Phenotype-Karyotype Correlation in Patientstrisomic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Centromere RNA Is a Key Component for the Assembly of Nucleoproteins at the Nucleolus and Centromere
Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Letter Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere Lee H. Wong,1,3 Kate H. Brettingham-Moore,1 Lyn Chan,1 Julie M. Quach,1 Melisssa A. Anderson,1 Emma L. Northrop,1 Ross Hannan,2 Richard Saffery,1 Margaret L. Shaw,1 Evan Williams,1 and K.H. Andy Choo1 1Chromosome and Chromatin Research Laboratory, Murdoch Childrens Research Institute & Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Parkville 3052, Victoria, Australia; 2Peter MacCallum Research Institute, St. Andrew’s Place, East Melbourne, Victoria 3002, Australia The centromere is a complex structure, the components and assembly pathway of which remain inadequately defined. Here, we demonstrate that centromeric ␣-satellite RNA and proteins CENPC1 and INCENP accumulate in the human interphase nucleolus in an RNA polymerase I–dependent manner. The nucleolar targeting of CENPC1 and INCENP requires ␣-satellite RNA, as evident from the delocalization of both proteins from the nucleolus in RNase-treated cells, and the nucleolar relocalization of these proteins following ␣-satellite RNA replenishment in these cells. Using protein truncation and in vitro mutagenesis, we have identified the nucleolar localization sequences on CENPC1 and INCENP. We present evidence that CENPC1 is an RNA-associating protein that binds ␣-satellite RNA by an in vitro binding assay. Using chromatin immunoprecipitation, RNase treatment, and “RNA replenishment” experiments, we show that ␣-satellite RNA is a key component in the assembly of CENPC1, INCENP, and survivin (an INCENP-interacting protein) at the metaphase centromere. -
Sema4 Noninvasive Prenatal Select
Sema4 Noninvasive Prenatal Select Noninvasive prenatal testing with targeted genome counting 2 Autosomal trisomies 5 Trisomy 21 (Down syndrome) 6 Trisomy 18 (Edwards syndrome) 7 Trisomy 13 (Patau syndrome) 8 Trisomy 16 9 Trisomy 22 9 Trisomy 15 10 Sex chromosome aneuploidies 12 Monosomy X (Turner syndrome) 13 XXX (Trisomy X) 14 XXY (Klinefelter syndrome) 14 XYY 15 Microdeletions 17 22q11.2 deletion 18 1p36 deletion 20 4p16 deletion (Wolf-Hirschhorn syndrome) 20 5p15 deletion (Cri-du-chat syndrome) 22 15q11.2-q13 deletion (Angelman syndrome) 22 15q11.2-q13 deletion (Prader-Willi syndrome) 24 11q23 deletion (Jacobsen Syndrome) 25 8q24 deletion (Langer-Giedion syndrome) 26 Turnaround time 27 Specimen and shipping requirements 27 2 Noninvasive prenatal testing with targeted genome counting Sema4’s Noninvasive Prenatal Testing (NIPT)- Targeted Genome Counting analyzes genetic information of cell-free DNA (cfDNA) through a simple maternal blood draw to determine the risk for common aneuploidies, sex chromosomal abnormalities, and microdeletions, in addition to fetal gender, as early as nine weeks gestation. The test uses paired-end next-generation sequencing technology to provide higher depth across targeted regions. It also uses a laboratory-specific statistical model to help reduce false positive and false negative rates. The test can be offered to all women with singleton, twins and triplet pregnancies, including egg donor. The conditions offered are shown in below tables. For multiple gestation pregnancies, screening of three conditions -
4P Duplications
4p Duplications rarechromo.org Sources 4p duplications The information A 4p duplication is a rare chromosome disorder in which in this leaflet some of the material in one of the body’s 46 chromosomes comes from the is duplicated. Like most other chromosome disorders, this medical is associated to a variable extent with birth defects, literature and developmental delay and learning difficulties. from Unique’s 38 Chromosomes come in different sizes, each with a short members with (p) and a long (q) arm. They are numbered from largest to 4p duplications, smallest according to their size, from number 1 to number 15 of them with 22, in addition to the sex chromosomes, X and Y. We a simple have two copies of each of the chromosomes (23 pairs), duplication of 4p one inherited from our father and one inherited from our that did not mother. People with a chromosome 