WRA Species Report

Total Page:16

File Type:pdf, Size:1020Kb

WRA Species Report Family: Solanaceae Taxon: Solanum torvum Synonym: Solanum ficifolium Ortega Common Name turkeyberry Solanum rudepannum Dunal devil's-fig pea eggplant platebrush Questionaire : current 20090513 Assessor: Chuck Chimera Designation: H(Hawai'i) Status: Assessor Approved Data Entry Person: Chuck Chimera WRA Score 24 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- High substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 y 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 y 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 y 301 Naturalized beyond native range y = 1*multiplier (see y Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see y Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see y Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see y Appendix 2) 401 Produces spines, thorns or burrs y=1, n=0 y 402 Allelopathic y=1, n=0 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals y=1, n=-1 y 405 Toxic to animals y=1, n=0 y 406 Host for recognized pests and pathogens y=1, n=0 y 407 Causes allergies or is otherwise toxic to humans y=1, n=0 408 Creates a fire hazard in natural ecosystems y=1, n=0 n 409 Is a shade tolerant plant at some stage of its life cycle y=1, n=0 n 410 Tolerates a wide range of soil conditions (or limestone conditions if not a volcanic island) y=1, n=0 y Print Date: 2/18/2011 Solanum torvum (Solanaceae) Page 1 of 9 411 Climbing or smothering growth habit y=1, n=0 n 412 Forms dense thickets y=1, n=0 y 501 Aquatic y=5, n=0 n 502 Grass y=1, n=0 n 503 Nitrogen fixing woody plant y=1, n=0 n 504 Geophyte (herbaceous with underground storage organs -- bulbs, corms, or tubers) y=1, n=0 n 601 Evidence of substantial reproductive failure in native habitat y=1, n=0 n 602 Produces viable seed y=1, n=-1 y 603 Hybridizes naturally y=1, n=-1 604 Self-compatible or apomictic y=1, n=-1 y 605 Requires specialist pollinators y=-1, n=0 n 606 Reproduction by vegetative fragmentation y=1, n=-1 y 607 Minimum generative time (years) 1 year = 1, 2 or 3 years = 0, 1 4+ years = -1 701 Propagules likely to be dispersed unintentionally (plants growing in heavily trafficked y=1, n=-1 y areas) 702 Propagules dispersed intentionally by people y=1, n=-1 y 703 Propagules likely to disperse as a produce contaminant y=1, n=-1 704 Propagules adapted to wind dispersal y=1, n=-1 n 705 Propagules water dispersed y=1, n=-1 n 706 Propagules bird dispersed y=1, n=-1 y 707 Propagules dispersed by other animals (externally) y=1, n=-1 n 708 Propagules survive passage through the gut y=1, n=-1 y 801 Prolific seed production (>1000/m2) y=1, n=-1 n 802 Evidence that a persistent propagule bank is formed (>1 yr) y=1, n=-1 803 Well controlled by herbicides y=-1, n=1 y 804 Tolerates, or benefits from, mutilation, cultivation, or fire y=1, n=-1 y 805 Effective natural enemies present locally (e.g. introduced biocontrol agents) y=-1, n=1 Designation: H(Hawai'i) WRA Score 24 Print Date: 2/18/2011 Solanum torvum (Solanaceae) Page 2 of 9 Supporting Data: 101 1999. Wagner, W.L./Herbst, D.R./Sohmer, S.H.. No evidence Manual of the flowering plants of Hawaii. Revised edition.. University of Hawai‘i Press and Bishop Museum Press, Honolulu, HI. 102 2011. WRA Specialist. Personal Communication. NA 103 2011. WRA Specialist. Personal Communication. NA 201 1999. Wagner, W.L./Herbst, D.R./Sohmer, S.H.. "Native to the Antilles, now a pantropical weed." Manual of the flowering plants of Hawaii. Revised edition.. University of Hawai‘i Press and Bishop Museum Press, Honolulu, HI. 202 1999. Wagner, W.L./Herbst, D.R./Sohmer, S.H.. "Native to the Antilles, now a pantropical weed." Manual of the flowering plants of Hawaii. Revised edition.. University of Hawai‘i Press and Bishop Museum Press, Honolulu, HI. 203 2009. Francis, J.K.. Wildland Shrubs of the "Ecology.