Comparative Analyses of the Molecular Footprint of Domestication in Three Solanaceae Species : Eggplant, Pepper and Tomato Stéphanie Arnoux

Total Page:16

File Type:pdf, Size:1020Kb

Comparative Analyses of the Molecular Footprint of Domestication in Three Solanaceae Species : Eggplant, Pepper and Tomato Stéphanie Arnoux Comparative analyses of the molecular footprint of domestication in three Solanaceae species : eggplant, pepper and tomato Stéphanie Arnoux To cite this version: Stéphanie Arnoux. Comparative analyses of the molecular footprint of domestication in three Solanaceae species : eggplant, pepper and tomato. Agricultural sciences. Université d’Avignon, 2019. English. NNT : 2019AVIG0351. tel-02185095v2 HAL Id: tel-02185095 https://tel.archives-ouvertes.fr/tel-02185095v2 Submitted on 17 Jul 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Avignon Université INRA Centre de recherche PACA École Doctorale 536 Agrosciences et UR 1052, Génétique et Amélioration Sciences des Fruits et Légumes THÈSE Étude comparée des traces génétiques de la domestication chez trois Solanacées : l’aubergine, le piment et la tomate Présentée à Avignon Université pour obtenir le grade de Docteur en Sciences Spécialité : Biologie Soutenue le 21 février 2019 par Stéphanie Arnoux Encadrée par : Dr. Mathilde Causse (DR, HDR, INRA Avignon) Directeur de thèse Dr. Christopher Sauvage (CR, INRA Avignon) Co-encadrant Devant le jury composé de : Dr. Maud Tenaillon (DR, HDR, CNRS Gif/Yvette) Rapporteur Dr. Joëlle Ronfort (DR, HDR, INRA Montpellier) Rapporteur Dr. Concetta Burgarella (Chercheur, CIRAD Montpellier) Examinateur Dr. Jérémy Clotault (MC, Université d’Angers) Examinateur Résumé La domestication des plantes a débuté il y a quelques milliers d’années quand les hommes se sont sédentarisés. Ils ont sélectionné les plantes sauvages portant des caractères phénotypiques d’intérêt pour la consommation et production humaine. Ce processus évolutif a par conséquent modifié le patrimoine génétique des espèces domestiquées. Cette thèse se penche sur les traces génétiques induites par la domestication chez trois espèces de Solanacées : l’aubergine (Solanum melongena), le piment (Capsicum annuum) et la tomate (S. lycopersicum). En effet, si les caractères phénotypiques des plantes cultivées ont été sélectionnés depuis des milliers d’années, les conséquences moléculaires d’une telle sélection restent peu étudiées à l'échelle du génome. Cette étude est basée sur des données de diversité et d’expression de gènes (RNAseq). En utilisant des méthodes comparatives entre des variétés cultivées et leurs espèces sauvages apparentées, j’ai étudié, à l’échelle intra-spécifique, d’une part les histoires démographiques de chacune des espèces, et d’autre part les changements de diversité nucléotidique et d’expression des gènes dus à la domestication. La comparaison de ces trois événements indépendants de domestication, offre l’opportunité de décrypter les changements génétiques qui convergent chez ces trois espèces lors du processus de sélection humaine. Suite à une introduction qui pose le cadre de cette étude et présente l’état de l’art, le premier chapitre, s’inscrit dans un ouvrage portant sur la génomique des populations d’espèces modèles. Il propose une synthèse des connaissances accumulées en plus d’un siècle de recherche sur l’espèce modèle qu’est la tomate (S. lycopersicum). Ce chapitre permet également de compléter le contexte scientifique dans lequel cette thèse s’inscrit, notamment, en retraçant l’importance que les espèces sauvages apparentées ont eu dans l’amélioration de l’adaptabilité des variétés cultivées actuelles. L’hypothèse du deuxième chapitre révèle la convergence des changements démographiques entre les trois espèces malgré leurs événements indépendants de domestication. L’étude comparée d’inférences de scénarios démographiques a permis de reconstruire l’histoire démographique de chaque espèce cultivée. Ces inférences ont aussi facilité l’estimation des paramètres tels que les flux migratoires entre les espèces sauvages et cultivées, la force des goulots d’étranglement liés à l’intensité de la sélection humaine et la durée des événements de domestication. Ce chapitre permet de démontrer que les changements démographiques liés à la domestication dépendent de l’état de sympatrie ou d’allopatrie des variétés cultivées avec leurs sauvages apparentées. Les connaissances quant à la datation des événements de domestication de nos trois espèces restent très faibles, et les inférences ont permis d’établir des estimations de durée de domestication relativement précise. Ces nouvelles connaissances apportent une plus-value à cette étude