Constriction Behavior, a Key Innovation in Snake Evolution: the Integration of Ethology and Physiology

Total Page:16

File Type:pdf, Size:1020Kb

Constriction Behavior, a Key Innovation in Snake Evolution: the Integration of Ethology and Physiology University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2005 Constriction Behavior, a Key Innovation In Snake Evolution: The Integration of Ethology and Physiology Rita S. Mehta University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Psychology Commons Recommended Citation Mehta, Rita S., "Constriction Behavior, a Key Innovation In Snake Evolution: The Integration of Ethology and Physiology. " PhD diss., University of Tennessee, 2005. https://trace.tennessee.edu/utk_graddiss/2262 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Rita S. Mehta entitled "Constriction Behavior, a Key Innovation In Snake Evolution: The Integration of Ethology and Physiology." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Psychology. Gordon M. Burghardt, Major Professor We have read this dissertation and recommend its acceptance: Marguerite Butler, Todd_Freeberg, Neil Greenberg, Richard Saudargas Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a dissertation written by Rita S. Mehta entitled “Constriction Behavior, a Key Innovation In Snake Evolution: The Integration of Ethology and Physiology.” I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Psychology. Gordon M. Burghardt Major Professor We have read this dissertation and recommend its acceptance: Marguerite Butler____________ Todd_Freeberg______________ Neil Greenberg______________ Richard Saudargas___________ Accepted for the Council: ___Anne_Mayhew______ Vice Chancellor and Dean of Graduate Studies (Original signatures are on file with student records.) Constriction Behavior, a Key Innovation in Snake Evolution: The Integration of Ethology and Physiology A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Rita S. Mehta May 2005 Copyright © 2005 by Rita S. Mehta All rights reserved ii ACKNOWLEDGEMENTS In each Part (Part 1: Introduction excluded) I acknowledge the people who helped me in many ways. In addition to help with the individual projects, I received invaluable help and inspiration throughout my education from several people, many of whom contributed to the specific projects. I am grateful to my advisor Gordon Burghardt. Gordon Burghardt was the reason I came to Tennessee. I would also like to thank the members of my committee, Marguerite Butler, Todd Freeberg, Neil Greenberg and Richard Saudargas for their support, guidance and encouragement. Jim Hall also helped review proposals and always provided insightful comments. I am most indebted to Brad Moon for allowing me to study muscle physiology in his laboratory. Without Brad’s help, this dissertation would not have been as interesting. Brad’s immense support and instruction with EMG experiments as well as our conversations about constriction behavior in snakes enabled me to better understand the importance of combining physiology with behavior. I made many trips to conduct EMG experiments at the University of Louisiana. During these trips I was invited to sit in on valuable graduate student seminars and was also given an outlet to present my work. Bob Jaeger always made it a point to try and touch basis with me and talk to me about “the next step” in my research career. Ali Rabatsky not only provided much help during experiments but her friendship has been invaluable. I sincerely thank Kate Wadsworth for welcoming me and giving me a comfortable and enjoyable place to stay while visiting Lafayette, Louisiana. I would especially like to acknowledge Tracy and David Barker, Brad Moon and Brian Ott. These individuals provided the animals used in this study. Tracy and David iii also helped me develop a better understanding of snake behavior. The summer I spent with them has been one of my most valuable and memorable research experiences. Little did I know that all those late night conversations with Tracy would help me formulate both my masters and doctoral research. Brian Ott, on more than one occasion, allowed me to photograph snakes from his personal collection as well as the collection at the University of Alabama. Brian was also enthusiastic and great to talk to about snake feeding biology. There are many other people I would like to thank: Marguerite Butler for her helpful insight and encouragement, Karen Davis and Lauren Kirby for being excellent lab mates and friends and for covering my classes while I was in Louisiana. Sarah Connor, Laurianne Hebb, and Ellen Mahurin made my experience in the program more fun. Catherine Mc. Millen helped me build the spectacular plexi glass feeding arena used during my stimulus control experiments in Part 2. Dr. David