Diseño Por Topología Molecular Y Ensayos Farmacológicos De Nuevos Antiinflamatorios

Total Page:16

File Type:pdf, Size:1020Kb

Diseño Por Topología Molecular Y Ensayos Farmacológicos De Nuevos Antiinflamatorios UNIVERSITAT DE VALENCIA !"#$"%&'"()*(+,"-)',#,*&(.(/&%-&#,&( ! !"#$%&'(&)'*&(&+&,-.'/&+$01+.)'2'$3#.2&#'4.)/.0&+5,"0&#' !$'31$6&#'.3*""34+./.*&)"&#' !,%)#$"%)01( <)0,0(!"#$"%&7( 2&%,(3&%-)*(4)#,"(567)0,&0( 2&%:&(9=7>)?(@7"-A&%$( 4&-8*(9&%#:&(!"-)*)#;( B&7)*#,&C(DEFG( ! ! ! ! ! ! ! ! "!#$!%$&'! "!#$!#'($)*! "!#$!+'#$,$'! ! ! ! !"#!$%&'('%)*+,- A mi directora, Mari Carmen, por su cercanía, su amabilidad y por haberme transmitido la pasión por la Farmacología. A mi codirector, Ramón, por su paciencia, su afabilidad y por haber sabido guiarme en todas las etapas de mi carrera investigadora sin dejar de creer en mí. A la Universitat de Valencia, por los medios puestos a mi disposición y permitirme disfrutar del programa de Atracció de Talents durante 4 maravillosos años. A la Università di Bologna, por la gran acogida que siempre me ha brindado. Concretamente, a la Prof. Patrizia Romualdi, la coordinadora erasmus que cambió mi vida. Gracias a ti conocí al que es hoy mi marido y gracias a ti conocí lo que significa trabajar por primera vez en un laboratorio extranjero. Gracias a todas las personas con las que compartí mi estancia en Italia. Gracias al Dr. Alberto del Rio, por su disponibilidad, su comprensión y su paciencia, me enseñaste que se puede emprender y ser científico al mismo tiempo. A todos los compañeros/as y profesores visitantes que he podido conocer a lo largo de estos años en el laboratorio de Farmacología. A todos los del departamento de Farmacología y del de Química Física que he tenido el gusto de conocer: Rosa, José Luís, Salva, Mamen, Lionello, Olga, Facundo, Julián, Juan Luis, Nacho, Pepe… A mi padre, Jorge, por haberme transmitido la pasión por la Topología molecular. He hecho mía tu lucha porque esta disciplina de la química matemática se reconozca algún día como el paradigma nuevo que representa. Dicen que tenemos el mismo carácter (yo espero que no sea así), pero algo de razón tienen que llevar porque somos igual de testarudos. A mi madre, María José, por ser la mujer que más admiro la que desde pequeña me transmitió la cultura del esfuerzo y del trabajo diario. Gracias a ti he logrado llegar a este momento. Gracias por ser amiga, compañera y, sobre todo, madre. Tú me has enseñado que hay que ser humilde y buena persona por encima de todo. Ahora que soy madre me doy cuenta de que la ciencia es apasionante, pero formar parte de una familia es lo más importante para mí. En eso tú has sido mi “directora”. A mi marido, Riccardo, el amor de mi vida y la persona que tiene la paciencia de soportarme día tras día. Nos conocimos allá por septiembre de 2006 y quien nos iba a decir a nosotros que un Erasmus cambiaría tanto nuestras vidas. Allá por mayo de 2007 comenzamos a escribir juntos nuestra historia. Hoy te has convertido no solo en mi mejor amigo, mi marido y el padre de la luz de mi vida, sino que haces que cada día aprenda de ti y me vaya haciendo una mejor persona. Me transmites tu pasión por los pequeños detalles, tu cercanía con las personas, tu alegría y tu sentimiento de la justicia. Ti amo. A mi hija, Claudia, mi luz desde que llegaste a este mundo un 21 de febrero de 2014 y la lente con la cambié mi visión del mundo. Gracias porque cuando vuelvo del trabajo y he tenido un día duro y te veo de lejos se me dibuja una sonrisa que nadie puede borrar. Te amo. Al resto de mi familia, mi hermano Jorge, mi tía Helen, por compartir mis vivencias durante estos años. A mis amigos, vosotros sabéis quienes sois. Por estar siempre a mi lado y transmitirme vuestra pasión por vuestras profesiones, por apoyarme y escucharme tantas y tantas veces sobre lo duro que es la vida del investigador. Alla mia famiglia italiana, perche sempre