Guidelines for Equations, Units, and Mathematical Notation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 11. Three Dimensional Analytic Geometry and Vectors
Chapter 11. Three dimensional analytic geometry and vectors. Section 11.5 Quadric surfaces. Curves in R2 : x2 y2 ellipse + =1 a2 b2 x2 y2 hyperbola − =1 a2 b2 parabola y = ax2 or x = by2 A quadric surface is the graph of a second degree equation in three variables. The most general such equation is Ax2 + By2 + Cz2 + Dxy + Exz + F yz + Gx + Hy + Iz + J =0, where A, B, C, ..., J are constants. By translation and rotation the equation can be brought into one of two standard forms Ax2 + By2 + Cz2 + J =0 or Ax2 + By2 + Iz =0 In order to sketch the graph of a quadric surface, it is useful to determine the curves of intersection of the surface with planes parallel to the coordinate planes. These curves are called traces of the surface. Ellipsoids The quadric surface with equation x2 y2 z2 + + =1 a2 b2 c2 is called an ellipsoid because all of its traces are ellipses. 2 1 x y 3 2 1 z ±1 ±2 ±3 ±1 ±2 The six intercepts of the ellipsoid are (±a, 0, 0), (0, ±b, 0), and (0, 0, ±c) and the ellipsoid lies in the box |x| ≤ a, |y| ≤ b, |z| ≤ c Since the ellipsoid involves only even powers of x, y, and z, the ellipsoid is symmetric with respect to each coordinate plane. Example 1. Find the traces of the surface 4x2 +9y2 + 36z2 = 36 1 in the planes x = k, y = k, and z = k. Identify the surface and sketch it. Hyperboloids Hyperboloid of one sheet. The quadric surface with equations x2 y2 z2 1. -
End-Of-Line Hyphenation of Chemical Names (IUPAC Provisional
Pure Appl. Chem. 2020; aop IUPAC Recommendations Albert J. Dijkstra*, Karl-Heinz Hellwich, Richard M. Hartshorn, Jan Reedijk and Erik Szabó End-of-line hyphenation of chemical names (IUPAC Provisional Recommendations) https://doi.org/10.1515/pac-2019-1005 Received October 16, 2019; accepted January 21, 2020 Abstract: Chemical names and in particular systematic chemical names can be so long that, when a manu- script is printed, they have to be hyphenated/divided at the end of a line. Many systematic names already contain hyphens, but sometimes not in a suitable division position. In some cases, using these hyphens as end-of-line divisions can lead to illogical divisions in print, as can also happen when hyphens are added arbi- trarily without considering the ‘chemical’ context. The present document provides recommendations and guidelines for authors of chemical manuscripts, their publishers and editors, on where to divide chemical names at the end of a line and instructions on how to avoid these names being divided at illogical places as often suggested by desk dictionaries. Instead, readability and chemical sense should prevail when authors insert optional hyphens. Accordingly, the software used to convert electronic manuscripts to print can now be programmed to avoid illogical end-of-line hyphenation and thereby save the author much time and annoy- ance when proofreading. The recommendations also allow readers of the printed article to determine which end-of-line hyphens are an integral part of the name and should not be deleted when ‘undividing’ the name. These recommendations may also prove useful in languages other than English. -
A Quick Algebra Review
A Quick Algebra Review 1. Simplifying Expressions 2. Solving Equations 3. Problem Solving 4. Inequalities 5. Absolute Values 6. Linear Equations 7. Systems of Equations 8. Laws of Exponents 9. Quadratics 10. Rationals 11. Radicals Simplifying Expressions An expression is a mathematical “phrase.” Expressions contain numbers and variables, but not an equal sign. An equation has an “equal” sign. For example: Expression: Equation: 5 + 3 5 + 3 = 8 x + 3 x + 3 = 8 (x + 4)(x – 2) (x + 4)(x – 2) = 10 x² + 5x + 6 x² + 5x + 6 = 0 x – 8 x – 8 > 3 When we simplify an expression, we work until there are as few terms as possible. This process makes the expression easier to use, (that’s why it’s called “simplify”). The first thing we want to do when simplifying an expression is to combine like terms. For example: There are many terms to look at! Let’s start with x². There Simplify: are no other terms with x² in them, so we move on. 10x x² + 10x – 6 – 5x + 4 and 5x are like terms, so we add their coefficients = x² + 5x – 6 + 4 together. 10 + (-5) = 5, so we write 5x. -6 and 4 are also = x² + 5x – 2 like terms, so we can combine them to get -2. Isn’t the simplified expression much nicer? Now you try: x² + 5x + 3x² + x³ - 5 + 3 [You should get x³ + 4x² + 5x – 2] Order of Operations PEMDAS – Please Excuse My Dear Aunt Sally, remember that from Algebra class? It tells the order in which we can complete operations when solving an equation. -
