Centromere Scission Drives Chromosome Shuffling and Reproductive Isolation

Total Page:16

File Type:pdf, Size:1020Kb

Centromere Scission Drives Chromosome Shuffling and Reproductive Isolation Centromere scission drives chromosome shuffling and reproductive isolation Vikas Yadava, Sheng Suna, Marco A. Coelhoa, and Joseph Heitmana,1 aDepartment of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710 Edited by Steven Henikoff, Fred Hutchinson Cancer Research Center, Seattle, WA, and approved February 24, 2020 (received for review October 25, 2019) A fundamental characteristic of eukaryotic organisms is the genera- which are then fused in an error-prone mechanism known as tion of genetic variation via sexual reproduction. Conversely, signif- nonhomologous end joining (NHEJ) (9). The two sites can be icant large-scale genome structure variations could hamper sexual present on either the same chromosome or different chromo- reproduction, causing reproductive isolation and promoting specia- somes. Repair of two DSBs present on the same chromosome tion. The underlying processes behind large-scale genome rear- can result in the deletion of the intervening sequence or inver- rangements are not well understood and include chromosome sion if the sequence is rejoined in reverse orientation (7). On the translocations involving centromeres. Recent genomic studies in other hand, the fusion of DSBs from two different chromosomes the Cryptococcus species complex revealed that chromosome trans- can result in chromosomal translocation. In some instances, locations generated via centromere recombination have reshaped other repair pathways like microhomology-mediated end joining the genomes of different species. In this study, multiple DNA or alternative end joining (alt-EJ) also participate in the repair of double-strand breaks (DSBs) were generated via the CRISPR/Cas9 DSB ends (9, 10). system at centromere-specific retrotransposons in the human fungal The occurrence of multiple DSBs in mitotically growing cells Cryptococcus neoformans pathogen . The resulting DSBs were at the same time is rare but occurs at a relatively higher fre- repaired in a complex manner, leading to the formation of multiple quency in cancer cells. Such events could occur in a genome due interchromosomal rearrangements and new telomeres, similar to to replication defects or exogenous factors such as ionizing ra- chromothripsis-like events. The newly generated strains harboring diation or chemotherapeutic agents (11). Multiple DSBs also chromosome translocations exhibited normal vegetative growth occur naturally during processes like V(D)J recombination (12). but failed to undergo successful sexual reproduction with the pa- The occurrence of multiple DSBs can also be induced in the GENETICS rental wild-type strain. One of these strains failed to produce any micronuclei of cancer cells (13). Micronuclei are small nuclei spores, while another produced ∼3% viable progeny. The germi- harboring one or a few chromosomes and are generated as a nated progeny exhibited aneuploidy for multiple chromosomes result of a mitotic failure. These small nuclei act as hot spots of and showed improved fertility with both parents. All chromosome translocation events were accompanied without any detectable chromosome fragmentation, where multiple DSB sites are al- change in gene sequences and thus suggest that chromosomal most simultaneously generated and subsequently rejoined in a translocations alone may play an underappreciated role in the onset random order, a process known as chromothripsis. Previous of reproductive isolation and speciation. Significance Cryptococcus neoformans | DSB repair | chromosome translocation | karyotype evolution | retrotransposons The centromere is an essential chromosomal element that en- ables faithful segregation of chromosomes during cell division. hromosomes are prone to undergo several rearrangement In many species, centromeres are enriched in transposons and Cevents, including fusion, fission, deletion, and segmental repetitive elements, and centromeres have been proposed to duplication. In some cases, one chromosome segment is ex- play roles in shaping genomic architecture. In this study, we changed with another to generate chromosomal translocations. induced double-strand breaks (DSBs) at centromeric retro- Such exchanges between homologs are regularly observed dur- transposons to generate multiple centromere-mediated chro- ing meiosis when homologous chromosomes exchange arms mosomal translocations shuffling the genome karyotype. DSB via meiotic recombination (1). Chromosome rearrangements repair involved both homologous and nonhomologous re- can also occur during mitosis, but in a less well-regulated man- combination and led to chimeric centromeres. Genome shuffled ner, and sometimes as a result of disease conditions like cancer strains exhibited severe defects in sexual reproduction with (2, 3). Additionally, rearrangements can also occur within a the parental genotype and produced no or few (3%) viable single