A Matter of Typology: Alphasyllabaries and Abugidas
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Similarities and Dissimilarities of English and Arabic Alphabets in Phonetic and Phonology: a Comparative Study
Similarities and dissimilarities of English and Arabic 94 Similarities and dissimilarities of English and Arabic Alphabets in Phonetic and Phonology: A Comparative Study MD YEAQUB Research Scholar Aligarh Muslim University, India Email: [email protected] Abstract: This paper will focus on a comparative study about similarities and dissimilarities of the pronunciation between the syllables of English and Arabic with the help of phonetic and phonological tools i.e. manner of articulation, point of articulation and their distribution at different positions in English and Arabic Alphabets. A phonetic and phonological analysis of the alphabets of English and Arabic can be useful in overcoming the hindrances for those want to improve the pronunciation of both English and Arabic languages. We all know that Arabic is a Semitic language from the Afro-Asiatic Language Family. On the other hand, English is a West Germanic language from the Indo- European Language Family. Both languages show many linguistic differences at all levels of linguistic analysis, i.e. phonology, morphology, syntax, semantics, etc. For this we will take into consideration, the segmental features only, i.e. the consonant and vowel system of the two languages. So, this is better and larger to bring about pedagogical changes that can go a long way in improving pronunciation and ensuring the occurrence of desirable learners’ outcomes. Keywords: Arabic Alphabets, English Alphabets, Pronunciations, Phonetics, Phonology, manner of articulation, point of articulation. Introduction: We all know that sounds are generally divided into two i.e. consonants and vowels. A consonant is a speech sound, which obstruct the flow of air through the vocal tract. -
Grammatica Et Verba Glamor and Verve
“GippertOVprint” — 2014/4/24 — 22:14 — page 81 —#1 Grammatica et verba Glamor and verve Studies in South Asian, historical, and Indo-European linguistics in honor of Hans Henrich Hock on the occasion of his seventy-fifth birthday edited by Shu-Fen Chen and Benjamin Slade Beech Stave Press Ann Arbor New York • “GippertOVprint” — 2014/4/24 — 22:14 — page 82 —#2 © Beech Stave Press, Inc. All rights reserved. No part of this publication may be reproduced, translated, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission from the publisher. Typeset with LATEX using the Galliard typeface designed by Matthew Carter and Greek Old Face by Ralph Hancock. The typeface on the cover is Post Hock by Steve Peter. Library of Congress Cataloging-in-Publication Data Grammatica et verba : glamor and verve : studies in South Asian, historical, and Indo- European linguistics in honor of Hans Henrich Hock on the occasion of his seventy- fifth birthday / edited by Shu-Fen Chen and Benjamin Slade. pages cm Includes bibliographical references. ISBN ---- (alk. paper) . Indo-European languages. Lexicography. Historical linguistics. I. Hock, Hans Henrich, - honoree. II. Chen, Shu-Fen, editor of compilation. III. Slade, Ben- jamin, editor of compilation. –dc Printed in the United States of America “GippertOVprint” — 2014/4/24 — 22:14 — page 83 —#3 TableHHHHHH ofHHHHHHHHHHHHHHH ContentsHHHHHHHHHHHH Preface . vii Bibliography of Hans Henrich Hock . ix List of Contributors . xxi , Traces of Archaic Human Language Structure Anvita Abbi in the Great Andamanese Language. , A Study of Punctuation Errors in the Chinese Diamond Sutra Shu-Fen Chen Based on Sanskrit Texts . -
Positional Notation Or Trigonometry [2, 13]