pour nos trois espèces et nous invitent à s’interroger sur les différents compartiments du génome qui ont été sélectionnées et modifiées lors de la domestication. Le troisième chapitre teste l’hypothèse d’une convergence évolutive des changements moléculaires, notamment transcriptionnels, induits par la domestication et l’amélioration moderne. La comparaison des variétés cultivées à leurs espèces sauvages apparentées permet d’évaluer la convergence des mécanismes de régulation et d’adaptation liés à la domestication. C’est en testant la corrélation entre les traces génétiques (diversité nucléotidique) de sélection et les changements - 1 - d’expression des gènes observés chez les variétés cultivées que l’hypothèse de départ a été validée. Cette analyse montre que la domestication, au-delà même de changements nucléotidiques, a modifié l’expression des gènes chez les trois espèces. L’analyse des gènes orthologues des espèces a confirmé que la domestication a sélectionné des gènes liés aux phénotypes de développement des fruits et la croissance de la plante alors qu’elle avait, au contraire, contre-sélectionné des gènes liés à la défense des plantes et à leur capacité à tolérer des stress environnementaux. Enfin, en discussion, je réalise un bilan sur mon projet qui apporte de nombreuses preuves de convergence dues à la domestication et des connaissances utiles pour l’étude de l’histoire des Solanacées. De surcroit, des perspectives d’analyses complémentaires sur la liste de nombreux gènes candidats affectés par la domestication, offrent un potentiel de transversalité, pour l’amélioration des variétés cultivées et pour l’étude plus approfondie des conséquences biologiques et évolutives de la domestication. - 2 - Summary Domestication started thousand years ago when human shifted from hunter-gatherer to agrarian societies. They started selecting wild plants for phenotypes related to consumption and yield. This evolutionary process induced changes in the gene pool of domesticated plants. This thesis focuses on genetic footprints induced by domestication within a trio of Solanaceae species: the eggplant (Solanum melongena), the pepper (Capsicum annuum) and the tomato (S. lycopersicum). Crop plants have been selected for thousand years on phenotypic traits, but the molecular consequences of such selection remain unknown at the genome-wide scale. The study was performed on a RNAseq data set; using comparative methods between crops and their wild relatives, I studied, at the intra-specific scale, the demographic history, and, both the nucleotide diversity and the gene expression changes due to domestication. Comparing these three independent events of domestication, is a great opportunity to decipher the interspecific genetic changes, converging for the three species, during the human selection process. The first chapter is a book chapter about population genomics in model species. It details the state of art of hundred years of research on tomato as model species (S. lycopersicum). Tomato is a model species in genetics, as well as in population genomics thanks to the important collection of genomic data that have been accumulating over years. Tomato has the strongest economic importance within the trio of studied species. By highlighting the importance of crop wild relative species for adaptability improvement of modern cultivars, this chapter describes the scientific context of this thesis work. The two next chapters are following these researches and show the importance to both conserve and study the crop wild relative species. In the second chapter, I hypothesize that demographic changes within the three species experience a convergence, despite their independent domestication events. The comparative study of demographic inferences allows the reconstruction of each domesticated species demographic history. Theses inferences facilitate the parameter estimations such as the migration rate between crop and wild, the bottleneck strength paired with the human selection and the duration of the domestication events. This chapter reveals a common bottleneck phenomenon as well as migration rate dependent to the allopatric or sympatric state of the crops with their wild relatives. Knowledge concerning the domestication events dating, for each of the three species, remain poorly studied and this thesis work discloses relative domestication time durations. These new insights bring valuable knowledge to the three species and induce a questioning on the different genome parts that are selected and modified through domestication. The third chapter, test the hypothesis of a convergent evolution of molecular changes, especially transcriptional, induced by domestication