chromosome. As a result, chromosome rearrangements aneuploid F1 progeny. Overall, our findings provide experi- during mitosis can cause mutations, gene disruption, copy mental evidence supporting models in which centromere- number variations, as well as alter the expression of genes near mediated chromosomal rearrangements reshape eukaryotic the breakpoints (4). Cancer cells show a high level of chromo- genomes and may contribute to incipient species boundaries. some rearrangements compared to healthy cells, and this con- Author contributions: V.Y. and J.H. designed research; V.Y. and S.S. performed research; tributes to critical pathological conditions observed in these cells, V.Y. and M.A.C. contributed new reagents/analytic tools; V.Y., S.S., M.A.C., and J.H. ana- such as activation of oncogenes (5, 6). lyzed data; V.Y. and M.A.C. wrote the paper; and J.H. supervised the work. Chromosomal translocations are initiated by double-strand The authors declare no competing interest. breaks (DSBs) in DNA (7). Rearrangements involving a single This article is a PNAS Direct Submission. DSB are mainly repaired by the invasion of the broken DNA Published under the PNAS license. molecule into a homologous DNA molecule, in a process termed Data deposition: The sequence data generated in this study have been deposited in homologous recombination (HR) (6, 8). This invasion can lead National Center for Biotechnology Information BioProject database, https://www.ncbi.nlm. to the exchange of DNA between the two molecules of DNA, nih.gov/bioproject/ (accession no. PRJNA577944). leading to reciprocal crossover or gene conversion (2). These 1To whom correspondence may be addressed. Email: [email protected]. types of rearrangements occur during meiosis and are regulated This article contains supporting information online at https://www.pnas.org/lookup/suppl/ to give rise to an error-free repaired sequence. Other types of doi:10.1073/pnas.1918659117/-/DCSupplemental. chromosomal translocation involve two or more DNA DSB sites, First published March 19, 2020. www.pnas.org/cgi/doi/10.1073/pnas.1918659117 PNAS | April 7, 2020 | vol. 117 | no. 14 | 7917–7928 Downloaded by guest on September 26, 2021 reports have suggested that the occurrence of multiple DSBs In this study, we exploited the genomic features of C. alters HR pathways leading to NHEJ- or alt-EJ–mediated repair neoformans to study the impact of chromosome translocations (14, 15). Because both NHEJ and alt-EJ are error-prone, they on reproductive isolation. First, retrotransposons present in lead to a significant increase in mutation at the repair junctions centromeres were targeted with CRISPR (27), generating mul- and also randomly join broken fragments. tiple DSBs simultaneously. Next, the presence of chromosome Apart from generating mutations and gene disruptions, chro- rearrangements was screened by pulsed-field gel electrophoresis mosome translocations can also result in reproductive isolation (PFGE), and isolates with multiple chromosomal translocations during meiosis and facilitate speciation (16). The presence of were identified. The genomes of these strains were assembled multiple rearrangements between the two homologous chromo- based on long-read nanopore sequencing to characterize the somes from the parents leads to failures in chromosome pairing chromosome rearrangements. Although the strains with new during meiosis or crossovers that result in loss of essential genes karyotypes did not exhibit growth defects compared to the wild (17). Meiosis that is defective in this way will result in the pro- type, the chromosomal rearrangements had a profound effect on duction of progeny with abnormal genome content. In fungi, the sexual reproduction. These findings demonstrate that C. neo- parental nuclei fuse and undergo meiosis before sporulation that formans can tolerate multiple chromosomal translocations, but gives rise to progeny. Thus, defects in meiosis lead to the pro- that such large-scale changes can cause reproductive isolation duction of spores with abnormal or incomplete genetic compo- and promote incipient speciation. sitions rendering them inviable. Cryptococcus neoformans is a basidiomycete fungus that largely infects immunocompromised Results humans causing cryptococcal meningoencephalitis (18–20). Simultaneous Breaks at Multiple Centromeres Lead to Chromosome C. neoformans harbors a 19-Mb genome with 14 chromosomes Shuffling. Centromeres in C. neoformans were previously identi- (21). While most of the genome is devoid of repeat regions, fied and shown to possess multiple retrotransposons named centromeres in C. neoformans are rich in a
Recommended publications
  • The Genetical Society of Great Britain