The Greatest Mathematical Discovery? David H. Bailey∗ Jonathan M. Borweiny April 24, 2011 1 Introduction Question: What mathematical discovery more than 1500 years ago: • Is one of the greatest, if not the greatest, single discovery in the field of mathematics? • Involved three subtle ideas that eluded the greatest minds of antiquity, even geniuses such as Archimedes? • Was fiercely resisted in Europe for hundreds of years after its discovery? • Even today, in historical treatments of mathematics, is often dismissed with scant mention, or else is ascribed to the wrong source? Answer: Our modern system of positional decimal notation with zero, to- gether with the basic arithmetic computational schemes, which were discov- ered in India prior to 500 CE. ∗Bailey: Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. Email: [email protected]. This work was supported by the Director, Office of Computational and Technology Research, Division of Mathematical, Information, and Computational Sciences of the U.S. Department of Energy, under contract number DE-AC02-05CH11231. yCentre for Computer Assisted Research Mathematics and its Applications (CARMA), University of Newcastle, Callaghan, NSW 2308, Australia. Email: [email protected]. 1 2 Why? As the 19th century mathematician Pierre-Simon Laplace explained: It is India that gave us the ingenious method of expressing all numbers by means of ten symbols, each symbol receiving a value of position as well as an absolute value; a profound and important idea which appears so simple to us now that we ignore its true merit. But its very sim- plicity and the great ease which it has lent to all computations put our arithmetic in the first rank of useful inventions; and we shall appre- ciate the grandeur of this achievement the more when we remember that it escaped the genius of Archimedes and Apollonius, two of the greatest men produced by antiquity. -
The Festvox Indic Frontend for Grapheme-To-Phoneme Conversion
The Festvox Indic Frontend for Grapheme-to-Phoneme Conversion Alok Parlikar, Sunayana Sitaram, Andrew Wilkinson and Alan W Black Carnegie Mellon University Pittsburgh, USA aup, ssitaram, aewilkin, [email protected] Abstract Text-to-Speech (TTS) systems convert text into phonetic pronunciations which are then processed by Acoustic Models. TTS frontends typically include text processing, lexical lookup and Grapheme-to-Phoneme (g2p) conversion stages. This paper describes the design and implementation of the Indic frontend, which provides explicit support for many major Indian languages, along with a unified framework with easy extensibility for other Indian languages. The Indic frontend handles many phenomena common to Indian languages such as schwa deletion, contextual nasalization, and voicing. It also handles multi-script synthesis between various Indian-language scripts and English. We describe experiments comparing the quality of TTS systems built using the Indic frontend to grapheme-based systems. While this frontend was designed keeping TTS in mind, it can also be used as a general g2p system for Automatic Speech Recognition. Keywords: speech synthesis, Indian language resources, pronunciation 1. Introduction in models of the spectrum and the prosody. Another prob- lem with this approach is that since each grapheme maps Intelligible and natural-sounding Text-to-Speech to a single “phoneme” in all contexts, this technique does (TTS) systems exist for a number of languages of the world not work well in the case of languages that have pronun- today. However, for low-resource, high-population lan- ciation ambiguities. We refer to this technique as “Raw guages, such as languages of the Indian subcontinent, there Graphemes.” are very few high-quality TTS systems available. -
ISO Basic Latin Alphabet
ISO basic Latin alphabet The ISO basic Latin alphabet is a Latin-script alphabet and consists of two sets of 26 letters, codified in[1] various national and international standards and used widely in international communication. The two sets contain the following 26 letters each:[1][2] ISO basic Latin alphabet Uppercase Latin A B C D E F G H I J K L M N O P Q R S T U V W X Y Z alphabet Lowercase Latin a b c d e f g h i j k l m n o p q r s t u v w x y z alphabet Contents History Terminology Name for Unicode block that contains all letters Names for the two subsets Names for the letters Timeline for encoding standards Timeline for widely used computer codes supporting the alphabet Representation Usage Alphabets containing the same set of letters Column numbering See also References History By the 1960s it became apparent to thecomputer and telecommunications industries in the First World that a non-proprietary method of encoding characters was needed. The International Organization for Standardization (ISO) encapsulated the Latin script in their (ISO/IEC 646) 7-bit character-encoding standard. To achieve widespread acceptance, this encapsulation was based on popular usage. The standard was based on the already published American Standard Code for Information Interchange, better known as ASCII, which included in the character set the 26 × 2 letters of the English alphabet. Later standards issued by the ISO, for example ISO/IEC 8859 (8-bit character encoding) and ISO/IEC 10646 (Unicode Latin), have continued to define the 26 × 2 letters of the English alphabet as the basic Latin script with extensions to handle other letters in other languages.