Recommended publications
  • WRA Species Report
    Family: Solanaceae Taxon: Solanum torvum Synonym: Solanum ficifolium Ortega Common Name turkeyberry Solanum rudepannum Dunal devil's-fig pea eggplant platebrush Questionaire : current 20090513 Assessor: Chuck Chimera Designation: H(Hawai'i) Status: Assessor Approved Data Entry Person: Chuck Chimera WRA Score 24 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- High substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 y 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 y 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 y 301 Naturalized beyond native range y = 1*multiplier (see y Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see y Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see y Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see y Appendix 2) 401 Produces spines, thorns or burrs y=1, n=0 y 402 Allelopathic y=1, n=0 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals y=1, n=-1 y 405
    [Show full text]
  • Litt CV 9 2013
    Amy Litt Curriculum Vitae Director of Plant Genomics and Cullman Curator The New York Botanical Garden Bronx, NY 10458 718-817-8161; [email protected] Professional Preparation Brown University, Providence, RI Biology B.A., 1975 Yale University, New Haven, CT Biology M. Phil., 1982 New York Botanical Garden/City Plant Sciences Ph.D., 1999 University of New York, Bronx, NY Yale University, New Haven, CT Plant Molecular Biology Post-doc., 1999-2004 Appointments 2012- Program Officer, National Science Foundation, Divisions of Integrated Organismal Systems and Environmental Biology, Arlington, VA 2009- Adjunct Associate Professor, Fordham University, Bronx, NY 2005- Visiting Scientist, New York University, New York, NY 2005- Doctoral faculty member, City University of New York (Biology Program, Plant Sciences subprogram), New York, NY 2005 - Director of Plant Genomics and Cullman Curator. The New York Botanical Garden, Bronx, NY 2004-2005 Assistant Professor. Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 2003-2004 Post-Doctoral Associate. Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 1999-2003 Post-Doctoral Fellow. Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 1998-1999 Instructor. Forestry School, Yale University, New Haven, CT 1996-1997 Lewis B. and Dorothy Cullman Fellow in Molecular Systematics. NY Botanical Garden 1992-1996 Herbarium Assistant. The New York Botanical Garden, Bronx, NY 1993 Instructor. Dept. of Continuing Education, The New York Botanical Garden, Bronx, NY 1985-1992 Teacher. Horace Mann-Barnard School, Bronx, NY 1984-1985 Teacher. The Chapin School, NY, NY Funding Joint bryophyte genomics and phylogenetics conference: Moss2012 and 3rd International Conference on Molecular Systematics of Bryophytes.
    [Show full text]
  • A Retrospective Analysis of Selected Weed Biological Control Agents in the United States
    Invasive Plant Science and Management 2014 7:565–579 Successes We May Not Have Had: A Retrospective Analysis of Selected Weed Biological Control Agents in the United States Hariet L. Hinz, Mark Schwarzla¨nder, Andre´ Gassmann, and Robert S. Bourchier* In this paper, we describe five successful classical biological weed control agents released in the United States. For each of the five arthropod species, we compared data from prerelease studies that experimentally predicted the agent’s host range with data collected postrelease. In general, experimental host range data accurately predicted or overestimated risks to nontarget plants. We compare the five cases with insects recently denied for introduction in the United States and conclude that none of the discussed agents would likely be approved if they were petitioned today. Three agents would be rejected because they potentially could attack economic plants, and two because of potential attack on threatened or endangered plants. All five biocontrol agents have contributed significantly to the successful management of major weeds with no or minimal environmental risk. We believe that the United States may miss opportunities for sustainable and environmentally benign management of weeds using biological control if the regulatory framework only considers the risks of agents as potential plant pests and treats any host-range data regarding economic or threatened and endangered species as a binary decision (i.e., mandates rejection if there is any chance of feeding or development). As a way forward we propose the following: (1) the addition of risk and benefit analyses at the habitat level with a clear ranking of decision-making criteria as part of the U.S.