The Stata Journal
The Stata Journal View metadata, citation and similar papers at core.ac.uk brought to you by CORE Editor Executive Editor provided by Research Papers in Economics H. Joseph Newton Nicholas J. Cox Department of Statistics Department of Geography Texas A & M University University of Durham College Station, Texas 77843 South Road 979-845-3142; FAX 979-845-3144 Durham City DH1 3LE UK [email protected] [email protected] Associate Editors Christopher Baum J. Scott Long Boston College Indiana University Rino Bellocco Thomas Lumley Karolinska Institutet University of Washington, Seattle David Clayton Roger Newson Cambridge Inst. for Medical Research King’s College, London Mario A. Cleves Marcello Pagano Univ. of Arkansas for Medical Sciences Harvard School of Public Health Charles Franklin Sophia Rabe-Hesketh University of Wisconsin, Madison University of California, Berkeley Joanne M. Garrett J. Patrick Royston University of North Carolina MRC Clinical Trials Unit, London Allan Gregory Philip Ryan Queen’s University University of Adelaide James Hardin Mark E. Schaffer University of South Carolina Heriot-Watt University, Edinburgh Stephen Jenkins Jeroen Weesie University of Essex Utrecht University Jens Lauritsen Jeffrey Wooldridge Odense University Hospital Michigan State University Stanley Lemeshow Ohio State University Stata Press Production Manager Lisa Gilmore Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and help files) are copyright c by StataCorp LP. The contents of the supporting files (programs, datasets, and help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal. -
Writing the Equation of a Line
Name______________________________ Writing the Equation of a Line When you find the equation of a line it will be because you are trying to draw scientific information from it. In math, you write equations like y = 5x + 2 This equation is useless to us. You will never graph y vs. x. You will be graphing actual data like velocity vs. time. Your equation should therefore be written as v = (5 m/s2) t + 2 m/s. See the difference? You need to use proper variables and units in order to compare it to theory or make actual conclusions about physical principles. The second equation tells me that when the data collection began (t = 0), the velocity of the object was 2 m/s. It also tells me that the velocity was changing at 5 m/s every second (m/s/s = m/s2). Let’s practice this a little, shall we? Force vs. mass F (N) y = 6.4x + 0.3 m (kg) You’ve just done a lab to see how much force was necessary to get a mass moving along a rough surface. Excel spat out the graph above. You labeled each axis with the variable and units (well done!). You titled the graph starting with the variable on the y-axis (nice job!). Now we turn to the equation. First we replace x and y with the variables we actually graphed: F = 6.4m + 0.3 Then we add units to our slope and intercept. The slope is found by dividing the rise by the run so the units will be the units from the y-axis divided by the units from the x-axis. -
The Geometry of the Phase Diffusion Equation
J. Nonlinear Sci. Vol. 10: pp. 223–274 (2000) DOI: 10.1007/s003329910010 © 2000 Springer-Verlag New York Inc. The Geometry of the Phase Diffusion Equation N. M. Ercolani,1 R. Indik,1 A. C. Newell,1,2 and T. Passot3 1 Department of Mathematics, University of Arizona, Tucson, AZ 85719, USA 2 Mathematical Institute, University of Warwick, Coventry CV4 7AL, UK 3 CNRS UMR 6529, Observatoire de la Cˆote d’Azur, 06304 Nice Cedex 4, France Received on October 30, 1998; final revision received July 6, 1999 Communicated by Robert Kohn E E Summary. The Cross-Newell phase diffusion equation, (|k|)2T =∇(B(|k|) kE), kE =∇2, and its regularization describes natural patterns and defects far from onset in large aspect ratio systems with rotational symmetry. In this paper we construct explicit solutions of the unregularized equation and suggest candidates for its weak solutions. We confirm these ideas by examining a fourth-order regularized equation in the limit of infinite aspect ratio. The stationary solutions of this equation include the minimizers of a free energy, and we show these minimizers are remarkably well-approximated by a second-order “self-dual” equation. Moreover, the self-dual solutions give upper bounds for the free energy which imply the existence of weak limits for the asymptotic minimizers. In certain cases, some recent results of Jin and Kohn [28] combined with these upper bounds enable us to demonstrate that the energy of the asymptotic minimizers converges to that of the self-dual solutions in a viscosity limit. 