—In Puerto Rico, turkey berry grows in upland sites that receive from United States & its Territories: Thamnic about 1000 to 4000 mm of annual precipitation. It also grows in riparian zones in Descriptions General Technical Report IITF-WB- drier areas. Turkey berry grows on all types of moist, fertile soil at elevations from 1. U.S.D.A. Forest Service Internation Institute of near sea level to almost 1,000 m in Puerto Rico (Little and others 1974) and Tropical Forestry, 2,000 m in Papua New Guinea (Pacific Island Ecosystems at Risk 2001)." http://www.fs.fed.us/global/iitf/wildland_shrubs.ht [elevationm range >1000 m; displays environmental versatility] m 203 2011. Tropilab Inc.. Solanum torvum- Turkey "USDA zone 9 - 11" Berry. http://www.tropilab.com/turkeyberry.html 204 1999. Wagner, W.L./Herbst, D.R./Sohmer, S.H.. "Native to the Antilles, now a pantropical weed; in Hawaii naturalized in Kaneohe Manual of the flowering plants of Hawaii. Revised and Palolo Valley, Oahu and along Iao Stream Maui. First collected on Maui in edition.. University of Hawai‘i Press and Bishop 1954." Museum Press, Honolulu, HI. 205 1999. Wagner, W.L./Herbst, D.R./Sohmer, S.H.. "Native to the Antilles, now a pantropical weed." Manual of the flowering plants of Hawaii. Revised edition.. University of Hawai‘i Press and Bishop Museum Press, Honolulu, HI. 301 1999. Oppenheimer, H.L./Meidell, J.S./Bartlett, "Solanum torvum Sw. Range extension According to Wagner et al. (1990: 1276) R.T.. New plant records for Maui and Moloka‘i. the naturalized range of this species in Hawai‘i was previously known to be O‘ahu Bishop Museum Occasional Papers. 59: 7-11. and along ‘Ïao Stream on West Maui. The following collection extends its range to East Maui. Material examined. MAUI: East Maui, Häna District, Ka‘eleku, along the road to Häna Airport, 61 m, 21 Jun 1998, Oppenheimer 305 (BISH)." 301 2003. Starr, F./Starr, K./Loope, L.L.. New plant "Previously known from O‘ahu and Maui (Wagner et al., 1990; Oppenheimer et records from the Hawaiian Archepelago. Bishop al., 1999), S. torvum (turkeyberry) is now also known from Hilo, Hawai‘i where it Museum Occasional Papers. 74: 23-34. was volunteering in waste areas. Material examined: HAWAI‘I: Hilo, University of Hawaii Hilo campus, 200 ft [60 m], 1 Aug 2001, Starr & Martz 010801-1." 301 2003. Wunderlin, R.P./Hansen, B.F.. Guide to "Disturbed areas. Occasional; Colombia Co., central and southern peninsula. the Vascular Plants of Florida. University Press Native to the West Indies." [Florida] of Florida, Gainsville, FL 302 2002. Cuda, J.P./Parker, P.E./Coon, B.R. et al.. "This noxious solanum invades disturbed sites such as pastures, crop fields, Evaluation of exotic Solanum spp. (Solanales: roadsides, damp waste areas and forest clearings where it competes with Solanaceae) in Florida as host plants for the leaf desirable plants for moisture, light and nutrients." [a disturbance weed with beetles Leptinotarsa defecta & L. texana agricultural and environmental impacts. See 3.03 & 3.04] (Coleoptera: Chrysomelidae). Florida Entomologist. 85(4): 599-610. 