ci aiutate dove e come sia per soppraporci ad ogni imprevisto. Perche mi avete fatto amare l’ Italia, la gente, il cibo e la cultura. A todas las personas que veo a diario y que me han hecho tan agradables estos años en la Universidad como el servicio de limpieza y el personal del bar de Farmacia. A todos a los que no he citado y habéis contribuido a que hoy esté escribiendo estas líneas. Por último, a todos los que ya no están y me hubiera gustado compartir con ellos este momento. Concretamente a ti, Marga. !! La presente Tesis Doctoral ha sido financiada por el proyecto SAF2009-13059-C03-02 concedido por el Ministerio Español de Ciencia e Innovación (MICINN) junto al fondo europeo de Desarrollo Regional y la ayuda concedida por la Universitat de València (UV-INV-AE14-265774). La realización de la presente Tesis Doctoral ha sido posible gracias al contrato predoctoral VLC-Campus d’ Atracció de talents, concedida por la Universitat de València. ! ! La presente Tesis Doctoral ha dado lugar a las siguientes publicaciones: ARTÍCULOS M. Gálvez-Llompart; R. M. Giner; M. C. Recio; S. Candeletti; R. García-Domenech. Application of Molecular Topology to the Search of Novel NSAIDs: Experimental Validation of Activity. Letters in Drug Design & Discovery, 2010, 7, 438-445. M. Gálvez-Llompart; M. C. Recio; R. García-Domenech. Topological virtual screening: a way to find new compounds active in ulcerative colitis by inhibiting NF-κB. Molecular Diversity, 2011, 15, 917–926. J. Galvez; M. Galvez-Llompart; R. García-Domenech. Molecular topology as a novel approach for drug discovery. Expert Opinion On Drug Discovery, 2012, 7(2), 133-153. J. Gálvez; M. Gálvez-Llompart; R. García-Domenech. Introduction to Molecular Topology: Basic Concepts and Application to Drug Design. Current Computer-Aided Drug Design, 2012, 8(3), 196- 223. M. Galvez-Llompart; M. C. Recio Iglesias; J. Gálvez; R. García-Domenech. Novel potential agents for ulcerative colitis by molecular topology: suppression of IL-6 production in Caco-2 and RAW264.7 cell lines. Molecular Diversity, 2013, 17(3),573– 593. R. García-Domenech; M. Gálvez-Llompart; R. Zanni; M. C. Recio; J. Gálvez. QSAR methods for the discovery of new inflammatory bowel disease drugs. Expert Opinion On Drug Discovery, 2013, 8(8), 933- 949. R. Zanni; M. Galvez-Llompart; R. García-Domenech; J. Galvez. Latest advances in molecular topology applications for drug discovery. Expert Opinion On Drug Discovery, 2015, 10(9), 945-957. !"# $%&'()*+&,-./012# !"# 3"# 4(56,2# 4"# $/057/*8,-(9(5:2# ;"# $%&'()"# !,&(5<&/0# 1,.,&,=>?#@#A10/1(=>#1,#6B(916C>#9,'(&#5,-.,<9BA#/=/69A1#<&5(0/16'(#5,&616A!"!"#$%&#'() *+,$(-+./)#$%&0)1112))34,+'5"2 COMUNICACIONES A CONGRESOS J. Gálvez Alvarez; M. Gálvez Llompart; R. García Domenech. Application of Molecular Topology to the Search of New Compounds Active in Ulcerative Colitis and Crohn’s Disease. 11th Annual Drug Discovery, Montreux (Suiza), 2010. COMUNICACIÓN ORAL. M. Galvez-Llompart; R. Zanni; R. Garcia-Domenech. New inhibitors of IL-6 production in Caco-2 cells through molecular topology methodology. XXXIII Congreso Nacional de la Sociedad Española de Farmacología, Malaga (España), 2011. POSTER. M. Galvez-Llompart; M. C. Recio; R. Garcia-Domenech. New compounds against ulcerative colitis through molecular topology. European Crohn’s and Colitis Organisation Congress, Barcelona (España), 2012. POSTER. ÍNDICE I. RESUMEN ............................................................................................................................... 3 II. INTRODUCCIÓN ................................................................................................................. 9 II.1. DISEÑO Y DESCUBRIMIENTO DE FÁRMACOS ASISTIDO POR ORDENADOR . 9 II.2. QSAR .............................................................................................................................. 