Candidate Gene Identification from the Wheat QTL-2DL for Resistance Against Fusarium Head Blight Based on Metabolo-Genomics Approach
Total Page:16
File Type:pdf, Size:1020Kb
Candidate gene identification from the wheat QTL-2DL for resistance against Fusarium head blight based on metabolo-genomics approach Udaykumar Kage Department of Plant Science McGill University, Montreal, Canada August 2016 A thesis submitted to the McGill University in partial fulfillment of the requirements of the degree of Doctor of Philosophy ©Udaykumar Kage (2016) i Dedicated to my beloved parents ii TABLE OF CONTENTS TABLE OF CONTENTS………………………………………………………………………...iii LIST OF TABLES……………………………………………………………………………...viii LIST OF FIGURES………………………………………………………………………………ix LIST OF APPENDICES…………………………………………………………………………xv LIST OF ABBREVIATIONS…………………………………………………………………...xvi ABSTRACT…………………………………………………………………………………...xviii ACKNOWLEDGEMENT……………………………………………………………………...xxi PREFACE AND CONTRIBUTION OF THE AUTHORS……………………………………..01 PREFACE……………………………………………………………………………………......01 CONTRIBUTION OF THE AUTHORS………………………………………………………...02 CHAPTER I: GENERAL INTRODUCTION…………………………………………………...03 GENERAL HYPOTHESIS……………………………………………………………………...07 GENERAL OBJECTIVES……………………………………………………………………....07 CHAPTER II: REVIEW OF THE LITERATURE……………………………………………...08 2.1 Fusarium head blight of wheat at a glance…………………………………………………...08 2.1.1 Fusarium head blight epidemiology and impact on wheat production…………………08 2.1.2 FHB management practices ……………………………………………………….……10 2.1.3 FHB management through breeding for disease resistance…………………………….11 2.1.3.1 Types of Fusarium head blight resistance………………………………………….12 2.1.3.2 Molecular markers and QTL for FHB resistance……………………………….…13 2.2 Functional genomics to identify candidate genes for FHB resistance…………………….....14 2.2.1 Metabolomics and analytical platforms for metabolite profiling……………………….14 2.2.2 Putative metabolite identification and databases………………………………………..16 2.2.3 Databases and bioinformatics tools to identify candidate genes……………………..…16 2.2.4 Application of metabolomics…………………………………………………………...17 2.2.5 Functional characterization of candidate genes………………………………………....18 CONNECTING STATEMENT FOR CHAPTER III……………………………………………20 CHAPETER III…………………………………………………………………………………..21 iii Identification and characterization of a Fusarium head blight resistance gene TaACT in wheat QTL-2DL……………………………………………………………………………………...21 3.1 Abstract………………………………………………………………………………………21 3.2 Introduction…………………………………………………………………………………..22 3.3 Material and Methods………………………………………………………………………..23 3.3.1 Plant material and experimental layout…………………………………………………23 3.3.2 Pathogen production and inoculation…………………………………………………...24 3.3.3 Sample collection, metabolite extraction and metabolite analysis using liquid chromatography-high resolution mass spectrometry (LC-HRMS)…………………………...24 3.3.4 Data processing using MZmine software and statistical analysis………………………24 3.3.5 Putative metabolite identification……………………………………………………….25 3.3.6 Disease severity and quantification of fungal biomass…………………………………25 3.3.7 Physical localization of QTL-2DL and identification of TaACT gene…………………26 3.3.8 Cloning, sequencing and sequence analysis of TaACT gene…………………………...26 3.3.9 RNA isolation and candidate gene expression based on semi-qPCR and qPCR……….27 3.3.10 Histochemical localization of HCAAs……………………………….………………..27 3.3.11 Expression and purification of recombinant protein in E. coli………………………...28 3.3.12 Virus-induced gene silencing of TaACT……………………...……………………….28 3.3.13 TaACT functional complementation study in Arabidopsis…………………………....29 3.4 Results………………………………………………………………………………………..30 3.4.1 Disease severity in NILs………………………………………………………………...30 3.4.2 Metabolite profiling in NILs……………………………………………………………31 3.4.3 Histochemical localization of HCAAs……………………………………………….…31 3.4.4 Identification of candidate gene TaACT in the QTL-2DL……………………………...31 3.4.5 Expression of gene TaACT based on semi-qPCR and qPCR…………………………...32 3.4.6 Functional characterization of TaACT using VIGS…………………………………….33 3.4.7 Functional characterization of TaACT based on complementation study in Arabidopsis……………………………………………………………………………………33 3.5 Discussion……………………………………………………………………………………33 3.5.1 FHB resistance in NIL-R is due to high fold induction of HCAAs…………………….34 3.5.2 TaACT induced high levels of coumaroylagmatine and coumaroylputrescine………....35 iv 3.5.3 Functional validation of TaACT………………………………………………………...35 CONNECTING STATEMENT FOR CHAPTER IV……………………………………………51 CHAPTER IV……………………………………………………………..…………………..