1. Introduction The mathematical models discussed in this paper are motivated by physical systems, far from equilibrium, which spontaneously form patterns. -
Numerical Algebraic Geometry and Algebraic Kinematics
Numerical Algebraic Geometry and Algebraic Kinematics Charles W. Wampler∗ Andrew J. Sommese† January 14, 2011 Abstract In this article, the basic constructs of algebraic kinematics (links, joints, and mechanism spaces) are introduced. This provides a common schema for many kinds of problems that are of interest in kinematic studies. Once the problems are cast in this algebraic framework, they can be attacked by tools from algebraic geometry. In particular, we review the techniques of numerical algebraic geometry, which are primarily based on homotopy methods. We include a review of the main developments of recent years and outline some of the frontiers where further research is occurring. While numerical algebraic geometry applies broadly to any system of polynomial equations, algebraic kinematics provides a body of interesting examples for testing algorithms and for inspiring new avenues of work. Contents 1 Introduction 4 2 Notation 5 I Fundamentals of Algebraic Kinematics 6 3 Some Motivating Examples 6 3.1 Serial-LinkRobots ............................... ..... 6 3.1.1 Planar3Rrobot ................................. 6 3.1.2 Spatial6Rrobot ................................ 11 3.2 Four-BarLinkages ................................ 13 3.3 PlatformRobots .................................. 18 ∗General Motors Research and Development, Mail Code 480-106-359, 30500 Mound Road, Warren, MI 48090- 9055, U.S.A. Email: [email protected] URL: www.nd.edu/˜cwample1. This material is based upon work supported by the National Science Foundation under Grant DMS-0712910 and by General Motors Research and Development. †Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556-4618, U.S.A. Email: [email protected] URL: www.nd.edu/˜sommese. This material is based upon work supported by the National Science Foundation under Grant DMS-0712910 and the Duncan Chair of the University of Notre Dame. -
The Not So Short Introduction to Latex2ε
The Not So Short Introduction to LATEX 2ε Or LATEX 2ε in 139 minutes by Tobias Oetiker Hubert Partl, Irene Hyna and Elisabeth Schlegl Version 4.20, May 31, 2006 ii Copyright ©1995-2005 Tobias Oetiker and Contributers. All rights reserved. This document is free; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This document is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this document; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. Thank you! Much of the material used in this introduction comes from an Austrian introduction to LATEX 2.09 written in German by: Hubert Partl <[email protected]> Zentraler Informatikdienst der Universität für Bodenkultur Wien Irene Hyna <[email protected]> Bundesministerium für Wissenschaft und Forschung Wien Elisabeth Schlegl <noemail> in Graz If you are interested in the German document, you can find a version updated for LATEX 2ε by Jörg Knappen at CTAN:/tex-archive/info/lshort/german iv Thank you! The following individuals helped with corrections, suggestions and material to improve this paper. They put in a big effort to help me get this document into its present shape. -
Calculus Terminology
AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential -
Chapter 1: Analytic Geometry