302 2004. Grubben, G.J.H.. Vegetables. Volume 2 of "Solanum torvum establishes itself on open land in disturbed soil, along roads Plant resources of tropical Africa. PROTA, and on waste places, where it often turns into a weed that becomes hard to Wageningen, Netherlands control." 302 2010. Nelson, G.. The Trees of Florida. 2nd "Origin: Not native (West Indies), invasive, EPPC listed...Distribution: Thickets, Edition. Pineapple Press Inc, Sarasota, FL waste places, disturbed sites, edges of hammocks; from about Columbia, St. Johns, Putnam, and Pasco counties southward, including the Keys." 303 1995. Devendra, C./Gardiner, P.. Global agenda "High levels of weed infestation are a major problem facing livestock farmers. for livestock research: proceedings of the Common weeds include guava (Psidium guajava)…prickly solanum (Solanum consultation for the South-East Asia Region : 10- torvum)…" 13 May 1995, IRRI. International Livestock Research Institute, Nairobi, Kenya Print Date: 2/18/2011 Solanum torvum (Solanaceae) Page 3 of 9 303 1998. Agyakwa, C.W./Akobundu, I.O.. A "Habitat" A common weed of cultivated crops and waste areas in the forest handbook of West African weeds. International zones." Institute of Tropical Agriculture, Ibadan, Nigeria 303 2002. Cuda, J.P./Parker, P.E./Coon, B.R. et al.. "Tropical soda apple, Solanum viarum Dunal, wetland nightshade, S. tampicense Evaluation of exotic Solanum spp. (Solanales: Dunal, and turkey berry, S. torvum Swartz, are considered three of Florida’s most Solanaceae) in Florida as host plants for the leaf invasive plant species. These nonnative perennial broadleaf weeds are disrupting beetles Leptinotarsa defecta & L. texana native plant communities in agricultural areas and natural ecosystems.
Recommended publications
  • Antihyperlipidemic Effect of Solanum Incanum on Alloxan Induced
    armacolo Ph gy r : Tsenum, Cardiovasc Pharm Open Access 2018, 7:2 O la u p c e n s a A DOI: 10.4172/2329-6607.1000239 v c o c i e d r s a s Open Access C Cardiovascular Pharmacology: ISSN: 2329-6607 Research Article OpenOpen Access Access Antihyperlipidemic Effect of Solanum incanum on Alloxan Induced Diabetic Wistar Albino Rats Tsenum JL* Makurdi College of Sciences, Federal University of Agriculture, Abuja, Nigeria Abstract The effect of orally administered aqueous fruit extract of Solanum incanum on serum lipid profile of Wistar Albino rats were determined. Twelve male and female Wistar Albino rats were randomly assigned into four groups of three rats each, following acclimatization to laboratory and handling conditions. Diabetes was induced with a single dose of alloxan (120 mg/kg) body weight and plasma glucose was taken 72 h after induction to confirm diabetes. The normal control was not induced. Animals in group a (normal control) and B (diabetic) were administered 0.5 ml of normal saline respectively. Group C was administered with 10 mg/kg weight of glibenclamide and group D was administered 500 mg/kg body weight of aqueous Solanum incanum extract. Extract administration lasted for fourteen days. Water and feeds were allowed ad libitum. After the two weeks treatment with the plant extract, blood samples were collected by cardiac puncture for lipid profile analysis by standard methods and enzyme kits. At the end of week two, the lipid profile of all groups were significantly different. The result on lipid profile showed that the extract treated group was significantly lower (P>0.05) in TC, TAG and VLDL as compared to diabetic control but significantly higher (P<0.05) in HDL and LDL as compared to diabetic control.