    Heredity 59 (1987) 151—160 The Genetical Society of Great Britain THEGENETICAL SOCIETY (Abstracts of papers presented at the TVVO HUNDRED AND FIFTH MEETING of the Society held on Friday, 14th and Saturday, 15th November 1986 at UNIVERSITY COLLEGE, LONDON) 1. Selection of somatic cell D. J. Porteous, P. A. Boyd, N. D. Hastie and hybrids with specific chromosome V. van Heyningen content for mapping the WAGR MAC Clinical and Population Cytogenetics Unit, Western General Hospital, Crewe Road, syndrome Edinburgh EH4 2XU. J. M. Fletcher, H. Morrison, J. A. Fantes, Clonedprobes for a number of available chromo- A. Seawright, S. Christie, D. J. Porteous, some ii assigned genes were used to define the N. D. Hastie and V. van Heyningen extent of deletions associated with the Wilms' MAC Clinical and Population Cytogenetics Unit, tumour, aniridia, genitourinary abnormalities and Western General Hospital, Crewe Road, mental retardation (WAGR) syndrome. Establish- Edinburgh EH4 2XU. ing reliable dosage studies for a number of different probes has proved difficult. We have therefore WAGR(Wilms tumour, aniridia, genitourinary abnormalities and mental retardation) syndrome concentrated on segregating the deleted chromo- is frequently associated with deletions on the short some 11 from a number of patients in somatic cell arm of chromosome 11. The deletions vary in size hybrids and analysing DNA from these to produce but always include part of band lipl3. To home a consistent map of chromosome lip. At the same in on the Wilms tumour and aniridia loci the end time we have determined the deletion breakpoints points of the different deletion breakpoints need at a molecular level and shown that the results are to be defined at the DNA level.
    [Show full text]
  • Chromothripsis in Human Breast Cancer
    Author Manuscript Published OnlineFirst on September 24, 2020; DOI: 10.1158/0008-5472.CAN-20-1920 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Title: Chromothripsis in human breast cancer Michiel Bolkestein1*, John K.L. Wong2*, Verena Thewes2,3*, Verena Körber4, Mario Hlevnjak2,5, Shaymaa Elgaafary3,6, Markus Schulze2,5, Felix K.F. Kommoss7, Hans-Peter Sinn7, Tobias Anzeneder8, Steffen Hirsch9, Frauke Devens1, Petra Schröter2, Thomas Höfer4, Andreas Schneeweiss3, Peter Lichter2,6, Marc Zapatka2, Aurélie Ernst1# 1Group Genome Instability in Tumors, DKFZ, Heidelberg, Germany. 2Division of Molecular Genetics, DKFZ; DKFZ-Heidelberg Center for Personalized Oncology (HIPO) and German Cancer Consortium (DKTK), Heidelberg, Germany. 3National Center for Tumor Diseases (NCT), University Hospital and DKFZ, Heidelberg, Germany. 4Division of Theoretical Systems Biology, DKFZ, Heidelberg, Germany. 5Computational Oncology Group, Molecular Diagnostics Program at the National Center for Tumor Diseases (NCT) and DKFZ, Heidelberg, Germany. 6Molecular Diagnostics Program at the National Center for Tumor Diseases (NCT) and DKFZ, Heidelberg, Germany. 7Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany. 8Patients' Tumor Bank of Hope (PATH), Munich, Germany. 9Institute of Human Genetics, Heidelberg University, Heidelberg, Germany. *these authors contributed equally Running title: Chromothripsis in human breast cancer #corresponding author: Aurélie Ernst DKFZ, Im Neuenheimer Feld 580, 69115 Heidelberg, Germany 0049 6221 42 1512 [email protected] The authors have no conflict of interest to declare. 1 Downloaded from cancerres.aacrjournals.org on September 25, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on September 24, 2020; DOI: 10.1158/0008-5472.CAN-20-1920 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
    [Show full text]
  • Centromere RNA Is a Key Component for the Assembly of Nucleoproteins at the Nucleolus and Centromere
    Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Letter Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere Lee H. Wong,1,3 Kate H. Brettingham-Moore,1 Lyn Chan,1 Julie M. Quach,1 Melisssa A. Anderson,1 Emma L. Northrop,1 Ross Hannan,2 Richard Saffery,1 Margaret L. Shaw,1 Evan Williams,1 and K.H. Andy Choo1 1Chromosome and Chromatin Research Laboratory, Murdoch Childrens Research Institute & Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Parkville 3052, Victoria, Australia; 2Peter MacCallum Research Institute, St. Andrew’s Place, East Melbourne, Victoria 3002, Australia The centromere is a complex structure, the components and assembly pathway of which remain inadequately defined. Here, we demonstrate that centromeric ␣-satellite RNA and proteins CENPC1 and INCENP accumulate in the human interphase nucleolus in an RNA polymerase I–dependent manner. The nucleolar targeting of CENPC1 and INCENP requires ␣-satellite RNA, as evident from the delocalization of both proteins from the nucleolus in RNase-treated cells, and the nucleolar relocalization of these proteins following ␣-satellite RNA replenishment in these cells. Using protein truncation and in vitro mutagenesis, we have identified the nucleolar localization sequences on CENPC1 and INCENP. We present evidence that CENPC1 is an RNA-associating protein that binds ␣-satellite RNA by an in vitro binding assay. Using chromatin immunoprecipitation, RNase treatment, and “RNA replenishment” experiments, we show that ␣-satellite RNA is a key component in the assembly of CENPC1, INCENP, and survivin (an INCENP-interacting protein) at the metaphase centromere.