1 Analytic Geometry Much of the mathematics in this chapter will be review for you. However, the examples will be oriented toward applications and so will take some thought. In the (x,y) coordinate system we normally write the x-axis horizontally, with positive numbers to the right of the origin, and the y-axis vertically, with positive numbers above the origin. That is, unless stated otherwise, we take “rightward” to be the positive x- direction and “upward” to be the positive y-direction. In a purely mathematical situation, we normally choose the same scale for the x- and y-axes. For example, the line joining the origin to the point (a,a) makes an angle of 45◦ with the x-axis (and also with the y-axis). In applications, often letters other than x and y are used, and often different scales are chosen in the horizontal and vertical directions. For example, suppose you drop something from a window, and you want to study how its height above the ground changes from second to second. It is natural to let the letter t denote the time (the number of seconds since the object was released) and to let the letter h denote the height. For each t (say, at one-second intervals) you have a corresponding height h. This information can be tabulated, and then plotted on the (t, h) coordinate plane, as shown in figure 1.0.1. We use the word “quadrant” for each of the four regions into which the plane is divided by the axes: the first quadrant is where points have both coordinates positive, or the “northeast” portion of the plot, and the second, third, and fourth quadrants are counted off counterclockwise, so the second quadrant is the northwest, the third is the southwest, and the fourth is the southeast. -
AIX Globalization
AIX Version 7.1 AIX globalization IBM Note Before using this information and the product it supports, read the information in “Notices” on page 233 . This edition applies to AIX Version 7.1 and to all subsequent releases and modifications until otherwise indicated in new editions. © Copyright International Business Machines Corporation 2010, 2018. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents About this document............................................................................................vii Highlighting.................................................................................................................................................vii Case-sensitivity in AIX................................................................................................................................vii ISO 9000.....................................................................................................................................................vii AIX globalization...................................................................................................1 What's new...................................................................................................................................................1 Separation of messages from programs..................................................................................................... 1 Conversion between code sets............................................................................................................. -
PCL PS Math Symbol Set Page 1 of 4 PCL PS Math Symbol Set
PCL PS Math Symbol Set Page 1 of 4 PCL PS Math Symbol Set PCL Symbol Set: 5M Unicode glyph correspondence tables. Contact:[email protected] http://pcl.to $20 U0020 Space -- -- -- -- $21 U0021 Ê Exclamation mark -- -- -- -- $22 U2200 Ë For all -- -- -- -- $23 U0023 Ì Number sign -- -- -- -- $24 U2203 Í There exists -- -- -- -- $25 U0025 Î Percent sign -- -- -- -- $26 U0026 Ï Ampersand -- -- -- -- $27 U220B & Contains as member -- -- -- -- $28 U0028 ' Left parenthesis -- -- -- -- $29 U0029 ( Right parenthesis -- -- -- -- $2A U2217 ) Asterisk operator -- -- -- -- $2B U002B * Plus sign -- -- -- -- $2C U002C + Comma -- -- -- -- $2D U2212 , Minus sign -- -- -- -- $2E U002E - Full stop -- -- -- -- $2F U002F . Solidus -- -- -- -- $30 U0030 / Digit zero -- -- -- -- $31 U0031 0 Digit one $A1 U03D2 1 Greek upsilon with hook symbol $32 U0032 2 Digit two $A2 U2032 3 Prime $33 U0033 4 Digit three $A3 U2264 5 Less-than or equal to $34 U0034 6 Digit four $A4 U002F . Division slash $35 U0035 7 Digit five $A5 U221E 8 Infinity $36 U0036 9 Digit six $A6 U0192 : Latin small letter f with hook http://www.pclviewer.com (c) RedTitan Technology 2005 PCL PS Math Symbol Set Page 2 of 4 $37 U0037 ; Digit seven $A7 U2663 < Black club suit $38 U0038 = Digit eight $A8 U2666 > Black diamond suit $39 U0039 ? Digit nine $A9 U2665 ê Black heart suit $3A U003A A Colon $AA U2660 B Black spade suit $3B U003B C Semicolon $AB U2194 D Left right arrow $3C U003C E Less-than sign $AC U2190 F Leftwards arrow $3D U003D G Equals sign $AD U2191 H Upwards arrow $3E U003E I Greater-than