    [Show full text]
  • Improving Seed Germination of the Eggplant Rootstock Solanum Torvum by Testing Multiple
    1 Improving seed germination of the eggplant rootstock Solanum torvum by testing multiple 2 factors using an orthogonal array design 3 4 R.H.G. Ranila, H.M.L. Niranb, M. Plazasc, R.M. Fonsekaa, H.H. Fonsekad, S. Vilanovac, I. Andújarc, 5 P. Gramazioc, A. Fitac, J. Prohensc,* 6 7 aDepartment of Crop Science, Faculty of Agriculture, University of Peradeniya, Old Galaha Road, 8 Peradeniya 20400, Sri Lanka 9 bAgriculture Research Station, Girandurukotte 90750, Sri Lanka 10 cInstituto de Conservacion y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de 11 València, Camino de Vera 14, 46022 Valencia, Spain 12 dHorticultural Crop Research and Development Institute, Gannoruwa Road, Peradeniya 20400, Sri 13 Lanka 14 15 *Corresponding author. Tel: +34 963879424; fax: +34 963879422. 16 E-mail addresses: [email protected] (R.H.G. Ranil), [email protected] (H.M.L. Niran), 17 [email protected] (M. Plazas), [email protected] (R.M. Fonseka), 18 [email protected] (H.H. Fonseka), [email protected] (S. Vilanova), 19 [email protected] (I. Andújar), [email protected] (P. Gramazio), [email protected] (A. Fita), 20 [email protected] (J. Prohens) 21 22 1 23 ABSTRACT 24 Solanum torvum is a highly vigorous relative of eggplant that is resistant to a number of harmful 25 soil-borne diseases and is compatible for grafting with eggplant. Being a potential rootstock, this 26 plant frequently presents poor and erratic germination, which makes its practical use difficult. We 27 used an L8 (27) orthogonal array design to evaluate the primary effects of seven factors (soaking of 28 seeds, scarification with sodium hypochlorite (NaClO), application of gibberellic acid (GA3), use of 29 potassium mitrate (KNO3) as a moistening agent, cold stratification, application of a heat shock, and 30 light irradiation during germination) at two levels (L0 and L1) using four germination parameters 31 (early and final germination, germination rate and vigour index) in fresh S.
    [Show full text]
  • In Vitro Anti-Oxidant Assay, HPLC Profiling of Polyphenolic Compounds, AAS and FTIR Spectrum of Malaysian Origin Solanum Torvum Fruit
    Pharmaceutical Research In vitro Anti-oxidant Assay, HPLC Profiling of Polyphenolic Compounds, AAS and FTIR Spectrum of Malaysian Origin Solanum torvum Fruit Sathyanarayana Namani1, Sunitha Paripelli2, Suresh V Chinni3, Marimuthu Kasi3, Sreeramanan Subramaniam4, Xavier Rathinam3 1|Department of Anatomy, Faculty of Medicine, AIMST University, Semeling, Bedong, MALAYSIA. 2Department of Physiology, Faculty of Medicine, AIMST University, Semeling, Bedong, MALAYSIA. 3Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Semeling, Bedong, MALAYSIA. 4School of Biological Sciences, Universiti Sains Malaysia, 11800 Georgetown, Penang, MALAYSIA. ABSTRACT Objective: Solanum torvum swartz, a Solanaceae family plant is used by traditional systems of medicine. The aim of this study is to determine the phytochemical content and antioxidant potential of the fruits of Solanum torvum of Malaysian origin. Method: A preliminary phytochemical screening was carried out for the analysis of important phytochemicals present in Solanum torvum Fruit. Anti-oxidant potential of S. torvum Fruit was evaluated by various scavenging models including DPPH, FRAP and HPLC method used for Identification of polyphenolic compounds. Elemental analysis and Functional group analysis were done by Atomic absorption spectrophotometer (AAS) and Fourier Transform Infrared Spectrophotometer (FTIR) methods respectively. Results: Phytochemical screening was done for the aqueous, ethanolic and methanolic extracts of S. torvum. Quantitative assessment of total phenols and flavonoid content, DPPH and FRAP assay was done in the ethanolic extracts of S. torvum. Qualitative analysis of each extract showed the presence of reducing sugars, saponins, alkaloids, phenols and flavonoids except anthraquinones. Quantitative determination of total phenols and flavonoids in STE showed 16.4 mg GAE/g extract of S. torvum and 2.8 mg QE/g extract of S.