[1] Terminology Name for Unicode block that contains all letters The Unicode block that contains the alphabet is called "C0 Controls and Basic Latin". -
Schwa Deletion: Investigating Improved Approach for Text-To-IPA System for Shiri Guru Granth Sahib
ISSN (Online) 2278-1021 ISSN (Print) 2319-5940 International Journal of Advanced Research in Computer and Communication Engineering Vol. 4, Issue 4, April 2015 Schwa Deletion: Investigating Improved Approach for Text-to-IPA System for Shiri Guru Granth Sahib Sandeep Kaur1, Dr. Amitoj Singh2 Pursuing M.E, CSE, Chitkara University, India 1 Associate Director, CSE, Chitkara University , India 2 Abstract: Punjabi (Omniglot) is an interesting language for more than one reasons. This is the only living Indo- Europen language which is a fully tonal language. Punjabi language is an abugida writing system, with each consonant having an inherent vowel, SCHWA sound. This sound is modifiable using vowel symbols attached to consonant bearing the vowel. Shri Guru Granth Sahib is a voluminous text of 1430 pages with 511,874 words, 1,720,345 characters, and 28,534 lines and contains hymns of 36 composers written in twenty-two languages in Gurmukhi script (Lal). In addition to text being in form of hymns and coming from so many composers belonging to different languages, what makes the language of Shri Guru Granth Sahib even more different from contemporary Punjabi. The task of developing an accurate Letter-to-Sound system is made difficult due to two further reasons: 1. Punjabi being the only tonal language 2. Historical and Cultural circumstance/period of writings in terms of historical and religious nature of text and use of words from multiple languages and non-native phonemes. The handling of schwa deletion is of great concern for development of accurate/ near perfect system, the presented work intend to report the state-of-the-art in terms of schwa deletion for Indian languages, in general and for Gurmukhi Punjabi, in particular. -
Kharosthi Manuscripts: a Window on Gandharan Buddhism*
KHAROSTHI MANUSCRIPTS: A WINDOW ON GANDHARAN BUDDHISM* Andrew GLASS INTRODUCTION In the present article I offer a sketch of Gandharan Buddhism in the centuries around the turn of the common era by looking at various kinds of evidence which speak to us across the centuries. In doing so I hope to shed a little light on an important stage in the transmission of Buddhism as it spread from India, through Gandhara and Central Asia to China, Korea, and ultimately Japan. In particular, I will focus on the several collections of Kharo~thi manuscripts most of which are quite new to scholarship, the vast majority of these having been discovered only in the past ten years. I will also take a detailed look at the contents of one of these manuscripts in order to illustrate connections with other text collections in Pali and Chinese. Gandharan Buddhism is itself a large topic, which cannot be adequately described within the scope of the present article. I will therefore confine my observations to the period in which the Kharo~thi script was used as a literary medium, that is, from the time of Asoka in the middle of the third century B.C. until about the third century A.D., which I refer to as the Kharo~thi Period. In addition to looking at the new manuscript materials, other forms of evidence such as inscriptions, art and architecture will be touched upon, as they provide many complementary insights into the Buddhist culture of Gandhara. The travel accounts of the Chinese pilgrims * This article is based on a paper presented at Nagoya University on April 22nd 2004. -
Neural Substrates of Hanja (Logogram) and Hangul (Phonogram) Character Readings by Functional Magnetic Resonance Imaging