13 II.3. TOPOLOGÍA MOLECULAR ........................................................................................ 17 II.3.1. Teoría de Grafos ..................................................................................................... 17 II.3.1.1. Principios ........................................................................................................... 17 II.3.1.2. Moléculas representadas como grafos ............................................................... 21 II.3.2. Índices topológicos ................................................................................................. 22 II.3.3. Diseño de fármacos por Topología molecular ..................................................... 28 II.4. INFLAMACIÓN ............................................................................................................. 31 II.4.1. Enfermedades inflamatorias ................................................................................. 32 II.4.2. Principales mediadores inflamatorios .................................................................. 34 II.5. ENFERMEDAD INFLAMATORIA INTESTINAL ...................................................... 36 II.5.1. Colitis ulcerosa ....................................................................................................... 36 II.5.1.1. Factores implicados en la CU ............................................................................ 37 II.5.1.2. Prevalencia e incidencia de la CU ..................................................................... 39 II.5.1.3. Impacto socio-económico de la CU ................................................................... 39 II.5.1.4. Terapia actual de la CU ..................................................................................... 41 II.5.1.5. Mediadores implicados en la CU ....................................................................... 44 III. OBJETIVOS ......................................................................................................................
Recommended publications
  • Metabolic Engineering of Microbial Cell Factories for Biosynthesis of Flavonoids: a Review
    molecules Review Metabolic Engineering of Microbial Cell Factories for Biosynthesis of Flavonoids: A Review Hanghang Lou 1,†, Lifei Hu 2,†, Hongyun Lu 1, Tianyu Wei 1 and Qihe Chen 1,* 1 Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; [email protected] (H.L.); [email protected] (H.L.); [email protected] (T.W.) 2 Hubei Key Lab of Quality and Safety of Traditional Chinese Medicine & Health Food, Huangshi 435100, China; [email protected] * Correspondence: [email protected]; Tel.: +86-0571-8698-4316 † These authors are equally to this manuscript. Abstract: Flavonoids belong to a class of plant secondary metabolites that have a polyphenol structure. Flavonoids show extensive biological activity, such as antioxidative, anti-inflammatory, anti-mutagenic, anti-cancer, and antibacterial properties, so they are widely used in the food, phar- maceutical, and nutraceutical industries. However, traditional sources of flavonoids are no longer sufficient to meet current demands. In recent years, with the clarification of the biosynthetic pathway of flavonoids and the development of synthetic biology, it has become possible to use synthetic metabolic engineering methods with microorganisms as hosts to produce flavonoids. This article mainly reviews the biosynthetic pathways of flavonoids and the development of microbial expression systems for the production of flavonoids in order to provide a useful reference for further research on synthetic metabolic engineering of flavonoids. Meanwhile, the application of co-culture systems in the biosynthesis of flavonoids is emphasized in this review. Citation: Lou, H.; Hu, L.; Lu, H.; Wei, Keywords: flavonoids; metabolic engineering; co-culture system; biosynthesis; microbial cell factories T.; Chen, Q.