    [Show full text]
  • Epizoochorous Dispersal by Bats in French Guiana
    Journal of Tropical Ecology (2004) 20:581–582. Copyright © 2004 Cambridge University Press DOI: 10.1017/S0266467404001634 Printed in the United Kingdom SHORT COMMUNICATION Epizoochorous dispersal by bats in French Guiana Tatyana A. Lobova1 and Scott A. Mori Institute of Systematic Botany, The New York Botanical Garden, Bronx, New York 10458-5126, USA (Accepted 23 August 2003) Key Words: bat dispersal, Cyathula, epizoochorous dispersal, neotropical bats, Piper, Solanum, Sturnira In neotropical forests many species of plant depend on are known to have epizoochorous seed dispersal by burrs animals for pollination and seed dispersal and it has (Mori & Brown 1998). been well documented that bats play an essential role in As part of a study of seed dispersal, bats were caught dispersal of many flowering plants (Gardner 1977). Bats near the village of Saul¨ in central French Guiana during are responsible for colonization of plants into forest gaps August and September 2000. They were captured in because they often disperse the seeds of plants adapted primary and secondary forest in ground-level mist nets for growth in disturbed areas. Species of Cecropia, Piper, and placed in clean cloth bags until they defecated. The Solanum and Vismia are especially important pioneer bats were identified using Emmons (1990) and then plants, and bats play a critical role in the dispersal of released unharmed. Fruits and seeds from the faeces were these secondary woody species into both secondary and air-dried in glassine envelopes, identified, and voucher primary forests, and into the seed bank (de Foresta et al. collections archived at The New York Botanical Garden.
    [Show full text]
  • Alkaloids in Solanum Torvum Sw (Solanaceae) (With 2 Tables & 1 Figure) Alcaloides En Solanum Torvum Sw (Solanaceae) (Con 2 Tablas Y 1 Figura)
    Revista Internacional de International Journal of BOTANICA EXPERIMENTAL EXPERIMENTAL BOTANY Fundada en 1951 por Founded 1951 by Miguel Raggio & Nora Moro de Raggio Editor Fundador: Dr. Miguel Raggio | Editor Ejecutivo: Dr. Carlos A. Busso FUNDACION ROMULO RAGGIO Gaspar Campos 861, 1638 Vicente Lòpez (BA), Argentina www.revistaphyton.fund-romuloraggio.org.ar ISSN 0031-9457 56º ANIVERSARIO (2007) 76: 39-45 56th ANNIVERSARY Alkaloids in Solanum torvum Sw (Solanaceae) (With 2 Tables & 1 Figure) Alcaloides en Solanum torvum Sw (Solanaceae) (Con 2 Tablas y 1 Figura) Pérez-Amador1 MC, V Muñoz Ocotero1, JM García Castañeda1, AR González Esquinca2 Abstract. A comparison was made between plants of Solanum tor- vum Sw that grow in Chiapas, Mexico, and plants of the same species ori- ginating from India. This was effected to establish either similarities or dif- ferences between these plants in total alkaloid contents and presence of solasodine, an important alkaloid for the partial synthesis of steroids. The total alkaloid content (0.12%) of the plants coming from Chiapas and India was the same. However, solasodine was found only in the plants of Chiapas. In addition, the total amount of glycoalkaloids (0.038%) and two glycosila- ted compounds derived from solasodine, solasonine (0.0043%) and sola- margine (0.0028%), were determined. Key words: Solanaceae, Solanum torvum, alkaloids, solasodine, solamargine. Resumen. Se efectuó una comparación entre plantas de Solanum tor- vum Sw que crecen en Chiapas, México, y plantas de la misma especie que cre- cen en India. Esto se efectuó para establecer similitudes o diferencias entre 1 Facultad de Ciencias, UNAM. Coyoacán 04510.
    [Show full text]
  • And Turkey Berry (Solanum Torvum Sw.)