4p duplication have a involve any other repeat of some of the material on the short arm of one of chromosome, their chromosomes 4. The other chromosome 4 is the who were usual size. 4p duplications are sometimes also called surveyed in Trisomy 4p. 2004/5. Unique is This leaflet explains some of the features that are the same extremely or similar between people with a duplication of 4p. grateful to the People with different breakpoints have different features, families who but those with a duplication that covers at least two thirds took part in the of the uppermost part of the short arm share certain core survey. features. References When chromosomes are examined, they are stained with a dye that gives a characteristic pattern of dark and light The text bands. -
Acute Myeloid Leukemia in Association with Trisomy 22
iMedPub Journals ARCHIVES OF MEDICINE 2015 http://wwwimedpub.com Vol. 7 No. 5:9 De Novo Inversion (16) Acute Al-Ola Abdallah1, Meghana Bansal1, Myeloid Leukemia in Association Steven A Schichman2,3, with Trisomy 22, Deletion 7q Zhifu Xiang1,4 And FLT3 (ITD) Associated with 1 Division of Hematology and Oncology, Complete Remission Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA 2 Department of Pathology, University of Arkansas for Medical Sciences, Little Clinical practice points Rock, Arkansas, USA 3 Pathology and Laboratory Medicine Acute myeloid leukemia (AML) is a heterogeneous neoplastic disorder Service, Central Arkansas Veterans characterized by the accumulation of immature myeloid blasts in the bone marrow. Healthcare System, Little Rock, Arkansas, More than 90% of the patients with inv (16)/t (16;16) AML harbor secondary USA chromosome aberrations and mutations affecting N-RAS, K-RAS, KIT, and FLT3. 4 Division of Hematology and Oncology, Central Arkansas Veterans Healthcare 7q deletions represent a more frequent genetic alteration occurring in System, Little Rock, Arkansas, USA approximately 10% of CBF-AML cases. Our case presents an elderly patient who has de novo AML with inv (16) in association with trisomy 22, del 7 and FLT3 (ITD) mutation; this is a rare Corresponding Author: Dr. Xiang cytogenetic combination. Several factors that indicate an unfavorable prognosis were present in our case; however, our case achieved complete response, possibly reflecting that trisomy 22 Division of Hematology and Oncology, Win- in association with inv (16) is a dominant favorable prognosis regardless of other throp P. Rockefeller Cancer Institute, Univer- sity of Arkansas for Medical Sciences. -
Orphanet Report Series Rare Diseases Collection
Marche des Maladies Rares – Alliance Maladies Rares Orphanet Report Series Rare Diseases collection DecemberOctober 2013 2009 List of rare diseases and synonyms Listed in alphabetical order www.orpha.net 20102206 Rare diseases listed in alphabetical order ORPHA ORPHA ORPHA Disease name Disease name Disease name Number Number Number 289157 1-alpha-hydroxylase deficiency 309127 3-hydroxyacyl-CoA dehydrogenase 228384 5q14.3 microdeletion syndrome deficiency 293948 1p21.3 microdeletion syndrome 314655 5q31.3 microdeletion syndrome 939 3-hydroxyisobutyric aciduria 1606 1p36 deletion syndrome 228415 5q35 microduplication syndrome 2616 3M syndrome 250989 1q21.1 microdeletion syndrome 96125 6p subtelomeric deletion syndrome 2616 3-M syndrome 250994 1q21.1 microduplication syndrome 251046 6p22 microdeletion syndrome 293843 3MC syndrome 250999 1q41q42 microdeletion syndrome 96125 6p25 microdeletion syndrome 6 3-methylcrotonylglycinuria 250999 1q41-q42 microdeletion syndrome 99135 6-phosphogluconate dehydrogenase 67046 3-methylglutaconic aciduria type 1 deficiency 238769 1q44 microdeletion syndrome 111 3-methylglutaconic aciduria type 2 13 6-pyruvoyl-tetrahydropterin synthase 976 2,8 dihydroxyadenine urolithiasis deficiency 67047 3-methylglutaconic aciduria type 3 869 2A syndrome 75857 6q terminal deletion 67048 3-methylglutaconic aciduria type 4 79154 2-aminoadipic 2-oxoadipic aciduria 171829 6q16 deletion syndrome 66634 3-methylglutaconic aciduria type 5 19 2-hydroxyglutaric acidemia 251056 6q25 microdeletion syndrome 352328 3-methylglutaconic -
Maternal Age, History of Miscarriage, and Embryonic/Fetal Size Are Associated with Cytogenetic Results of Spontaneous Early Miscarriages