    [Show full text]
  • Candidate Gene Identification from the Wheat QTL-2DL for Resistance Against Fusarium Head Blight Based on Metabolo-Genomics Approach
    Candidate gene identification from the wheat QTL-2DL for resistance against Fusarium head blight based on metabolo-genomics approach Udaykumar Kage Department of Plant Science McGill University, Montreal, Canada August 2016 A thesis submitted to the McGill University in partial fulfillment of the requirements of the degree of Doctor of Philosophy ©Udaykumar Kage (2016) i Dedicated to my beloved parents ii TABLE OF CONTENTS TABLE OF CONTENTS………………………………………………………………………...iii LIST OF TABLES……………………………………………………………………………...viii LIST OF FIGURES………………………………………………………………………………ix LIST OF APPENDICES…………………………………………………………………………xv LIST OF ABBREVIATIONS…………………………………………………………………...xvi ABSTRACT…………………………………………………………………………………...xviii ACKNOWLEDGEMENT……………………………………………………………………...xxi PREFACE AND CONTRIBUTION OF THE AUTHORS……………………………………..01 PREFACE……………………………………………………………………………………......01 CONTRIBUTION OF THE AUTHORS………………………………………………………...02 CHAPTER I: GENERAL INTRODUCTION…………………………………………………...03 GENERAL HYPOTHESIS……………………………………………………………………...07 GENERAL OBJECTIVES……………………………………………………………………....07 CHAPTER II: REVIEW OF THE LITERATURE……………………………………………...08 2.1 Fusarium head blight of wheat at a glance…………………………………………………...08 2.1.1 Fusarium head blight epidemiology and impact on wheat production…………………08 2.1.2 FHB management practices ……………………………………………………….……10 2.1.3 FHB management through breeding for disease resistance…………………………….11 2.1.3.1 Types of Fusarium head blight resistance………………………………………….12 2.1.3.2 Molecular markers and QTL for FHB resistance……………………………….…13
    [Show full text]
  • Safranal, a Saffron Constituent, Attenuates Retinal Degeneration in P23H Rats
    Safranal, a Saffron Constituent, Attenuates Retinal Degeneration in P23H Rats Laura Ferna´ndez-Sa´nchez1., Pedro Lax1., Gema Esquiva1, Jose´ Martı´n-Nieto1, Isabel Pinilla2, Nicola´s Cuenca1* 1 Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain, 2 Department of Ophthalmology, University Hospital Lozano Blesa, Zaragoza, Spain Abstract Saffron, an extract from Crocus sativus, has been largely used in traditional medicine for its antiapoptotic and anticarcinogenic properties. In this work, we investigate the effects of safranal, a component of saffron stigmas, in attenuating retinal degeneration in the P23H rat model of autosomal dominant retinitis pigmentosa. We demonstrate that administration of safranal to homozygous P23H line-3 rats preserves both photoreceptor morphology and number. Electroretinographic recordings showed higher a- and b-wave amplitudes under both photopic and scotopic conditions in safranal-treated versus non-treated animals. Furthermore, the capillary network in safranal-treated animals was preserved, unlike that found in untreated animals. Our findings indicate that dietary supplementation with safranal slows photoreceptor cell degeneration and ameliorates the loss of retinal function and vascular network disruption in P23H rats. This work also suggests that safranal could be potentially useful to retard retinal degeneration in patients with retinitis pigmentosa. Citation: Ferna´ndez-Sa´nchez L, Lax P, Esquiva G, Martı´n-Nieto J, Pinilla I, et al. (2012) Safranal, a Saffron Constituent, Attenuates Retinal Degeneration in P23H Rats. PLoS ONE 7(8): e43074. doi:10.1371/journal.pone.0043074 Editor: Alfred Lewin, University of Florida, United States of America Received May 3, 2012; Accepted July 16, 2012; Published August 10, 2012 Copyright: ß 2012 Ferna´ndez-Sa´nchez et al.
    [Show full text]
  • Synthesis of Ochnaflavone and Its Inhibitory Activity on PGE 2
    Synthesis and Biological Activity of Ochnaflavone Bull. Korean Chem. Soc. 2014, Vol. 35, No. 11 3219 http://dx.doi.org/10.5012/bkcs.2014.35.11.3219 Synthesis of Ochnaflavone and Its Inhibitory Activity on PGE2 Production Sung Soo Kim,† Van Anh Vo,† and Haeil Park* College of Pharmacy and †Medicine of Kangwon National University, Chuncheon 200-701, Korea *E-mail: [email protected] Received June 5, 2014, Accepted July 11, 2014 Ochnaflavone, a naturally occurring biflavonoid composed of two units of apigenin (5,7,4'-trihydroxyflavone) joined via a C-O-C linkage, was first synthesized and evaluated its inhibitory activity on PGE2 production. Total synthesis was accomplished through modified Ullmann diaryl ether formation as a key step. Coupling reactions of 4'-halogenoflavones and 3'-hydroxy-5,7,4'-trimethoxyflavone were explored in diverse reaction conditions. The reaction of 4'-fluoro-5,7-dimethoxyflavone (2c) and 3'-hydroxy-5,7,4'-trimethoxyflavone (2d) in N,N-dimethylacetamide gave the coupled compound 3 in 58% yield. Synthetic ochnaflavone strongly inhibited PGE2 production (IC50 = 1.08 µM) from LPS-activated RAW 264.7 cells, which was due to reduced expression of COX-2. On the contrary, the inhibition mechanism of wogonin was somewhat different from that of ochnaflavone although wogonin, a natural occurring anti-inflammatory flavonoid, showed strong inhibitory activity of PGE2 production (IC50 = 0.52 µM), and seems to be COX-2 enzyme inhibition. Our concise total synthesis of ochnaflavone enable us to provide sufficient quantities of material for advanced biological studies as well as to efficiently prepare derivatives for structure-activity relationship study.