    Int. J. Mol. Sci. 2015, 16, 7608-7626; doi:10.3390/ijms16047608 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article The WRKY Transcription Factor Genes in Eggplant (Solanum melongena L.) and Turkey Berry (Solanum torvum Sw.) Xu Yang 1,†, Cao Deng 2,†, Yu Zhang 1, Yufu Cheng 1,*, Qiuyue Huo 1 and Linbao Xue 1 1 College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; E-Mails: [email protected] (X.Y.); [email protected] (Y.Z.); [email protected] (Q.H.); [email protected] (L.X.) 2 DNA Stories Bioinformatics Services Co., Ltd., Chengdu 610000, China; E-Mail: [email protected] † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +86-514-8797-9346. Academic Editor: Ritva Tikkanen Received: 6 November 2014 / Accepted: 10 March 2015 / Published: 7 April 2015 Abstract: WRKY transcription factors, which play critical roles in stress responses, have not been characterized in eggplant or its wild relative, turkey berry. The recent availability of RNA-sequencing data provides the opportunity to examine WRKY genes from a global perspective. We identified 50 and 62 WRKY genes in eggplant (SmelWRKYs) and turkey berry (StorWRKYs), respectively, all of which could be classified into three groups (I–III) based on the WRKY protein structure. The SmelWRKYs and StorWRKYs contain ~76% and ~95% of the number of WRKYs found in other sequenced asterid species, respectively. Positive selection analysis revealed that different selection constraints could have affected the evolution of these groups.
    [Show full text]
  • A Molecular Phylogeny of the Solanaceae
    TAXON 57 (4) • November 2008: 1159–1181 Olmstead & al. • Molecular phylogeny of Solanaceae MOLECULAR PHYLOGENETICS A molecular phylogeny of the Solanaceae Richard G. Olmstead1*, Lynn Bohs2, Hala Abdel Migid1,3, Eugenio Santiago-Valentin1,4, Vicente F. Garcia1,5 & Sarah M. Collier1,6 1 Department of Biology, University of Washington, Seattle, Washington 98195, U.S.A. *olmstead@ u.washington.edu (author for correspondence) 2 Department of Biology, University of Utah, Salt Lake City, Utah 84112, U.S.A. 3 Present address: Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt 4 Present address: Jardin Botanico de Puerto Rico, Universidad de Puerto Rico, Apartado Postal 364984, San Juan 00936, Puerto Rico 5 Present address: Department of Integrative Biology, 3060 Valley Life Sciences Building, University of California, Berkeley, California 94720, U.S.A. 6 Present address: Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, U.S.A. A phylogeny of Solanaceae is presented based on the chloroplast DNA regions ndhF and trnLF. With 89 genera and 190 species included, this represents a nearly comprehensive genus-level sampling and provides a framework phylogeny for the entire family that helps integrate many previously-published phylogenetic studies within So- lanaceae. The four genera comprising the family Goetzeaceae and the monotypic families Duckeodendraceae, Nolanaceae, and Sclerophylaceae, often recognized in traditional classifications, are shown to be included in Solanaceae. The current results corroborate previous studies that identify a monophyletic subfamily Solanoideae and the more inclusive “x = 12” clade, which includes Nicotiana and the Australian tribe Anthocercideae. These results also provide greater resolution among lineages within Solanoideae, confirming Jaltomata as sister to Solanum and identifying a clade comprised primarily of tribes Capsiceae (Capsicum and Lycianthes) and Physaleae.
    [Show full text]
  • Litt CV 9 2013
    Amy Litt Curriculum Vitae Director of Plant Genomics and Cullman Curator The New York Botanical Garden Bronx, NY 10458 718-817-8161; [email protected] Professional Preparation Brown University, Providence, RI Biology B.A., 1975 Yale University, New Haven, CT Biology M. Phil., 1982 New York Botanical Garden/City Plant Sciences Ph.D., 1999 University of New York, Bronx, NY Yale University, New Haven, CT Plant Molecular Biology Post-doc., 1999-2004 Appointments 2012- Program Officer, National Science Foundation, Divisions of Integrated Organismal Systems and Environmental Biology, Arlington, VA 2009- Adjunct Associate Professor, Fordham University, Bronx, NY 2005- Visiting Scientist, New York University, New York, NY 2005- Doctoral faculty member, City University of New York (Biology Program, Plant Sciences subprogram), New York, NY 2005 - Director of Plant Genomics and Cullman Curator. The New York Botanical Garden, Bronx, NY 2004-2005 Assistant Professor. Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 2003-2004 Post-Doctoral Associate. Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 1999-2003 Post-Doctoral Fellow. Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 1998-1999 Instructor. Forestry School, Yale University, New Haven, CT 1996-1997 Lewis B. and Dorothy Cullman Fellow in Molecular Systematics. NY Botanical Garden 1992-1996 Herbarium Assistant. The New York Botanical Garden, Bronx, NY 1993 Instructor. Dept. of Continuing Education, The New York Botanical Garden, Bronx, NY 1985-1992 Teacher. Horace Mann-Barnard School, Bronx, NY 1984-1985 Teacher. The Chapin School, NY, NY Funding Joint bryophyte genomics and phylogenetics conference: Moss2012 and 3rd International Conference on Molecular Systematics of Bryophytes.