    [Show full text]
  • 4P Duplications
    4p Duplications rarechromo.org Sources 4p duplications The information A 4p duplication is a rare chromosome disorder in which in this leaflet some of the material in one of the body’s 46 chromosomes comes from the is duplicated. Like most other chromosome disorders, this medical is associated to a variable extent with birth defects, literature and developmental delay and learning difficulties. from Unique’s 38 Chromosomes come in different sizes, each with a short members with (p) and a long (q) arm. They are numbered from largest to 4p duplications, smallest according to their size, from number 1 to number 15 of them with 22, in addition to the sex chromosomes, X and Y. We a simple have two copies of each of the chromosomes (23 pairs), duplication of 4p one inherited from our father and one inherited from our that did not mother. People with a chromosome 4p duplication have a involve any other repeat of some of the material on the short arm of one of chromosome, their chromosomes 4. The other chromosome 4 is the who were usual size. 4p duplications are sometimes also called surveyed in Trisomy 4p. 2004/5. Unique is This leaflet explains some of the features that are the same extremely or similar between people with a duplication of 4p. grateful to the People with different breakpoints have different features, families who but those with a duplication that covers at least two thirds took part in the of the uppermost part of the short arm share certain core survey. features. References When chromosomes are examined, they are stained with a dye that gives a characteristic pattern of dark and light The text bands.
    [Show full text]
  • Chromothripsis During Telomere Crisis Is Independent of NHEJ And
    Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press 1 Chromothripsis during telomere crisis is independent of NHEJ and 2 consistent with a replicative origin 3 4 5 Kez Cleal1, Rhiannon E. Jones1, Julia W. Grimstead1, Eric A. Hendrickson2¶, Duncan M. 6 Baird1¶* 7 8 1 Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, 9 CF14 4XN, UK. 10 11 2Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota 12 Medical School, Minneapolis, MN 55455, USA 13 14 ¶joint senior authors 15 16 *Correspondence email: [email protected] 17 18 Keywords: Telomere, genome instability, chromothripsis, kataegis, cancer. 19 1 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press 20 Abstract 21 Telomere erosion, dysfunction and fusion can lead to a state of cellular crisis characterized 22 by large-scale genome instability. We investigated the impact of a telomere-driven crisis on 23 the structural integrity of the genome by undertaking whole genome sequence analyses of 24 clonal populations of cells that had escaped crisis. Quantification of large-scale structural 25 variants revealed patterns of rearrangement consistent with chromothripsis, but formed in 26 the absence of functional non-homologous end joining pathways. Rearrangements 27 frequently consisted of short fragments with complex mutational patterns, with a repair 28 topology that deviated from randomness showing preferential repair to local regions or 29 exchange between specific loci. We find evidence of telomere involvement with an 30 enrichment of fold-back inversions demarcating clusters of rearrangements.