    [Show full text]
  • Oral Fluid Drug Test Package Insert
    Marijuana (THC) 11-nor-Δ9-THC-9 COOH 4 MTD: Methadone is a synthetic analgesic drug originally used for the Oral Fluid Drug Test treatment of narcotic addiction. In addition to use as a narcotic agonist, methadone is being used more frequently as a pain management agent. The Marijuana (THC) Δ9-THC 50 Package Insert psychological effects induced by using methadone are analgesia, sedation, and respiratory depression. Based on the saliva/plasma ratio calculated over Package insert for testing of the following drugs: > 0.02 % Alcohol (ALC) Alcohol salivary pH ranges of 6.4-7.6 for therapeutic or recreational doses of Amphetamine,Cocaine,Marijuana,Methamphetamine,Opiate,Methadone, B.A.C methadone, a cut-off <50 ng/mL is suggested. Due to this recommendation, Phencyclidine,Oxycodone,Benzodiazepine,Buprenorphine,Barbiturates, the cut-off level of the methadone test was calibrated to 30 ng/mL. Cotinine,EDDP,MDMA,6-MAM,Propoxyphene ,Fentanyl,ETG and Alcohol Tramadol(TRA) 50 Tramadol PCP: Phencyclidine is a hallucinogen and, can be detected in oral fluid as a INTENDED USE & SUMMARY result of the exchange of the drug between the circulatory system and the oral cavity.5 Fentanyl(FEN) 10 The Oral Fluid Drug And Alcohol Test is intended for screening for the Norfentanyl presence of drugs and alcohol and their metabolites in oral fluid. For professional in vitro diagnostic use only. OXY: Oxycodone is a semi-synthetic opioid with a structural similarity to Ethyl codeine. The drug is manufactured by modifying thebaine, an alkaloid found in 150 The Oral Fluid Pipette Test is a lateral flow chromatographic immunoassay for Glucuronide(ETG) the opium poppy.
    [Show full text]
  • Review Memorandum
    510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY ASSAY ONLY TEMPLATE A. 510(k) Number: k062165 B. Purpose for Submission: New device C. Measurand: Barbiturates D. Type of Test: Qualitative and semi-quantitative enzyme immunoassay E. Applicant: Ortho-Clinical Diagnostics, Inc. F. Proprietary and Established Names: VITROS Chemistry Products BARB Reagent VITROS Chemistry Products Calibrator 26 VITROS Chemistry Products FS Calibrator 1 VITROS Chemistry Products DAT Performance Verifiers I, II, III, IV and V G. Regulatory Information: 1. Regulation section: 21 CFR 862.3150, Barbiturates test system 21 CFR 862.3200, Clinical Toxicology Calibrator 21 CFR 862.3180, Clinical Toxicology Control 2. Classification: Class II, (reagent, calibrator) Class I, reserved (control) 3. Product code: DIS, DLJ and DIF 4. Panel: Toxicology (91) 1 H. Intended Use: 1. Intended use(s): See Indications for use. 2. Indication(s) for use: VITROS Chemistry Products BARB Reagent: For in vitro diagnostic use only. VITROS Chemistry Products BARB Reagent is used on VITROS 5,1 FS Chemistry Systems for the semi- quantitative or qualitative determination of barbiturates (BARB) in human urine using a cutoff of 200 ng/mL or 300 ng/mL. Measurements obtained with the VITROS BARB method are used in the diagnosis and treatment of barbiturates use or overdose. The VITROS Chemistry Products BARB assay is intended for use by professional laboratory personnel. It provides only a preliminary test result. A more specific alternative chemical method must be used to confirm a result with this assay. Gas Chromatograpy/Mass Spectrometry (GC/MS) is the preferred confirmatory method. Clinical consideration and professional judgment should be applied to any drug-of-abuse test result, particularly when evaluating a preliminary positive result.