    [Show full text]
  • 23 Tropical Soda Apple, Wetland Nightshade, and Turkey Berry
    23 TROPICAL SODA APPLE, WETLAND NIGHTSHADE, AND TURKEY BERRY J. P. Cuda,1 D. Gandolfo,2 J. C. Medal,1 R. Charudattan,3 and J. J. Mullahey4 1Entomology and Nematology Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA 2U.S. Department of Agriculture, Agricultural Research Service, South American Biological Control Laboratory, Hurlingham, Argentina 3Plant Pathology Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA 4Wildlife Ecology and Conservation, Institute of Food and Agricultural Sciences, University of Florida, West Florida Research and Education Center, Milton, Florida, USA prickly shrub deny cattle access to shaded areas, PEST STATUS OF WEEDS which results in heat stress (Mullahey et al., 1998). Nature of Damage Stocking rates are drastically reduced and pasture production declines if tropical soda apple is left un- Three non-native species of the genus Solanum are controlled (Mullahey et al., 1993). In pastures, tropi- considered invasive weeds of agricultural and natu- cal soda apple forms monocultures that shade out ral areas in Florida (Langeland and Burks, 1998). bahiagrass, Paspulum notatum Fluegge, a valuable Tropical soda apple, Solanum viarum Dunal, is more forage species of South American origin. Bahiagrass widely recognized as a problem than either wetland does not tolerate shade well and productivity declines nightshade, Solanum tampicense Dunal, or turkey when it is forced to compete with tropical soda apple. berry, Solanum torvum Swartz, because it has spread In 1993, a survey of beef cattle operations in south rapidly throughout the southeastern United States Florida determined the total area of pastureland in- after establishing in Florida (Westbrooks, 1998).
    [Show full text]
  • Tropical Soda Apple Management Plan January 2012
    1 Tropical Soda Apple Management Plan January 2012 Edited by: Julio Medal, William Overholt, Raghavan Charudattan, Jeff Mullahey, Richard Gaskalla, Rodrigo Díaz, James Cuda University of Florida-IFAS. Gainesville, Florida, USA Florida Department of Agriculture and Consumer Services-DPI Tropical Soda Apple Implementation Team: Julio Medal (UF), William Overholt (UF), Raghavan Charudattan (UF and BioProdex, Inc.), Jeff Mullahey (UF), Rodrigo Díaz (UF), Nikary Bustamante (UF), Richard Gaskalla (FDACS- DPI), Amy Roda (USDA-APHIS), Divina Amalin (UF), Juang-Horng Chong (Clemson University), Catherine Marzolf (USDA-APHIS), Abbie Fox (FDACS- DPI), Kenneth Hibbard (FDACS-DPI), Ed Burns (FDACS-DPI), Kenneth Gioeli (UF), Susan Munyan (UF), Brent Sellers (UF), Veronica Manrique (UF), Stephen Hight (USDA-ARS), Philip Stansly (UF), Lance Osborne (UF), Debra Taylor and inmates (Seminole County Jail), Bobby-jo Davis (UF), Don Sudbrink (USDA-ARS), Shaharra Usnick (USDA-APHIS), Mike Terry (SWFWMD), Brian Nelson (SWFWMD), James Cuda (UF), Judy Gillmore (UF), Robert Weston (UF), Roberto Medal (UF), Jason Ferrell (UF), Larry Markle (UF), Ernest Hiebert (UF), Michael Thomas (FAMU), Tajudeen Salaudeen (FAMU), David Harding (FAMU), Daniel Flores (USDA-APHIS), Michael Shannon (USDA-APHIS, and Dale Meyerdirk (USDA-APHIS), Paul Hornby (USDA-APHIS), José Díaz (FDACS-DPI), Joe Walter (UF), Joe DeMarco (FDACS-DPI), Vincent Morris (FDACS-Division of Forestry). Tropical Soda Apple International Collaborators: Robinson A. Pitelli, Aldo Santana, Renán Gravena (Universidade
    [Show full text]
  • WRA Species Report