    [Show full text]
  • Generating High Variability of B Chromosomes in Eyprepocnemis Plorans (Grasshopper)
    Heredity 71 (1993) 352—362 Received 5 January 1993 Genetical Society of Great Britain Generating high variability of B chromosomes in Eyprepocnemis plorans (grasshopper) M. D. LOPEZ-LEON, J. CABRERO, M. C. PARDO, E. VISERAS, J. P. M. CAMACHO* & J. L. SANTOSI Departamento de Genética, Facu/tad de Ciencias, Un/versidad de Granada, E- 18071 Granada, Spa/n and tDepartamento de Genét/ca, Facultad de B/o/ogIa, Un/vers/dad Comp/utense de Madrid, E-28040 Madrid, Spa/n Twenty-eightprogeny analyses (PAs) performed on specimens of E. plorans collected from four natural Iberian populations have been informative about the transmission of rare B chromosome types or the de novo origin of some of them. At least ii rare B-types have been found in addition to the predominant ones: B1 in Daimuz, B2 in Jete and Salobreña, and B5 in Fuengirola. The presence in two controlled crosses of one embryo carrying a B-type which was absent in the parents suggests that these B variants (B20 and B )haveoriginated de novo. Eleven other PAs suggest that new B derivatives are recurrently arising in these populations. The most frequent B chromosome mutation was centromere misdivision that originated four different B-types (B2m1,B110,B210 and Bmjnj). Other rearrangements were pericentric inversions (B211, B212 and B213), inverse tandem fusion (B211), centric fusion (B11) and deletions (B2d1andB2d2).Thefour B derivatives produced by centromeric misdivision are significantly eliminated during sexual transmission, most probably owing to deficiencies in the control of chromosome movement by their hemicentromeres. Those derived from translocations showed Mendelian transmission but deletion B variants showed a tendency to elimination.
    [Show full text]
  • Discrepant Outcomes in Two Brazilian
    Moreira et al. Journal of Medical Case Reports 2013, 7:284 JOURNAL OF MEDICAL http://www.jmedicalcasereports.com/content/7/1/284 CASE REPORTS CASE REPORT Open Access Discrepant outcomes in two Brazilian patients with Bloom syndrome and Wilms’ tumor: two case reports Marilia Borges Moreira1,2,3*, Caio Robledo DC Quaio1, Aline Cristina Zandoná-Teixeira1, Gil Monteiro Novo-Filho1, Evelin Aline Zanardo1, Leslie Domenici Kulikowski2 and Chong Ae Kim1 Abstract Introduction: Bloom syndrome is a rare, autosomal recessive, chromosomal instability disorder caused by mutations in the BLM gene that increase the risk of developing neoplasias, particularly lymphomas and leukemias, at an early age. Case presentation: Case 1 was a 10-year-old Brazilian girl, the third child of a non-consanguineous non-Jewish family, who was born at 36 weeks of gestation and presented with severe intrauterine growth restriction. She had Bloom syndrome and was diagnosed with a unilateral Wilms’ tumor at the age of 3.5 years. She responded well to oncological treatment and has remained disease-free for the last 17 years. Case 2 was a 2-year-old Brazilian girl born to non-Jewish first-degree cousins. Her gestation was marked by intrauterine growth restriction. She had Bloom syndrome; a unilateral stage II Wilms’ tumor was diagnosed at the age of 4 years after the evaluation of a sudden onset abdominal mass. Surgical removal, neoadjuvant chemotherapy and radiotherapy were not sufficient to control the neoplasia. The tumor recurred after 8 months and she died from clinical complications. Conclusion: Our study reports the importance of rapid diagnostics and clinical follow-up of these patients.
    [Show full text]
  • Continuous Variation in Y-Chromosome Structure of Rumex Acetosa
    Heredity 57 (1986) 247-254 The Genetical Society of Great Britain Received 16 December 1985 Continuous variation in Y-chromosome structure of Rumex acetosa A. S. Wilby and School of Biological Sciences, J. S. Parker Queen Mary College, Mile End Road, London El 4NS. The dioecious angiosperm Rumex acetosa has an XXIXY1Y2sex-chromosomesystem. Each V-chromosome is heterochromatic except for a minute terminal euchromatic pairing segment. The Vs are constant in size but have a variable centromere position. The centromeres can be located anywhere within the central 40 per cent of the chromosome but are excluded from the two distal 30 per cent regions. In a sample of 270 males from 18 different populations 68 distinct variants have been identified on the basis of V-morphology. All populations are highly polymorphic with a minimum of four variants in a sample of ten males. The origin and significance of this massive variability is considered in this paper. Increased mutation rate of the Ys may be implicated in maintenance of this variation. I NTRO DUCTI ON these "inert" Ys has been described (Vana, 1972) variation in their structure has been overlooked. Sex-determinationin animals is usually genic and Extensive heterochroinatic content is a charac- frequently associated with visibly-differentiated teristic of many Y- and W-chromosomes. Indeed, sex-chromosomes. Sex expression in plants, some have argued that the process of hetero- however, is usually more plastic, and is subject to chromatinisation itself was implicated in the initial environmental influences such as temperature and phase of sex-chromosome differentiation (Jones, photoperiod (Heslop-Harrison, 1957).
