
cosmetics Article Personal Care Products Are Only One of Many Exposure Routes of Natural Toxic Substances to Humans and the Environment Thomas D. Bucheli 1,*, Bjarne W. Strobel 2 and Hans Chr. Bruun Hansen 2 ID 1 Agroscope, Environmental Analytics, Reckenholzstrasse 191, 8046 Zürich, Switzerland 2 Department of Plant and Environmental Sciences (PLEN), University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Copenhagen, Denmark; [email protected] (B.W.S.); [email protected] (H.C.B.H.) * Correspondence: [email protected]; Tel.: +41-58-468-7342 Received: 1 December 2017; Accepted: 3 January 2018; Published: 9 January 2018 Abstract: The special issue “A Critical View on Natural Substances in Personal Care Products” is dedicated to addressing the multidisciplinary special challenges of natural ingredients in personal care products (PCP) and addresses also environmental exposure. In this perspective article, we argue that environmental exposure is probably not so much dominated by PCP use, but in many cases by direct emission from natural or anthropogenically managed vegetation, including agriculture. In support of this hypothesis, we provide examples of environmental fate and behaviour studies for compound classes that are either listed in the International Nomenclature of Cosmetics Ingredients (INCI) or have been discussed in a wider context of PCP applications and have been classified as potentially harmful to humans and the environment. Specifically, these include estrogenic isoflavones, the carcinogenic ptaquiloside and pyrrolizidine alkaloids, saponins, terpenes and terpenoids, such as artemisinin, and mycotoxins. Research gaps and challenges in the domains of human and environmental exposure assessment of natural products common to our currently rather separated research communities are highlighted.