    Designation = Low Risk WRA Score = 4 Family: Solanaceae Taxon: Solanum aethiopicum Synonym: Solanum gilo Raddi Common Name: Pumpkin on a Stick Solanum integrifolium Poir. Chinese scarlet eggplant Solanum naumannii Engl. tomato-fruit eggplant Solanum pierreanum Pailleux & Bois gilo Solanum sudanense Hammerstein kumba Solanum zuccagnianum Dunal Questionaire : current 20090513 Assessor: Chuck Chimera Designation: L Status: Assessor Approved Data Entry Person: Chuck Chimera WRA Score 4 101 Is the species highly domesticated? y=-3, n=0 y 102 Has the species become naturalized where grown? y=1, n=-1 y 103 Does the species have weedy races? y=1, n=-1 n 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- High substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 n 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 y 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 y 301 Naturalized beyond native range y = 1*multiplier (see y Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see n Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see n Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see n Appendix 2) 305 Congeneric weed n=0, y =
    [Show full text]
  • USDA Final Calophya and P. Ichini
    United States Department of Field Release of the Insects Agriculture Calophya latiforceps Marketing and Regulatory (Hemiptera: Calophyidae) and Programs Pseudophilothrips ichini Animal and Plant Health Inspection (Thysanoptera: Service Phlaeothripidae) for Classical Biological Control of Brazilian Peppertree in the Contiguous United States Environmental Assessment, May 2019 Field Release of the Insects Calophya latiforceps (Hemiptera: Calophyidae) and Pseudophilothrips ichini (Thysanoptera: Phlaeothripidae) for Classical Biological Control of Brazilian Peppertree in the Contiguous United States Environmental Assessment, May 2019 Agency Contact: Colin D. Stewart, Assistant Director Pests, Pathogens, and Biocontrol Permits Plant Protection and Quarantine Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Rd., Unit 133 Riverdale, MD 20737 Non-Discrimination Policy The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the bases of race, color, national origin, age, disability, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual's income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.) To File an Employment Complaint If you wish to file an employment complaint, you must contact your agency's EEO Counselor (PDF) within 45 days of the date of the alleged discriminatory act, event, or in the case of a personnel action. Additional information can be found online at http://www.ascr.usda.gov/complaint_filing_file.html.
    [Show full text]
  • Ranunculales Dumortier (1829) Menispermaceae A
    Peripheral Eudicots 122 Eudicots - Eudicotyledon (Zweikeimblättrige) Peripheral Eudicots - Periphere Eudicotyledonen Order: Ranunculales Dumortier (1829) Menispermaceae A. Jussieu, Gen. Pl. 284. 1789; nom. cons. Key to the genera: 1a. Main basal veins and their outer branches leading directly to margin ………..2 1b. Main basal vein and their outer branches are not leading to margin .……….. 3 2a. Sepals 6 in 2 whorls ……………………………………… Tinospora 2b. Sepals 8–12 in 3 or 4 whorls ................................................. Pericampylus 3a. Flowers and fruits in pedunculate umbel-like cymes or discoid heads, these often in compound umbels, sometimes forming a terminal thyrse …...................… Stephania 3b. Flowers and fruits in a simple cymes, these flat-topped or in elongated thyrses, sometimes racemelike ………………………........................................... Cissampelos CISSAMPELOS Linnaeus, Sp. Pl. 2: 1031. 1753. Cissampelos pareira Linnaeus, Sp. Pl. 1031. 1753; H. Kanai in Hara, Fl. E. Himal. 1: 94. 1966; Grierson in Grierson et Long, Fl. Bhut. 1(2): 336. 1984; Prain, Beng. Pl. 1: 208. 1903.Cissampelos argentea Kunth, Nov. Gen. Sp. 5: 67. 1821. Cissampelos pareira Linnaeus var. hirsuta (Buchanan– Hamilton ex de Candolle) Forman, Kew Bull. 22: 356. 1968. Woody vines. Branches slender, striate, usually densely pubescent. Petioles shorter than lamina; leaf blade cordate-rotunded to rotunded, 2 – 7 cm long and wide, papery, abaxially densely pubescent, adaxially sparsely pubescent, base often cordate, sometimes subtruncate, rarely slightly rounded, apex often emarginate, with a mucronate acumen, palmately 5 – 7 veined. Male inflorescences axillary, solitary or few fascicled, corymbose cymes, pubescent. Female inflorescences thyrsoid, narrow, up to 18 cm, usually less than 10 cm; bracts foliaceous and suborbicular, overlapping along rachis, densely pubescent.