and Sharon Kirby loaned me their family Hi-8mm video recorder when mine broke so I could continue to collect videos of snake feeding for my research. I also received help and support from many undergraduate students: Cassandra Fenner, Jessica Graham, Jennifer Miller, Brooke Patrick, Shahrzad “Sherry” Rahbar and Samuel Riggan. These students were not only enthusiastic and hardworking but were able to quickly see the benefit as well as the enjoyment that comes from carefully observing animals. Many others have provided wonderful support, encouragement and scintillating conversation throughout my education: David Cundall, Harry Greene, Javier Rodriguez-Robles and Randall Reiserer. My husband Jonathon Redwine, snake enthusiast at heart, was always ready to talk and listen about snake feeding biology. iv Equipment for this study was funded by the American Psychological Association (APA), the Department of Psychology at the University of Tennessee, Knoxville (UT), the U.T Scholarly Activities Research Incentive Fund (SARIF), and the Reptile Behavior Fund of the Burghardt Lab. Presentations of parts of this study to the Society of Integrative and Comparative Biology (SICB) and at the VII International Conference of Vertebrate Morphology (ICVM) were supported by the Department of Psychology at UT and the U.T Graduate Student Association. A sincere thank you is reserved for Dr. Jim Lawler, our Psychology Department head. On many occasions, Dr. Lawler helped me find a source of funding for needed laboratory equipment. I would like to thank my parents, Dr. Onkar and Dr. Sooi Mehta. Without their help, love, support and encouragement, I would be lost. I thank my brother Roy for his encouragement, ideas and editorial help. I am so grateful for my husband Jonathon for being a terrific sport in a long distance relationship. Jack has been a constant source of ideas, strength, encouragement and comic relief throughout my graduate career. I also must acknowledge my father, mother, and sister in-law: Dr. William and Shirley Redwine and Cynthia Redwine. I am extremely blessed to be married into such a wonderful and loving family. Last but not least, I thank my dog Marley for guarding the backyard when I had to work late and for always being happy to see me regardless of how late I came home. v ABSTRACT Among living tetrapod vertebrates, snakes exhibit the most radical shifts in feeding biology and among limbless squamate reptiles, only snakes have undergone a substantial adaptive radiation. The behavioral innovation, constriction, has been associated with the success of this clade. Constriction is a prey restraint behavior that enabled snakes to immobilize and subdue extremely large prey items relative to their own body mass. This behavior pattern is associated with the incredible shifts observed in snake feeding biology from consuming small meals frequently to less frequent feeding on large prey. Although constriction is an ethological homology for the majority of snakes, variations of constriction postures have been documented in many derived snake lineages. Nevertheless, the mechanisms driving behavioral variation are not well understood. In this dissertation, I attempt to use a comparative hierarchical approach to examine constriction behavior at both the ethological and physiological levels in order to better understand the behavioral variation of this key innovation. As reviewed in Part 1, derived snake lineages seem to have several methods with which to restrain prey. Prey restraint methods appear to vary with respect to prey characteristics (size, shape, activity level). On the other hand, intermediate taxa (boas and pythons) are thought to be less variable in the prey restraint phase of feeding. The kinematics of loop application pattern also appears to differ between intermediate and derived snake groups. Derived snakes use the lateral part of their body to wind prey whereas boas tend to bend ventrally around prey. The polarity for variable prey restraint behavior and
Recommended publications
  • Pressure and Duration of Constriction in Boa Constrictor Is Influenced by a Simulated Prey Heartbeat Allison Elizabeth Hall Dickinson College