Journal of Assisted Reproduction and Genetics (2019) 36:749–757 https://doi.org/10.1007/s10815-019-01415-y GENETICS Maternal age, history of miscarriage, and embryonic/fetal size are associated with cytogenetic results of spontaneous early miscarriages Nobuaki Ozawa1 & Kohei Ogawa1 & Aiko Sasaki1 & Mari Mitsui1 & Seiji Wada1 & Haruhiko Sago1 Received: 1 October 2018 /Accepted: 28 January 2019 /Published online: 9 February 2019 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Purpose To clarify the associations of the maternal age, history of miscarriage, and embryonic/fetal size at miscarriage with the frequencies and profiles of cytogenetic abnormalities detected in spontaneous early miscarriages. Methods Miscarriages before 12 weeks of gestation, whose karyotypes were evaluated by G-banding between May 1, 2005, and May 31, 2017, were included in this study. The relationships between their karyotypes and clinical findings were assessed using trend or chi-square/Fisher’s exact tests and multivariate logistic analyses. Results Three hundred of 364 miscarriage specimens (82.4%) had abnormal karyotypes. An older maternal age was significantly associated with the frequency of abnormal karyotype (ptrend < 0.001), particularly autosomal non-viable and viable trisomies (ptrend 0.001 and 0.025, respectively). Women with ≥ 2 previous miscarriages had a significantly lower possibility of miscarriages with abnormal karyotype than women with < 2 previous miscarriages (adjusted odds ratio [aOR], 0.48; 95% confidence interval [95% CI], 0.27–0.85). Although viable trisomy was observed more frequently in proportion to the increase in embryonic/fetal size at miscarriage (ptrend < 0.001), non-viable trisomy was observed more frequently in miscarriages with an embryonic/fetal size < 10 mm (aOR, 2.41; 95% CI, 1.27–4.58), but less frequently in miscarriages with an embryonic/fetal size ≥ 20 mm (aOR, 0.01; 95% CI, 0.00–0.07) than in anembryonic miscarriages. -
Frequency of Chromosomal Abnormalities in Products of Conception Frequência De Anomalias Cromossômicas Em Material De Aborto
THIEME 110 Original Article Frequency of Chromosomal Abnormalities in Products of Conception Frequência de anomalias cromossômicas em material de aborto Thaís Mesquita Alves Teles1 Carolina Maria Marques de Paula1 Mariana Gontijo Ramos1 Helena B. B. L. Martins da Costa2,3 Cyntia Roberta Almeida Andrade2 Sarah Abreu Coxir3 MariaLectíciaFirpePenna1 1 Department of Biomedical Sciences, College of Human, Social and Address for correspondence Maria Lectícia Firpe Penna, PhD, Rua Health Sciences, Universidade FUMEC, Belo Horizonte, MG, Brazil Cobre, 200, Belo Horizonte, MG, Brazil (e-mail: [email protected]). 2 Department of Molecular Biology, Códon Biotechnology Laboratory, Belo Horizonte, MG, Brazil 3 Department of Cytogenetics, Códon Biotechnology Laboratory, Belo Horizonte, MG, Brazil Rev Bras Ginecol Obstet 2017;39:110–114. Abstract Purpose To describe the frequencies of chromosomal abnormalities found in abor- tion material, and to observe its correlation to maternal age. Methods A retrospective study was conducted based on data obtained from the data- bank of a medical genetics laboratory in Belo Horizonte, MG, Brazil. A total of 884 results from products of conception analysis were included, 204 of which were analyzed by cytogenetics, and 680 by molecular biology based on quantitative fluorescence polymerase chain reaction (QF-PCR). The frequency of individual chromosomal aberrations and the relationship between the presence of anomalies and maternal age were also evaluated. Results The conventional cytogenetics technique was able to detect 52% of normal and 48% of abnormal results in the analyzed material. Quantitative fluorescence polymerase chain reaction revealed 60% of normal and 40% of abnormal results from the samples evaluated by this method. The presence of trisomy 15 was detected only by cytogenetics, as it was not included in the QF-PCR routine investigation in the laboratory. -
Chromosome 13 Introduction Chromosome 13 (As Well As Chromosomes 14, 15, 21 and 22) Is an Acrocentric Chromosome. Short Arms Of