    [Show full text]
  • Identification & B Iology of N On-N Ative Plants in Florida's N Atural Areas
    Identification & Biology of Non-Native Plants in Florida’s Natural Areas Natural Plants in Florida’s of Non-Native & Biology Identification Hundreds of non-native plants have been introduced into Florida, many of great ben- efit to us. Some, however, have been es- tablished outside cultivation, in expanding populations within native plant communi- ties. If left unchecked, these non-natives may disrupt natural processes, displace na- tive plants and animals, and interfere with management goals. This field guide, intended as a tool for land managers, covers 62 non-native plant spe- cies considered weeds in Florida’s natural areas. With descriptions and photographs, the guide provides identification charac- ters of these plants, plus details on their ecological significance, distribution, and life history. Langeland & Burks INCHES 1 2 3 4 5 6 MacMaynard Ruler Co. MacMaynard Ruler Co. MacMaynard Ruler Co. MacMaynard Ruler Co. MacMaynard Ruler Co. MacMaynard Ruler Co. METRIC 123456 7 8 9 10 11 12 13 14 15 INTRODUCTION “Weed,” defined by the Weed Science Society of America as “a plant growing where it is not desired,” is a word familiar to everyone. Homeowners battle weeds in their lawns, gardens, or ponds. Weeds are considered unsightly in parks and playgrounds. Foresters manage weeds to enhance the growth of commercial forests. Weeds interfere with transportation and can cause hazardous conditions along highways, railroads, and waterways. In the United States alone, farmers spend $8 billion annually to control weeds; still, annual losses caused by weeds to crops are $10 billion (Coble 1993). Weeds are also a major problem and a growing concern in natural areas—lands that have been designated for preservation (or restoration) of native plant communities (Cronk and Fuller 1995, Luken and Thieret 1997, McKnight 1993, Randall and Marinelli 1996, U.S.
    [Show full text]
  • CHECKLIST VASCULAR PLANTS of WISCONSIN
    CHECKLIST of the VASCULAR PLANTS of WISCONSIN MARK A.u.EN WETI'ER, THEODORE S. CoCHRANE, MER.EL R. BlACK, HUGH. H . ILTIS, AND PAUL E. B ERRY Technical Bulletin No. 192, 2001 Department of Natural Resources • Madison, Wisconsin 53707 Published in cooperation with University of Wisconsin-Madison Herbarium • Department of Botany Madison, Wisconsin 53706 Cover: illustration by Kandis Elliot. Background photograph of Microseris cuspidat.a by Kitty Kohout. ABSTRACT This report provides an annotated checklist of the known native and introduced vas­ cular plants of Wisconsin, including synonyms, common names, and excluded taxa. The checklist includes 2640 species (3243 total taxa) in 779 genera and 158 families. Taxa of particular conservation concern are identified with special symbols, and sta­ tus categories are given to indicate non-native and ecologically invasive taxa. KeyWords: Wisconsin, vascular plants, flora, rare species, invasive species. Funding for this project provided in part by the University of Wisconsin-Madison; the Biological Resouras Division, U.S. Geological Survey; and the Wisconsin Department of Natural Resources, through the Aquatic and Terrestrial Resouras Inventory. CHECKLIST OF THE VASCULAR PLANTS OF WISCONSIN by Mark Allen Wetter, Theodore S. Cochrane, Merel R. Black, Hugh H. Iltis, and Paul E. Berry Wisconsin State Herbarium 430 Lincoln Dr. Department of Botany University of Wisconsin - Madison Madison, Wisconsin 53706-1381 U.S.A. Technical Bulletin No. 192 Department of Natural Resources Box 7921 Madison, WI 53707 2001 CHECKLIST OF THE VASCULAR PLANTS OF WISCONSIN by Mark Allen Wetter, Theodore S. Cochrane, Merel R. Black, Hugh H. Iltis, and Paul E. Berry Technical Bulletin No.