    Dickinson College Dickinson Scholar Student Honors Theses By Year Student Honors Theses 5-23-2010 Pressure and Duration of Constriction in Boa Constrictor is Influenced by a Simulated Prey Heartbeat Allison Elizabeth Hall Dickinson College Follow this and additional works at: http://scholar.dickinson.edu/student_honors Part of the Biology Commons Recommended Citation Hall, Allison Elizabeth, "Pressure and Duration of Constriction in Boa Constrictor is Influenced by a Simulated Prey Heartbeat" (2010). Dickinson College Honors Theses. Paper 86. This Honors Thesis is brought to you for free and open access by Dickinson Scholar. It has been accepted for inclusion by an authorized administrator. For more information, please contact [email protected]. Pressure and Duration of Constriction in Boa constrictor is Influenced by a Simulated Prey Heartbeat By Allison E. Hall With the collaboration of Amanda Hayes and Katelyn McCann Submitted in partial fulfillment of Honors Requirements for the Department of Biology Dr. Scott Boback, Supervisor Dr. Charles Zwemer, Supervisor Dr. David Kushner, Reader May 18, 2010 Abstract Constricting prey is energetically costly for snakes and therefore it would be beneficial to minimize this cost. However, the consequences of arresting a constriction event too soon could be deadly. Thus, the duration of constriction is bounded by competing demands to kill prey and conserve energy. Snakes possess mechanoreceptors within their ventral and dorsal skin that are used for detecting approaching predators and prey. This experiment sought to determine whether Boas (Boa constrictor) can sense a simulated heartbeat in their prey. It was predicted that if snakes possess this ability, those constricting rats with a simulated heart would constrict with greater pressure and increased duration than snakes constricting rats without a simulated heartbeat.
    [Show full text]
  • Marvel Universe by Hasbro
    Brian's Toys MARVEL Buy List Hasbro/ToyBiz Name Quantity Item Buy List Line Manufacturer Year Released Wave UPC you have TOTAL Notes Number Price to sell Last Updated: April 13, 2015 Questions/Concerns/Other Full Name: Address: Delivery Address: W730 State Road 35 Phone: Fountain City, WI 54629 Tel: 608.687.7572 ext: 3 E-mail: Referred By (please fill in) Fax: 608.687.7573 Email: [email protected] Guidelines for Brian’s Toys will require a list of your items if you are interested in receiving a price quote on your collection. It is very important that we Note: Buylist prices on this sheet may change after 30 days have an accurate description of your items so that we can give you an accurate price quote. By following the below format, you will help Selling Your Collection ensure an accurate quote for your collection. As an alternative to this excel form, we have a webapp available for http://buylist.brianstoys.com/lines/Marvel/toys . STEP 1 Please note: Yellow fields are user editable. You are capable of adding contact information above and quantities/notes below. Before we can confirm your quote, we will need to know what items you have to sell. The below list is by Marvel category. Search for each of your items and enter the quantity you want to sell in column I (see red arrow). (A hint for quick searching, press Ctrl + F to bring up excel's search box) The green total column will adjust the total as you enter in your quantities.
    [Show full text]
  • Evidence of Lingual-Luring by an Aquatic Snake
    Journal of Herpetology, Vol. 34 No. 1 pp 67-74, 2000 Copyright 2000 Society for the Study of Amphibians and Reptiles Evidence of Lingual-luring by an Aquatic Snake HARTWELL H. WELSH, JR. AND AMY J. LIND Pacific Southwest Research Station, USDA Forest Service, 1700 Bayview Dr., Arcata, California 95521, USA. E-mail: hwelsh/[email protected] ABSTRACT.-We describe and quantify the components of an unusual snake behavior used to attract fish prey: lingual-luring. Our earlier research on the foraging behavior of the Pacific Coast aquatic garter snake (Thamnophis atratus) indicated that adults are active foragers, feeding primarily on aquatic Pacific giant salamanders (Dicamptodon tenebrosus) in streambed substrates. Juvenile snakes, however, use primarily ambush tactics to capture larval anurans and juvenile salmonids along stream margins, behaviors that include the lingual-luring described here. We found that lingual-luring differed from typical chemosensory tongue-flicking by the position of the snake, contact of the tongue with the water surface, and the length of time the tongue was extended. Luring snakes are in ambush position and extend and hold their tongues out rigid, with the tongue-tips quivering on the water surface, apparently mimicking insects in order to draw young fish within striking range. This behavior is a novel adaptation of the tongue-vomeronasal system by a visually-oriented predator. The luring of prey by snakes has been asso- luring function (Mushinsky, 1987; Ford and ciated primarily with the use of the tail, a be- Burghardt, 1993). However, Lillywhite and Hen- havior termed caudal luring (e.g., Neill, 1960; derson (1993) noted the occurrence of a pro- Greene and Campbell, 1972; Heatwole and Dav- longed extension of the tongue observed in vine ison, 1976; Jackson and Martin, 1980; Schuett et snakes (e.g., Kennedy, 1965; Henderson and al., 1984; Chizar et al., 1990).