ORIGINAL ARTICLE Neuroscience http://dx.doi.org/10.3346/jkms.2014.29.10.1416 • J Korean Med Sci 2014; 29: 1416-1424 Neural Substrates of Hanja (Logogram) and Hangul (Phonogram) Character Readings by Functional Magnetic Resonance Imaging Zang-Hee Cho,1 Nambeom Kim,1 The two basic scripts of the Korean writing system, Hanja (the logography of the traditional Sungbong Bae,2 Je-Geun Chi,1 Korean character) and Hangul (the more newer Korean alphabet), have been used together Chan-Woong Park,1 Seiji Ogawa,1,3 since the 14th century. While Hanja character has its own morphemic base, Hangul being and Young-Bo Kim1 purely phonemic without morphemic base. These two, therefore, have substantially different outcomes as a language as well as different neural responses. Based on these 1Neuroscience Research Institute, Gachon University, Incheon, Korea; 2Department of linguistic differences between Hanja and Hangul, we have launched two studies; first was Psychology, Yeungnam University, Kyongsan, Korea; to find differences in cortical activation when it is stimulated by Hanja and Hangul reading 3Kansei Fukushi Research Institute, Tohoku Fukushi to support the much discussed dual-route hypothesis of logographic and phonological University, Sendai, Japan routes in the brain by fMRI (Experiment 1). The second objective was to evaluate how Received: 14 February 2014 Hanja and Hangul affect comprehension, therefore, recognition memory, specifically the Accepted: 5 July 2014 effects of semantic transparency and morphemic clarity on memory consolidation and then related cortical activations, using functional magnetic resonance imaging (fMRI) Address for Correspondence: (Experiment 2). The first fMRI experiment indicated relatively large areas of the brain are Young-Bo Kim, MD Department of Neuroscience and Neurosurgery, Gachon activated by Hanja reading compared to Hangul reading. -
Assessment of Options for Handling Full Unicode Character Encodings in MARC21 a Study for the Library of Congress
1 Assessment of Options for Handling Full Unicode Character Encodings in MARC21 A Study for the Library of Congress Part 1: New Scripts Jack Cain Senior Consultant Trylus Computing, Toronto 1 Purpose This assessment intends to study the issues and make recommendations on the possible expansion of the character set repertoire for bibliographic records in MARC21 format. 1.1 “Encoding Scheme” vs. “Repertoire” An encoding scheme contains codes by which characters are represented in computer memory. These codes are organized according to a certain methodology called an encoding scheme. The list of all characters so encoded is referred to as the “repertoire” of characters in the given encoding schemes. For example, ASCII is one encoding scheme, perhaps the one best known to the average non-technical person in North America. “A”, “B”, & “C” are three characters in the repertoire of this encoding scheme. These three characters are assigned encodings 41, 42 & 43 in ASCII (expressed here in hexadecimal). 1.2 MARC8 "MARC8" is the term commonly used to refer both to the encoding scheme and its repertoire as used in MARC records up to 1998. The ‘8’ refers to the fact that, unlike Unicode which is a multi-byte per character code set, the MARC8 encoding scheme is principally made up of multiple one byte tables in which each character is encoded using a single 8 bit byte. (It also includes the EACC set which actually uses fixed length 3 bytes per character.) (For details on MARC8 and its specifications see: http://www.loc.gov/marc/.) MARC8 was introduced around 1968 and was initially limited to essentially Latin script only. -
Early-Alphabets-3.Pdf