Chromosome 13 ©Chromosome Disorder Outreach Inc. (CDO) Technical genetic content provided by Dr. Iosif Lurie, M.D. Ph.D Medical Geneticist and CDO Medical Consultant/Advisor. Ideogram courtesy of the University of Washington Department of Pathology: ©1994 David Adler.hum_13.gif Introduction Chromosome 13 (as well as chromosomes 14, 15, 21 and 22) is an acrocentric chromosome. Short arms of acrocentric chromosomes do not contain any genes. All genes are located in the long arm. The length of the long arm is ~95 Mb. It is ~3.5% of the total human genome. Chromosome 13 is a gene poor area. There are only 600–700 genes within this chromosome. Structural abnormalities of the long arm of chromosome 13 are very common. There are at least 750 patients with deletions of different segments of the long arm (including patients with an associated imbalance for another chromosome). There are several syndromes associated with deletions of the long arm of chromosome 13. One of these syndromes is caused by deletions of 13q14 and neighboring areas. The main manifestation of this syndrome is retinoblastoma. Deletions of 13q32 and neighboring areas cause multiple defects of the brain, eye, heart, kidney, genitalia and extremities. The syndrome caused by this deletion is well known since the 1970’s. Distal deletions of 13q33q34 usually do not produce serious malformations. Deletions of the large area between 13q21 and 13q31 do not produce any stabile and well–recognized syndromes. Deletions of Chromosome 13 Chromosome 13 (as well as chromosomes 14, 15, 21 and 22) belongs to the group of acrocentric chromosomes. -
Live-Born Trisomy 22: Patient Report and Review
Original Article Mol Syndromol 2012;3:262–269 Accepted: November 21, 2012 DOI: 10.1159/000346189 by M. Muenke Published online: January 11, 2013 Live-Born Trisomy 22: Patient Report and Review a a b b c c T. Heinrich I. Nanda M. Rehn U. Zollner E. Frieauff J. Wirbelauer a a T. Grimm M. Schmid a b Department of Human Genetics, University of Würzburg, Departments of Gynecology and Obstetrics, c University Hospital, and University Children’s Hospital, University of Würzburg, Würzburg , Germany Key Words Chromosomal abnormalities represent a major cause -Chromosomal abnormality ؒ Live-born ؒ Non-mosaic ؒ of spontaneous abortions [Hassold et al., 1980; Warbur Trisomy 22 ton et al., 1991]. Trisomy 22 has been identified as the third most common trisomy in spontaneous abortions, representing 11–16% of cases [Ford et al., 1996; Menasha Abstract et al., 2005]. Due to severe organ malformations (micro- Trisomy 22 is a common trisomy in spontaneous abortions. cephaly/cranial abnormalities, congenital heart disease, In contrast, live-born trisomy 22 is rarely seen due to severe renal malformations, intrauterine growth retardation organ malformations associated with this condition. Here, (IUGR)), term or near-term pregnancies and postnatal we report on a male infant with complete, non-mosaic tri- survival of trisomy 22 children are very rare events. somy 22 born at 35 + 5 weeks via caesarean section. Periph- Among 23 children born with non-mosaic trisomy 22, eral blood lymphocytes and fibroblasts showed an addition- Tinkle et al. [2003] found a median survival of only 4 al chromosome 22 in all metaphases analyzed (47,XY,+22). -
Atypical Chromosome Abnormalities in Acute Myeloid Leukemia Type M4
Genetics and Molecular Biology, 30, 1, 6-9 (2007) Copyright by the Brazilian Society of Genetics. Printed in Brazil www.sbg.org.br Short Communication Atypical chromosome abnormalities in acute myeloid leukemia type M4 Agnes C. Fett-Conte1, Roseli Viscardi Estrela2, Cristina B. Vendrame-Goloni3, Andréa B. Carvalho-Salles1, Octávio Ricci-Júnior4 and Marileila Varella-Garcia5 1Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP, Brazil. 2Austa Hospital, São José do Rio Preto, SP, Brazil. 3Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto, SP, Brazil. 4Hemocentro, São José do Rio Preto, SP, Brazil. 5Comprehensive Cancer Center, University of Colorado, Denver, CO, USA. Abstract This study reports an adult AML-M4 patient with atypical chromosomal aberrations present in all dividing bone mar- row cell at diagnosis: t(1;8)(p32.1;q24.2), der(9)t(9;10)(q22;?), and ins(19;9)(p13.3;q22q34) that may have origi- nated transcripts with leukemogenic potential. Key words: acute myeloid leukemia, chromosomal abnormalities, chromosomal translocations. Received: February 10, 2006; Accepted: June 22, 2006. Acute non-lymphocytic or myelogenous leukemia (Mitelman Database of Chromosome Aberration in Cancer (ANLL or AML) represents a hematopoietic malignancy 2006). Karyotype is generally an important prognostic fac- characterized by abnormal cell proliferation and stalled dif- tor in AML, a favorable prognosis being associated with ferentiation leading to the accumulation of immature cells minor karyotypic changes, low frequency of abnormal in the marrow itself, in peripheral blood and eventually in bone marrow cells and changes specifically involving the other tissues. -