    [Show full text]
  • Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
    Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. amphibian-reptile-conservation.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47.
    [Show full text]
  • Slithering Locomotion
    SLITHERING LOCOMOTION DAVID L. HU() AND MICHAEL SHELLEY∗∗ Abstract. Limbless terrestrial animals propel themselves by sliding their bellies along the ground. Although the study of dry solid-solid friction is a classical subject, the mechanisms underlying friction-based limbless propulsion have received little attention. We review and expand upon our previous work on the locomotion of snakes, who are expert sliders. We show that snakes use two principal mechanisms to slither on flat surfaces. First, their bellies are covered with scales that catch upon ground asperities, providing frictional anisotropy. Second, they are able to lift parts of their body slightly off the ground when moving. This reduces undesired frictional drag and applies greater pressure to the parts of the belly that are pushing the snake forwards. We review a theoretical framework that may be adapted by future investigators to understand other kinds of limbless locomotion. Key words. Snakes, friction, locomotion AMS(MOS) subject classifications. Primary 76Zxx 1. Introduction. Animal locomotion is as diverse as animal form. Swimming, flying and walking have received much attention [1, 9]withthe latter being the most commonly studied means for moving on land (Fig. 1). Comparatively little attention has been paid to limbless locomotion on land, which necessarily relies upon sliding. Sliding is physically distinct from pushing against a fluid and understanding it as a form of locomotion presents new challenges, as we present in this review. Terrestrial limbless animals are rare. Those that are multicellular include worms, snails and snakes, and account for less than 2% of the 1.8 million named species (Fig.
    [Show full text]
  • The Mechanics of Slithering Locomotion
    The mechanics of slithering locomotion David L. Hua,b,1, Jasmine Nirodya, Terri Scotta, and Michael J. Shelleya aApplied Mathematics Laboratory, Courant Institute of Mathematical Sciences, New York University, New York, NY 10003; and bDepartments of Mechanical Engineering and Biology, Georgia Institute of Technology, Atlanta, GA 30332 Edited by Charles S. Peskin, New York University, New York, NY, and approved April 22, 2009 (received for review December 12, 2008) In this experimental and theoretical study, we investigate the the sum of frictional forces per unit length, ffric, and internal slithering of snakes on flat surfaces. Previous studies of slithering forces, fint, generated by the snakes. That is, have rested on the assumption that snakes slither by pushing laterally against rocks and branches. In this study, we develop a ␯X¨ ϭ ffric ϩ fint , [1] theoretical model for slithering locomotion by observing snake ¨ motion kinematics and experimentally measuring the friction co- where X is the acceleration at each point along the snake’s body. efficients of snakeskin. Our predictions of body speed show good To avoid complex issues of muscle and tissue modeling, fint is agreement with observations, demonstrating that snake propul- determined to be that necessary for the model snake to produce sion on flat ground, and possibly in general, relies critically on the the observed shape kinematics. We use a sliding friction law in k frictional anisotropy of their scales. We have also highlighted the which the friction force per unit length is f ϭϪ␮k␯guˆ, where ␮ importance of weight distribution in lateral undulation, previously is the sliding friction coefficient, uˆ ϭ u/u is the velocity difficult to visualize and hence assumed uniform.