    [Show full text]
  • Determinación Técnica Analitos LC
    AGROALIMENTARIO 201 8 LISTADO DE DETERMINACIONES Determinación Técnica Analitos LC Butyric Acid, Hexanoic Acid, Octanoic Acid, Decanoic Acid, Undecanoic Acid, Lauric Acid, Tridecanoic Acid, Myristic Acid, Myristoleic Acid, Pentadecanoic Acid, cis-10-pentadecenoic Acid, Palmitic Acid, Palmitoleic Acid, Heptadecanoic Acid, cis-10-Heptadecanoic Acid, Stearic Acid, trans-9-Elaidic Acid, cis-9- Oleic Acid, linolelaidic Acid, linoleic Acid, arachidic Acid, γ-linolenic Acid, eicosenoic Acid, linolenic Acid, Ácidos Grasos GC 0,10 % heneicosanoic Acid, cis-11,14-Eicosadienoic Acid, Behenic Acid, cis-8,11,14-Eicosatrienoic Acid, Erucic Acid, cis-11,14,17-Eicosatrienoic Acid, cis-5,8,11,14-Eicosatetraenoic Acid, Tricosenoic Acid, cis-13,16- Docosadienoic Acid, Lignoceroic Acid, cis-5,8,11,14,17-Eicosapentaenoic Acid, Nervonic Acid, cis- 4,7,10,13,16,19-Docosahexaenoic Acid, cis-4,7,10,13,16,19-Docosahexaenoic Acid Ácidos Grasos cis-trans GC/MS omega3, omega 6 o DHA y omega 9 0,10 % Ác. Acético, Ác. Ascórbico, Ác.Butírico, Ác. Benzoico, Ác. Cítrico, Ác. Fórmico, Ác. Propiónico, Ác. Ácidos Orgánicos HPLC 10 mg/kg Salicílico, Ác. Sórbico, Ác. Shikímico, Ác. Valérico, Ác. Iso-Valérico, Ác. Hexanoico, Ac. Gluconico Ácidos Orgánicos LC/MS/MS Ac. Gluconico 0.05 g/L Acrilamida LC/MS/MS Acrilamida 1 µg/kg Aflatoxinas LC/MS/MS Aflatoxin B1, Aflatoxin B2, Aflatoxin G1, Aflatoxin G2 1 µg/kg Alcoholes GC 1-Butanol, Ethanol, Hexanol, Isobutanol, Isopropanol, Methanol, Propanol 1 mg/kg Aldehídos GC Formaldehyde, Acetaldehyde, Propanal, Butanal, Furfural 0.1 mg/kg
    [Show full text]
  • IN SILICO ANALYSIS of FUNCTIONAL Snps of ALOX12 GENE and IDENTIFICATION of PHARMACOLOGICALLY SIGNIFICANT FLAVONOIDS AS
    Tulasidharan Suja Saranya et al. Int. Res. J. Pharm. 2014, 5 (6) INTERNATIONAL RESEARCH JOURNAL OF PHARMACY www.irjponline.com ISSN 2230 – 8407 Research Article IN SILICO ANALYSIS OF FUNCTIONAL SNPs OF ALOX12 GENE AND IDENTIFICATION OF PHARMACOLOGICALLY SIGNIFICANT FLAVONOIDS AS LIPOXYGENASE INHIBITORS Tulasidharan Suja Saranya, K.S. Silvipriya, Manakadan Asha Asokan* Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Viswa Vidyapeetham University, AIMS Health Sciences Campus, Kochi, Kerala, India *Corresponding Author Email: [email protected] Article Received on: 20/04/14 Revised on: 08/05/14 Approved for publication: 22/06/14 DOI: 10.7897/2230-8407.0506103 ABSTRACT Cancer is a disease affecting any part of the body and in comparison with normal cells there is an elevated level of lipoxygenase enzyme in different cancer cells. Thus generation of lipoxygenase enzyme inhibitors have suggested being valuable. Individual variation was identified by the functional effects of Single Nucleotide Polymorphisms (SNPs). 696 SNPs were identified from the ALOX12 gene, out of which 73 were in the coding non-synonymous region, from which 8 were found to be damaging. In silico analysis was performed to determine naturally occurring flavonoids such as isoflavones having the basic 3- phenylchromen-4-one skeleton for the pharmacological activity, like Genistein, Diadzein, Irilone, Orobol and Pseudobaptigenin. O-methylated isoflavones such as Biochanin, Calycosin, Formononetin, Glycitein, Irigenin, 5-O-Methylgenistein, Pratensein, Prunetin, ψ-Tectorigenin, Retusin and Tectorigenine were also used for the study. Other natural products like Aesculetin, a coumarin derivative; flavones such as ajoene and baicalein were also used for the comparative study of these natural compounds along with acteoside and nordihydroguaiaretic acid (antioxidants) and active inhibitors like Diethylcarbamazine, Zileuton and Azelastine as standard for the computational analysis.