    [Show full text]
  • MECHANISMS in ENDOCRINOLOGY: Novel Genetic Causes of Short Stature
    J M Wit and others Genetics of short stature 174:4 R145–R173 Review MECHANISMS IN ENDOCRINOLOGY Novel genetic causes of short stature 1 1 2 2 Jan M Wit , Wilma Oostdijk , Monique Losekoot , Hermine A van Duyvenvoorde , Correspondence Claudia A L Ruivenkamp2 and Sarina G Kant2 should be addressed to J M Wit Departments of 1Paediatrics and 2Clinical Genetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, Email The Netherlands [email protected] Abstract The fast technological development, particularly single nucleotide polymorphism array, array-comparative genomic hybridization, and whole exome sequencing, has led to the discovery of many novel genetic causes of growth failure. In this review we discuss a selection of these, according to a diagnostic classification centred on the epiphyseal growth plate. We successively discuss disorders in hormone signalling, paracrine factors, matrix molecules, intracellular pathways, and fundamental cellular processes, followed by chromosomal aberrations including copy number variants (CNVs) and imprinting disorders associated with short stature. Many novel causes of GH deficiency (GHD) as part of combined pituitary hormone deficiency have been uncovered. The most frequent genetic causes of isolated GHD are GH1 and GHRHR defects, but several novel causes have recently been found, such as GHSR, RNPC3, and IFT172 mutations. Besides well-defined causes of GH insensitivity (GHR, STAT5B, IGFALS, IGF1 defects), disorders of NFkB signalling, STAT3 and IGF2 have recently been discovered. Heterozygous IGF1R defects are a relatively frequent cause of prenatal and postnatal growth retardation. TRHA mutations cause a syndromic form of short stature with elevated T3/T4 ratio. Disorders of signalling of various paracrine factors (FGFs, BMPs, WNTs, PTHrP/IHH, and CNP/NPR2) or genetic defects affecting cartilage extracellular matrix usually cause disproportionate short stature.
    [Show full text]
  • Chromosome 6 Abnormalities in Ovarian Surface Epithelial Tumors of Borderline Malignancy Suggest a Genetic Continuum in the Progression Model of Ovarian Neoplasms1
    3404 Vol. 7, 3404–3409, November 2001 Clinical Cancer Research Chromosome 6 Abnormalities in Ovarian Surface Epithelial Tumors of Borderline Malignancy Suggest a Genetic Continuum in the Progression Model of Ovarian Neoplasms1 Maria Grazia Tibiletti, Barbara Bernasconi, Conclusion: Alterations in the above-mentioned inter- Daniela Furlan, Paola Bressan, Roberta Cerutti, val are a common finding in advanced ovarian carcinomas but also in benign ovarian cysts, implying that some tumors Carla Facco, Massimo Franchi, Cristina Riva, of borderline malignancy may arise from benign tumors and Raffaella Cinquetti, Carlo Capella, and that malignant ones may evolve from tumors of borderline Roberto Taramelli2 malignancy. Genes located in 6q27 seem to be crucial for this Laboratorio di Anatomia Patologica Ospedale di Circolo, Fondazione mechanism of early events in ovarian tumorigenesis. Macchi, 21100 Varese [M. G. T., C. F., C. R.]; and Dipartimento di Scienze Cliniche e Biologiche [B. B., D. F., P. B., R. Ce., C. C.], INTRODUCTION Clinica Ostetrica e Ginecologica [M. F.], and Dipartimento di Biologia Strutturale e Funzionale [R. Ci., R. T.], Universita` Ovarian cancer represents the most lethal of the gyneco- dell’Insubria, 21100 Varese, Italy logical tumors, and its pathogenesis is poorly understood. More than 80% of malignant tumors of the ovary are of epithelial origin and arise from the surface epithelium (1). Ovarian surface ABSTRACT epithelial tumors are divided into three histological subtypes: Purpose: We used conventional cytogenetics, molecular benign cystoadenoma, TBM,3 and AC, which are related to a cytogenetics, and molecular genetic analyses to study the different biological behavior (1). The molecular events under- pattern of allelic loss on chromosome 6q in a cohort of lying the development of ovarian tumorigenesis are still largely borderline epithelial ovarian tumors.