    [Show full text]
  • Devil's Fig (444) Relates To: Weeds
    Pacific Pests, Pathogens & Weeds - Fact Sheets https://apps.lucidcentral.org/ppp/ Devil's fig (444) Relates to: Weeds Photo 2. Single bush, devil's fig, Solanum torvum; note, Photo 1. Thicket of devil's fig, Solanum torvum. the single stem just above ground. Photo 4. Thorns on the stems at the back of the Photo 3. Stem and branches, devil's fig, Solanum photograph, devil's fig, Solanum torvum. Note, the torvum, showing the thorns. shape of the leaves: near oval and with short leaf stalk. Photo 5. Flowers, devil's fig, Solanum torvum. Photo 6. Flowers, devil's fig, Solanum torvum. Photo 7. Flowers, devil's fig, Solanum torvum. Photo 8. Fruits, devil's fig, Solanum torvum. Photo 9. Flowers and fruits, devil's fig, Solanum torvum. Common Name Devil's fig; it is also known as prickly Solanum, or wild tomato. CABI prefers the name turkey berry. Scientific Name Solanum torvum. It was known previously as Solanum largiflorum. It is a member of the Solanaceae. Distribution Widespread. Africa, Asia, North (Hawaii), South and Central America, the Caribbean, Europe (restricted), Oceania. It is recorded from Australia, American Samoa, Fiji, French Polynesia, Guam, Kiribati, New Caledonia, Niue, Palau, Papua New Guinea, Samoa, Solomon Islands, Tonga, Vanuatu, and Wallis and Futuna. It is native to southern Mexico, Central and South America, and the Caribbean. Invasiveness & Habitat Devil's fig is a important invasive perennial weed forming dense thickets (Photo 1). It is a weed of forest margins, waterways, plantation crops, roadsides, pastures, disturbed sites and waste areas throughout the tropics and subtropics.
    [Show full text]
  • Solanum Torvum Turkey Berry Solanaceae
    Solanum torvum Turkey berry Solanaceae Forest Starr, Kim Starr, and Lloyd Loope United States Geological Survey--Biological Resources Division Haleakala Field Station, Maui, Hawai'i April, 2003 OVERVIEW Solanum torvum is a pantropical weed that invades disturbed areas and forms large thorny impenetrable thickets. On Maui, S. torvum is established in lowland pastures and agricultural fields on both East and West Maui. At this time, it is probably not feasible to eradicate on an island wide level. It seems to be spreading on Maui via contaminated equipment and soil. It also appears to be sparingly cultivated. Public education is needed so that people do not cultivate or spread noxious weeds unknowingly. It could be controlled if found at an early stage in new areas where it is not wanted. TAXONOMY Family: Solanaceae (Nightshade family) (Wagner et al. 1999). Latin name: Solanum torvum Sw. (Wagner et al. 1999). Synonyms: Solanum ficifolium Ortega (PLANTS 2003), Solanum ferrugineum Jacq. (Langeland and Burks 1998). Common names: Turkey berry, devil's-fig, prickly Solanum (GRIN 2003, PIER 2003, PLANTS 2003). Taxonomic notes: The genus Solanum is large and complex, made up of about 1,700 species worldwide (Wagner et al. 1999). Nomenclature: The genus name Solanum is probably derived from the Latin name of a plant that was used medicinally for treatment of epilepsy (Wagner et al. 1999). Related species in Hawai'i: Solanum is represented in Hawai'i by several endemic species, including Solanum nelsonii, Solanum incompletum, and Solanum sandwicense. There are also several other weedy naturalized species, such as S. linnaeanum, S. robustum, S.