    [Show full text]
  • Phytochem Referenzsubstanzen
    High pure reference substances Phytochem Hochreine Standardsubstanzen for research and quality für Forschung und management Referenzsubstanzen Qualitätssicherung Nummer Name Synonym CAS FW Formel Literatur 01.286. ABIETIC ACID Sylvic acid [514-10-3] 302.46 C20H30O2 01.030. L-ABRINE N-a-Methyl-L-tryptophan [526-31-8] 218.26 C12H14N2O2 Merck Index 11,5 01.031. (+)-ABSCISIC ACID [21293-29-8] 264.33 C15H20O4 Merck Index 11,6 01.032. (+/-)-ABSCISIC ACID ABA; Dormin [14375-45-2] 264.33 C15H20O4 Merck Index 11,6 01.002. ABSINTHIN Absinthiin, Absynthin [1362-42-1] 496,64 C30H40O6 Merck Index 12,8 01.033. ACACETIN 5,7-Dihydroxy-4'-methoxyflavone; Linarigenin [480-44-4] 284.28 C16H12O5 Merck Index 11,9 01.287. ACACETIN Apigenin-4´methylester [480-44-4] 284.28 C16H12O5 01.034. ACACETIN-7-NEOHESPERIDOSIDE Fortunellin [20633-93-6] 610.60 C28H32O14 01.035. ACACETIN-7-RUTINOSIDE Linarin [480-36-4] 592.57 C28H32O14 Merck Index 11,5376 01.036. 2-ACETAMIDO-2-DEOXY-1,3,4,6-TETRA-O- a-D-Glucosamine pentaacetate 389.37 C16H23NO10 ACETYL-a-D-GLUCOPYRANOSE 01.037. 2-ACETAMIDO-2-DEOXY-1,3,4,6-TETRA-O- b-D-Glucosamine pentaacetate [7772-79-4] 389.37 C16H23NO10 ACETYL-b-D-GLUCOPYRANOSE> 01.038. 2-ACETAMIDO-2-DEOXY-3,4,6-TRI-O-ACETYL- Acetochloro-a-D-glucosamine [3068-34-6] 365.77 C14H20ClNO8 a-D-GLUCOPYRANOSYLCHLORIDE - 1 - High pure reference substances Phytochem Hochreine Standardsubstanzen for research and quality für Forschung und management Referenzsubstanzen Qualitätssicherung Nummer Name Synonym CAS FW Formel Literatur 01.039.
    [Show full text]
  • Gedunin-And Khivorin-Derivatives Are Small Molecule Partial Agonists For
    Molecular Pharmacology Fast Forward. Published on February 23, 2018 as DOI: 10.1124/mol.117.111476 This article has not been copyedited and formatted. The final version may differ from this version. MOL #111476 Title Page: Gedunin- and Khivorin-Derivatives are Small Molecule Partial Agonists for Adhesion G protein Coupled Receptors GPR56 / ADGRG1 and GPR114 / ADGRG5. Hannah M. Stoveken, Scott D. Larsen, Alan V. Smrcka, and Gregory G. Tall Department of Pharmacology, University of Michigan (H.M.S., A.V.S., G.G.T.) Department of Medicinal Chemistry, University of Michigan (S.D.L.) Downloaded from molpharm.aspetjournals.org at ASPET Journals on September 25, 2021 1 Molecular Pharmacology Fast Forward. Published on February 23, 2018 as DOI: 10.1124/mol.117.111476 This article has not been copyedited and formatted. The final version may differ from this version. MOL #111476 Running Title: An adhesion GPCR natural product partial agonist. Corresponding Author: Gregory G. Tall Department of Pharmacology University of Michigan MSRBIII Room 1220A Ann Arbor, MI 48109-5632 (734)-764-8165 [email protected] Downloaded from Text Pages: 45 Tables: 0 Figures: 5 molpharm.aspetjournals.org References: 64 Abstract: 244 words Introduction: 989 words Discussion: 1466 words Nonstandard abbreviations: at ASPET Journals on September 25, 2021 3-a-DOG: 3-a-acetoxydihydrodeoxygedunin 7TM: Seven-Transmembrane Domain aGPCR: Adhesion G Protein Coupled Receptor CCh: Carbachol DHM: Dihydromunduletone ECD: Extracellular Domain ECM: Extracellular Matrix GAIN: GPCR Autoproteolysis-Inducing Domain GPCR: G Protein Coupled Receptor HTS: High Throughput Screening ISO: Isoproterenol 2 Molecular Pharmacology Fast Forward. Published on February 23, 2018 as DOI: 10.1124/mol.117.111476 This article has not been copyedited and formatted.