    [Show full text]
  • The Human Gene Encoding Phosphatidylinositol-3 Kinase Associated P85a Is at Chromosome Region 5Ql2-13'
    [CANCER RESEARCH 5l. .1818-.1820, July 15, 1991| Advances in Brief The Human Gene Encoding Phosphatidylinositol-3 Kinase Associated p85a Is at Chromosome Region 5ql2-13' L. A. Cannizzaro, E. Y. Skolnik, B. Margolis, C. M. Croce, J. Schlesinger, and K. Huebner2 Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140 [L. A. C., C. M. C., K. H.J, and Department of Pharmacology, New York University Medical Center, New York, New York 10016 [E. Y. S., B. M., J. S.J Abstract scribed previously (10, 11). Hybrids 9142 (full name GM9142), 114 (GM100114), 115 (GM100115), 7297 (GM7297), 7300 (GM7300), I In' human chromosomal location of the gene encoding the phospha- 449 (GM10449), 10095 (GM10095), and 7301 (GM7301) were ob tidylinositol-3 kinase associated protein, p85a, has been determined by tained from the National Institute of General Medical Sciences Human analysis of its segregation in rodent-human hybrids and by chromosome Genetic Mutant Cell Repository (Corieli Institute for Medical Re in situ hybridization using a complementary DNA clone, GRB-1. search, Camden, NJ). Human chromosomes or chromosome regions The gene for p85<*is at chromosome region 5ql3, perhaps near the retained by individual hybrids in the panel are illustrated in Fig. 1. gene encoding another receptor associated signal transducing protein, the Hybrids retaining partial chromosome 5 have also been described GTPase activating protein. previously (12). Filter Hybridization. DNA from mouse, human, and hybrid cell lines Introduction was obtained by a standard phenol-chloroform extraction procedure (10). Approximately 10 Mgof DNA were digested to completion with Skolnik et al.
    [Show full text]
  • Cytogenetic and Molecular Delineation of the Smallest Commonly Deleted Region of Chromosome 5 in Malignant Myeloid Diseases
    Proc. Natl. Acad. Sci. USA Vol. 90, pp. 5484-5488, June 1993 Medical Sciences Cytogenetic and molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases (myeloid leukemias/tumor-suppressor genes/fluorescence in situ hybridization/therapy-related leukemia) MICHELLE M. LE BEAU*, RAFAEL ESPINOSA III, WILMA L. NEUMAN, WENDY STOCK, DIANE ROULSTON, RICHARD A. LARSON, MAURI KEINANEN, AND CAROL A. WESTBROOK Section of Hematology/Oncology, The University of Chicago, Chicago, IL 60637-1470 Communicated by Janet D. Rowley, March 5, 1993 ABSTRACT Loss ofa whole chromosomeS or a deletion of nonmalignant diseases (4). Therapy-related MDS or AML its long arm (5q) is a recurring abnormality in malignant (t-MDS/t-AML) typically presents =5 years after treatment. myeloid neoplasms. To determine the location of genes on Sq Frequently, all three hematopoietic cell lines (erythroid, that may be involved in leukemogenesis, we examined the myeloid, and megakaryocytic) are involved in the myelo- deleted chromosome 5 homologs in a series of 135 patients with dysplastic process. Survival times ofpatients with t-AML are malignant myeloid diseases. By comparing the breakpoints, we usually short (median, 8 months). identified a small segment of 5q, consisting of band 5q31, that At the cytogenetic level, t-MDS/t-AML is characterized by was deleted in each patient. This segment has been termed the loss ofan entire chromosome 5 or7 or a deletion ofthe long arm critical region. Distal Sq contains a number of genes encoding of these chromosomes [del(5q)/del(7q)] (5, 6). In our recently growth factors, hormone receptors, and proteins involved in updated series of 129 consecutive patients with t-MDS/t-AML signal transduction or transcriptional regulation.
    [Show full text]