Early Alphabets Alphabetic characteristics 1 Cretan Pictographs 11 Hieroglyphics 16 The Phoenician Alphabet 24 The Greek Alphabet 31 The Latin Alphabet 39 Summary 53 GDT-101 / HISTORY OF GRAPHIC DESIGN / EARLY ALPHABETS 1 / 53 Alphabetic characteristics 3,000 BCE Basic building blocks of written language GDT-101 / HISTORY OF GRAPHIC DESIGN / EARLY ALPHABETS / Alphabetic Characteristics 2 / 53 Early visual language systems were disparate and decentralized 3,000 BCE Protowriting, Cuneiform, Heiroglyphs and far Eastern writing all functioned differently Rebuses, ideographs, logograms, and syllabaries · GDT-101 / HISTORY OF GRAPHIC DESIGN / EARLY ALPHABETS / Alphabetic Characteristics 3 / 53 HIEROGLYPHICS REPRESENTING THE REBUS PRINCIPAL · BEE & LEAF · SEA & SUN · BELIEF AND SEASON GDT-101 / HISTORY OF GRAPHIC DESIGN / EARLY ALPHABETS / Alphabetic Characteristics 4 / 53 PETROGLYPHIC PICTOGRAMS AND IDEOGRAPHS · CIRCA 200 BCE · UTAH, UNITED STATES GDT-101 / HISTORY OF GRAPHIC DESIGN / EARLY ALPHABETS / Alphabetic Characteristics 5 / 53 LUWIAN LOGOGRAMS · CIRCA 1400 AND 1200 BCE · TURKEY GDT-101 / HISTORY OF GRAPHIC DESIGN / EARLY ALPHABETS / Alphabetic Characteristics 6 / 53 OLD PERSIAN SYLLABARY · 600 BCE GDT-101 / HISTORY OF GRAPHIC DESIGN / EARLY ALPHABETS / Alphabetic Characteristics 7 / 53 Alphabetic structure marked an enormous societal leap 3,000 BCE Power was reserved for those who could read and write · GDT-101 / HISTORY OF GRAPHIC DESIGN / EARLY ALPHABETS / Alphabetic Characteristics 8 / 53 What is an alphabet? Definition An alphabet is a set of visual symbols or characters used to represent the elementary sounds of a spoken language. –PM · GDT-101 / HISTORY OF GRAPHIC DESIGN / EARLY ALPHABETS / Alphabetic Characteristics 9 / 53 What is an alphabet? Definition They can be connected and combined to make visual configurations signifying sounds, syllables, and words uttered by the human mouth. -
The Original Pronunciation of Sanskrit Devanàgará – Transliteration – IPA-Symbols
The Original Pronunciation of Sanskrit DevanÀgarÁ – Transliteration – IPA-Symbols $ a n$D À DØ i L Á LØ u X A Â XØ ? Ã `C C Å `CØ CØ Æ O C # e HØ #H ai DeØ, $DH o RØ $D( au DØe8 N{ k N R kh N+ J g J gh J+ Ç 1 F c WeÝ ' ch WeÝ+ M j GeÛ + jh GeÛ+ _ È × T Ê Þ 4 Êh Þ+ I Ë É ) Ëh É+ > É Ö W t W Z th W+ G{ d G [ dh G+ Q n Q S p S { ph S+ E b E bh E+ P m P \ y M U{ r `O l O Y v Y9 ] Ì Ý Í V s V K h Ù Drafted by Maciej Zieba and Ulrich Stiehl under the auspices of Manfred Mayrhofer. ! Ï [ Improvements by Jost Gippert, Madhav Deshpande, Sunder Hattangadi, John Smith and others. This chart is a compromise, since the original pronunciation of Sanskrit Î YDULRXV is not exactly known in every detail. – 06/09/2002/us. Notes: 1. $ seems to have been pronounced originally as [n] or as [], possibly never as [D]. Not even the pronunciation of this most often used letter $ is exactly known! 2. The original pronunciation of is not known. It occurs only in the verb dS(kÆp). 3. U{seems to have been pronounced as [`] or as [], and likewise the liquid seems to have been pronounced as syllabic [`C] (notation: [`]+ [ C]) or as syllabic [C]. 4. The pronunciation of the semi-vowel Y seems to have been either [Y] or [9]. -
Arabic Alphabet - Wikipedia, the Free Encyclopedia Arabic Alphabet from Wikipedia, the Free Encyclopedia
2/14/13 Arabic alphabet - Wikipedia, the free encyclopedia Arabic alphabet From Wikipedia, the free encyclopedia َأﺑْ َﺠ ِﺪﯾﱠﺔ َﻋ َﺮﺑِﯿﱠﺔ :The Arabic alphabet (Arabic ’abjadiyyah ‘arabiyyah) or Arabic abjad is Arabic abjad the Arabic script as it is codified for writing the Arabic language. It is written from right to left, in a cursive style, and includes 28 letters. Because letters usually[1] stand for consonants, it is classified as an abjad. Type Abjad Languages Arabic Time 400 to the present period Parent Proto-Sinaitic systems Phoenician Aramaic Syriac Nabataean Arabic abjad Child N'Ko alphabet systems ISO 15924 Arab, 160 Direction Right-to-left Unicode Arabic alias Unicode U+0600 to U+06FF range (http://www.unicode.org/charts/PDF/U0600.pdf) U+0750 to U+077F (http://www.unicode.org/charts/PDF/U0750.pdf) U+08A0 to U+08FF (http://www.unicode.org/charts/PDF/U08A0.pdf) U+FB50 to U+FDFF (http://www.unicode.org/charts/PDF/UFB50.pdf) U+FE70 to U+FEFF (http://www.unicode.org/charts/PDF/UFE70.pdf) U+1EE00 to U+1EEFF (http://www.unicode.org/charts/PDF/U1EE00.pdf) Note: This page may contain IPA phonetic symbols. Arabic alphabet ا ب ت ث ج ح خ د ذ ر ز س ش ص ض ط ظ ع en.wikipedia.org/wiki/Arabic_alphabet 1/20 2/14/13 Arabic alphabet - Wikipedia, the free encyclopedia غ ف ق ك ل م ن ه و ي History · Transliteration ء Diacritics · Hamza Numerals · Numeration V · T · E (//en.wikipedia.org/w/index.php?title=Template:Arabic_alphabet&action=edit) Contents 1 Consonants 1.1 Alphabetical order 1.2 Letter forms 1.2.1 Table of basic letters 1.2.2 Further notes