    [Show full text]
  • Trkb Receptor Signalling: Implications in Neurodegenerative, Psychiatric and Proliferative Disorders
    Int. J. Mol. Sci. 2013, 14, 10122-10142; doi:10.3390/ijms140510122 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review TrkB Receptor Signalling: Implications in Neurodegenerative, Psychiatric and Proliferative Disorders Vivek K. Gupta 1,*, Yuyi You 1, Veer Bala Gupta 2, Alexander Klistorner 1,3 and Stuart L. Graham 1,3 1 Australian School of Advanced Medicine, Macquarie University, F10A, 2 Technology Place, North Ryde, Sydney, NSW 2109, Australia; E-Mails: [email protected] (Y.Y.); [email protected] (A.K.); [email protected] (S.L.G.) 2 Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; E-Mail: [email protected] 3 Save Sight Institute, Sydney University, Sydney, NSW 2000, Australia * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +61-2-98-123-537; Fax: +61-2-98-123-600. Received: 27 March 2013; in revised form: 27 April 2013 / Accepted: 28 April 2013 / Published: 13 May 2013 Abstract: The Trk family of receptors play a wide variety of roles in physiological and disease processes in both neuronal and non-neuronal tissues. Amongst these the TrkB receptor in particular has attracted major attention due to its critical role in signalling for brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT3) and neurotrophin-4 (NT4). TrkB signalling is indispensable for the survival, development and synaptic plasticity of several subtypes of neurons in the nervous system. Substantial evidence has emerged over the last decade about the involvement of aberrant TrkB signalling and its compromise in various neuropsychiatric and degenerative conditions.
    [Show full text]
  • Figure S1. Heat Map of R (Pearson's Correlation Coefficient)
    Figure S1. Heat map of r (Pearson’s correlation coefficient) value among different samples including replicates. The color represented the r value. Figure S2. Distributions of accumulation profiles of lipids, nucleotides, and vitamins detected by widely-targeted UPLC-MC during four fruit developmental stages. The colors indicate the proportional content of each identified metabolites as determined by the average peak response area with R scale normalization. PS1, 2, 3, and 4 represents fruit samples collected at 27, 84, 125, 165 Days After Anthesis (DAA), respectively. Three independent replicates were performed for each stages. Figure S3. Differential metabolites of PS2 vs PS1 group in flavonoid biosynthesis pathway. Figure S4. Differential metabolites of PS2 vs PS1 group in phenylpropanoid biosynthesis pathway. Figure S5. Differential metabolites of PS3 vs PS2 group in flavonoid biosynthesis pathway. Figure S6. Differential metabolites of PS3 vs PS2 group in phenylpropanoid biosynthesis pathway. Figure S7. Differential metabolites of PS4 vs PS3 group in biosynthesis of phenylpropanoids pathway. Figure S8. Differential metabolites of PS2 vs PS1 group in flavonoid biosynthesis pathway and phenylpropanoid biosynthesis pathway combined with RNA-seq results. Table S1. A total of 462 detected metabolites in this study and their peak response areas along the developmental stages of apple fruit. mix0 mix0 mix0 Index Compounds Class PS1a PS1b PS1c PS2a PS2b PS2c PS3a PS3b PS3c PS4a PS4b PS4c ID 1 2 3 Alcohols and 5.25E 7.57E 5.27E 4.24E 5.20E
    [Show full text]