    [Show full text]
  • Solanum Tampicense Global Invasive
    FULL ACCOUNT FOR: Solanum tampicense Solanum tampicense System: Terrestrial Kingdom Phylum Class Order Family Plantae Magnoliophyta Magnoliopsida Solanales Solanaceae Common name huevo de gato (English, El Salvador), huistomate (English, El Salvador), wetland nightshade (English), salsita de agua (Spanish), sosumba (English, Belize), aquatic soda apple (English), scrambling nightshade (English), espina de manglar (Spanish), ajicón (English, Cuba) Synonym Solanum houstonii , Dunel 1813, non Martyn 1807 Solanum quercifolium , Miller Similar species Solanum Summary Solanum tampicense is a member of the same genus as the tomato and is native to parts of the Caribbean, Mexico and Central America. In the United States, this shrub has invaded Florida, where it creates impenetrable monocultural stands and climbs over native vegetation in a vine-like fashion. It is found inhabiting cypress swamps and river margins where it spreads most effectively by floating seeds and stem fragments to new locations. S. tampicense is invasive because of its high tolerance to sunlight and shading, ability to handle temporary flooding, and prolific seed production. view this species on IUCN Red List Species Description S. tampicense is a perennial shrub (USDA-NRCS 2002). According to Ramey and Murray (2001), the flowers of S. tampicense are white and yellow and tomato-like (being in the same botanical genus as edible tomatoes). Its fruits are pea-sized berries, in clusters of up to 11 berries. The berries turn from green to orange to deep red as they ripen with each berry containing 18 - 50 disc-shaped seeds that are 2mm wide. The leaves are elongate (to 8 - 25cm long, 2 - 7cm wide), with indented edges and star-shaped clusters of microscopic hairs.
    [Show full text]
  • Solanum Spp.) of the Southeastern United States
    Invasive Plant Science and Management 2012 5:341–352 Growth, Development, and Morphological Differences among Native and Nonnative Prickly Nightshades (Solanum spp.) of the Southeastern United States Charles T. Bryson, Krishna N. Reddy, and John D. Byrd, Jr.* Prickly nightshades are troublesome weeds of natural habitats, pastures, feedlots, right-of-ways, and croplands. Native and nonnative invasive weedy species of prickly nightshades were compared to determine growth, development, and morphological differences. Six (Solanum bahamense, Solanum capsicoides, Solanum carolinense, Solanum dimidiatum, Solanum donianum, and Solanum pumilum) of the 18 species of prickly nightshades studied are native to the US. Two species, Solanum citrullifolium and Solanum rostratum, are annuals; the others are perennials or are short lived perennials or annuals in northern extremes of their range in North America. Tables were developed from new and existing data to differentiate vegetative and reproductive characteristics among 18 species of prickly nightshade found in the southeastern US. In greenhouse experiments, average plant height ranged from 24 and 26 cm (9.45 and 10.24 inch) for S. carolinense and Solanum jamaicense, respectively, to 100 and 105 cm for Solanum tampicense and Solanum sisymbriifolium, respectively at 10 wk after emergence (WAE). By 10 WAE, the average number of leaves per plant ranged from , 10 for S. carolinense and Solanum torvum to . 40 leaves/plant for S. rostratum and S. dimidiatum. Average number of nodes/plant main stem ranged from 11, 12, and 14 nodes in S. jamaicense, S. torvum,andS. carolinense, respectively, to 54 nodes in S. rostratum. Average plant dry weights were collected at 10 WAE and were greatest for Solanum mammosum and (.
    [Show full text]