    [Show full text]
  • Solanum Torvum Sw. Prodr.:A New Recorded for Valsad District, Gujarat
    International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 2320-9364, ISSN (Print): 2320-9356 www.ijres.org Volume 9 Issue 5 ǁ 2021 ǁ PP. 19-20 Solanum torvum Sw. Prodr.:A New Recorded for Valsad District, Gujarat Hirali D. Patel1, Dilip D. Patel2 and Hitesh A. Solanki3. 1. Research Scholar, Botany Department, University School of Science, Gujrat University Ahmedabad, Gujarat, India 2. Associate Professor, B.K. M. Science Collage, Valsad, Gujarat, India 3. Professor, Botany Department, University School of Science, Gujrat University Ahmedabad GUJARAT. ABSTRACT: Solanum torvum Sw. Prodr. Belongs to Family Solanaceae. It has earlier been reported by the Reddy (1987) but didn’t mention any note about distribution. The paper deal with indigenous taxa of Angiosperm belonging to Solanaceae family is reported as an addition to Valsad district. The paper also envisages brief citation, detailed, description, flowering and fruiting time, followed by ecological notes along with photograph is also provided. KEY WORD: Solanum torvum Sw. Prodr. Valsad, Gujarat --------------------------------------------------------------------------------------------------------------------------------------- Date of Submission: 12-05-2021 Date of acceptance: 25-05-2021 --------------------------------------------------------------------------------------------------------------------------------------- I. INTRODUCTION: Valsad is a district town situated south of the Tapi river on 20 50” E and 20 30” N in the southern part of Gujarat State about 194 km. North of Mumbai on Ahmedabad Mumbai broad gauge railway line. About 3 km West of Valsad town is an Arabian sea and in the east there is Ahmedabad Mumbai national highway no:48. Geographically Valsad belongs to the western coastal land of the Deccan peninsula. The area is traversed by Damanganga, Auranga, Par, Kolak rivers and several small tributaries.
    [Show full text]
  • Comparative Analyses of the Molecular Footprint of Domestication in Three Solanaceae Species : Eggplant, Pepper and Tomato Stéphanie Arnoux
    Comparative analyses of the molecular footprint of domestication in three Solanaceae species : eggplant, pepper and tomato Stéphanie Arnoux To cite this version: Stéphanie Arnoux. Comparative analyses of the molecular footprint of domestication in three Solanaceae species : eggplant, pepper and tomato. Agricultural sciences. Université d’Avignon, 2019. English. NNT : 2019AVIG0351. tel-02185095v2 HAL Id: tel-02185095 https://tel.archives-ouvertes.fr/tel-02185095v2 Submitted on 17 Jul 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Avignon Université INRA Centre de recherche PACA École Doctorale 536 Agrosciences et UR 1052, Génétique et Amélioration Sciences des Fruits et Légumes THÈSE Étude comparée des traces génétiques de la domestication chez trois Solanacées : l’aubergine, le piment et la tomate Présentée à Avignon Université pour obtenir le grade de Docteur en Sciences Spécialité : Biologie Soutenue le 21 février 2019 par Stéphanie Arnoux Encadrée par : Dr. Mathilde Causse (DR, HDR, INRA Avignon) Directeur de thèse Dr. Christopher Sauvage (CR, INRA Avignon) Co-encadrant Devant le jury composé de : Dr. Maud Tenaillon (DR, HDR, CNRS Gif/Yvette) Rapporteur Dr. Joëlle Ronfort (DR, HDR, INRA Montpellier) Rapporteur Dr. Concetta Burgarella (Chercheur, CIRAD Montpellier) Examinateur Dr.
    [Show full text]