…52 TaWRKY70 transcription factor in wheat QTL-2DL regulates downstream genes to biosynthesize metabolites to contain Fusarium graminearum spread………………………………………….52 4.1 Abstract………………………………………………………………………………………52 4.2 Introduction…………………………………………………………………………………..53 4.3 Materials and methods……………………………………………………………………….55 4.3.1 Plant production and experimental design……………………………………………...55 4.3.2 Pathogen production and inoculation…………………………………………………...56 4.3.3 Sample collection, metabolite analysis using liquid chromatography-high resolution mass spectrometry (LC-HRMS) and data processing………………………………………...56 4.3.4 Disease severity and fungal biomass assessment……………………………………….57 4.3.5 Candidate gene identification, based on high fold-change RR metabolites and their physical localization within QTL-2DL……………………………………………………….57 4.3.6 Gene cloning, sequencing and sequence analysis……………………………………....58 4.3.7 RNA isolation and gene expression based on qPCR……………………………………58 4.3.8 Nuclear localization assay………………………………………………………………59 4.3.9 Luciferase (LUC) transient expression assay…………………………………………...59 4.3.10 Construction of BSMV vectors and virus-induced gene silencing of TaWRKY70……59 4.3.11 Confirmation of gene silencing by qPCR, and estimation of fungal biomass and targeted metabolites…………………………………………………………………………...60 4.4 Results………………………………………………………………………………………..60 4.4.1 Fungal biomass quantification…………………………………………………………..60 4.4.2 Metabolite profiles of NILs……………………………………………………………..61 4.4.3 Identification of candidate genes in QTL-2DL…………………………………………61 4.4.4 TaWRKY gene sequencing and sequence analysis……………………………………...62 4.4.5 Sequence variation of TaWRKY70 between NILs and differential gene expression during Fg infection…………………………………………………………………………………...62 4.4.6 Gene expression, promoter analysis of RR metabolite biosynthetic genes and their physical interaction with RTaWRKY……………………………………………………………..63 v 4.4.7 Nuclear localization TaWRKY70 protein………………………………………………64 4.4.8 Response to Fg infection after knocking down of TaWRKY70 in wheat…………….…64 4.4.9 Silencing of TaWRKY70 affected transcriptional response of RRRM genes and RR metabolite accumulation………………………………………………………………………65 4.5 Discussion……………………………………………………………………………………65 CONNECTING STATEMENT FOR CHAPTER V…………………………………………….85 CHAPETER V…………………………………………………………………………………...86 Liquid chromatography and high resolution mass spectrometry‐based metabolomics to identify quantitative resistance‐related metabolites and genes, in spikelets of wheat NILs with QTL-2DL, against Fusarium head blight……………………………………………………..86 5.1 Abstract………………………………………………………………………………………86 5.2 Introduction…………………………………………………………………………………..87 5.3 Material and Methods………………………………………………………………………..89 5.3.1 Plant material and production…………………………………………………………..89 5.3.2 Pathogen production and inoculation…………………………………………………...89 5.3.3 Experiment layout, sample collection, metabolite analysis, and data processing………89 5.3.4 Putative metabolite identification……………………………………………………….90 5.3.5 Relative quantification of fungal biomass……………………………………………....91 5.3.6 Identification of candidate genes in FHB QTL-2DL……………………………...........91 5.3.7 RNA isolation, cDNA synthesis and qPCR analysis……………………………….…..91 5.4 Results………………………………………………………………………………………..92 5.4.1 Fungal biomass varied between NILs………………………………………………..…92 5.4.2 Clustering of observations based on multivariate analysis……………………………..92 5.4.3 Resistance related metabolites associated with spikelets with varying alleles at QTL- 2DL……………………………………………………………………………………………92 5.4.4 Identification of candidate genes in QTL-2DL…………………………………………93 5.4.5 Gene expression based on qPCR……………………………………………………….94 5.5 Discussion……………………………………………………………………………………94 5.5.1 Toxic phytochemicals slow down pathogen progress in plant…………………………95 5.5.2 Cell wall fortification…………………………………………………………………...95 5.5.3 Proposed model for role of QTL-2DL in spikelet resistance to FHB…………………..97 vi CHAPTER VI…………………………………………………………………………………..109 GENERAL DISCUSSION AND FUTURE STUDIES………………………………………...109 6.1 General discussion……………………………………………………………………….109 6.2. Future studies…………………………………………………………………………...112 REFERENCES…………………………………………………………………………………113 APPENDIX……………………………………………………………………………………..136 vii LIST OF TABLES Table 3.1: Fold change in abundance of resistance related (RR) metabolites detected in wheat rachis following F. graminearum inoculation. Table 3.2: List of primers used in the experiments. Table 4.1: List of high fold-change resistance related induced (RRI) metabolites identified in NILs with contrasting FHB resistance alleles at QTL-2DL. Table 4.2: Promoter analysis of RRRM genes regulated by TaWRKY70. Table 4.3: List of primers used in this study. Table 4.4: Predicted genes present in the QTL-2DL based on in-silico gene prediction and synteny with Brachypodium and Rice. Table 5.1: Resistance related (RR) metabolites identified in spikelets of NILs, harboring contrasting alleles of QTL-2DL, upon F. graminearum or mock inoculation. Table 5.2: List of primers used in the study for gene expression viii LIST OF FIGURES Figure 3.1: F. graminearum