Congenital Heart Disease and Chromossomopathies Detected By
Review Article DOI: 10.1590/0103-0582201432213213 Congenital heart disease and chromossomopathies detected by the karyotype Cardiopatias congênitas e cromossomopatias detectadas por meio do cariótipo Cardiopatías congénitas y anomalías cromosómicas detectadas mediante cariotipo Patrícia Trevisan1, Rafael Fabiano M. Rosa2, Dayane Bohn Koshiyama1, Tatiana Diehl Zen1, Giorgio Adriano Paskulin1, Paulo Ricardo G. Zen1 ABSTRACT Conclusions: Despite all the progress made in recent de- cades in the field of cytogenetic, the karyotype remains an es- Objective: To review the relationship between congenital sential tool in order to evaluate patients with congenital heart heart defects and chromosomal abnormalities detected by disease. The detailed dysmorphological physical examination the karyotype. is of great importance to indicate the need of a karyotype. Data sources: Scientific articles were searched in MED- LINE database, using the descriptors “karyotype” OR Key-words: heart defects, congenital; karyotype; Down “chromosomal” OR “chromosome” AND “heart defects, syndrome; trisomy; chromosome aberrations. congenital”. The research was limited to articles published in English from 1980 on. RESUMO Data synthesis: Congenital heart disease is characterized by an etiologically heterogeneous and not well understood Objetivo: Realizar uma revisão da literatura sobre a group of lesions. Several researchers have evaluated the pres- relação das cardiopatias congênitas com anormalidades ence of chromosomal abnormalities detected by the karyo- cromossômicas detectadas por meio do exame de cariótipo. type in patients with congenital heart disease. However, Fontes de dados: Pesquisaram-se artigos científicos no most of the articles were retrospective studies developed in portal MEDLINE, utilizando-se os descritores “karyotype” Europe and only some of the studied patients had a karyo- OR “chromosomal” OR “chromosome” AND “heart defects, type exam. -
Complete Or Partial Homozygosity of Chromosome 13 in Primary Retinobiastoma'
[CANCER RESEARCH 47, 4189-4191. August 1, 1987] Complete or Partial Homozygosity of Chromosome 13 in Primary Retinobiastoma' William F. Benedict,2 Eri S. Srivatsan, Corey Mark, Ashutosh Banerjee, Robert S. Sparkes, and A. Linn Murphree3 Clayton Ocular Oncology Center, Departments of Ophthalmology and Pediatrics [W. F. B., E. S. S., C. M., A. B., A. L. M.], Children's Hospital of Los Angeles, Los Angeles, California 90027, and Departments of Medicine, Pediatrics, and Psychiatry [R. S.], University of California, Los Angeles, Los Angeles, California 90024 ABSTRACT retinoblastoma to document that two apparently normal No. 13 chromosomes were present. Sixteen such tumors were ran Sixteen ret ino Mast ornas were examined with chromosome 13 poly domly selected from patients with both unilateral and bilateral morphic probes to determine the frequency of homozygosity for the disease. Our results using various polymorphisms on chromo chromosome in the tumors. Each of the tumors had two cytogenetically normal appearing No. 13 chromosomes. Nontumorous cells from the some 13 indicate that 12 of the 16 tumors became homozygous same patients were heterozygous for the various polymorphic chromo for at least a portion of one chromosome 13. some 13 probes used. At least partial homozygosity for a single chro Additional information on another tumor from a patient mosome 13 was observed in 75% of the tumors. These studies confirm previously described (13) is also presented. Rapid clonal evo and extend previous studies which suggest that homozygosity or hemi- lution occurred in this tumor resulting in a change from hemi zygosity at RBI occurs in the majority of retinoblastomas.