    [Show full text]
  • Snake Bite Protocol
    Lavonas et al. BMC Emergency Medicine 2011, 11:2 Page 4 of 15 http://www.biomedcentral.com/1471-227X/11/2 and other Rocky Mountain Poison and Drug Center treatment of patients bitten by coral snakes (family Ela- staff. The antivenom manufacturer provided funding pidae), nor by snakes that are not indigenous to the US. support. Sponsor representatives were not present dur- At the time this algorithm was developed, the only ing the webinar or panel discussions. Sponsor represen- antivenom commercially available for the treatment of tatives reviewed the final manuscript before publication pit viper envenomation in the US is Crotalidae Polyva- ® for the sole purpose of identifying proprietary informa- lent Immune Fab (ovine) (CroFab , Protherics, Nash- tion. No modifications of the manuscript were requested ville, TN). All treatment recommendations and dosing by the manufacturer. apply to this antivenom. This algorithm does not con- sider treatment with whole IgG antivenom (Antivenin Results (Crotalidae) Polyvalent, equine origin (Wyeth-Ayerst, Final unified treatment algorithm Marietta, Pennsylvania, USA)), because production of The unified treatment algorithm is shown in Figure 1. that antivenom has been discontinued and all extant The final version was endorsed unanimously. Specific lots have expired. This antivenom also does not consider considerations endorsed by the panelists are as follows: treatment with other antivenom products under devel- opment. Because the panel members are all hospital- Role of the unified treatment algorithm
    [Show full text]
  • Issue Hero Villain Place Result Avengers Spotlight #26 Iron Man
    Issue Hero Villain Place Result Avengers Spotlight #26 Iron Man, Hawkeye Wizard, other villains Vault Breakout stopped, but some escape New Mutants #86 Rusty, Skids Vulture, Tinkerer, Nitro Albany Everyone Arrested Damage Control #1 John, Gene, Bart, (Cap) Wrecking Crew Vault Thunderball and Wrecker escape Avengers #311 Quasar, Peggy Carter, other Avengers employees Doombots Avengers Hydrobase Hydrobase destroyed Captain America #365 Captain America Namor (controlled by Controller) Statue of Liberty Namor defeated Fantastic Four #334 Fantastic Four Constrictor, Beetle, Shocker Baxter Building FF victorious Amazing Spider-Man #326 Spiderman Graviton Daily Bugle Graviton wins Spectacular Spiderman #159 Spiderman Trapster New York Trapster defeated, Spidey gets cosmic powers Wolverine #19 & 20 Wolverine, La Bandera Tiger Shark Tierra Verde Tiger Shark eaten by sharks Cloak & Dagger #9 Cloak, Dagger, Avengers Jester, Fenris, Rock, Hydro-man New York Villains defeated Web of Spiderman #59 Spiderman, Puma Titania Daily Bugle Titania defeated Power Pack #53 Power Pack Typhoid Mary NY apartment Typhoid kills PP's dad, but they save him. Incredible Hulk #363 Hulk Grey Gargoyle Las Vegas Grey Gargoyle defeated, but escapes Moon Knight #8-9 Moon Knight, Midnight, Punisher Flag Smasher, Ultimatum Brooklyn Ultimatum defeated, Flag Smasher killed Doctor Strange #11 Doctor Strange Hobgoblin, NY TV studio Hobgoblin defeated Doctor Strange #12 Doctor Strange, Clea Enchantress, Skurge Empire State Building Enchantress defeated Fantastic Four #335-336 Fantastic
    [Show full text]
  • ONEP V09.Pdf
    Compiled by Jarujin Nabhitabhata Tanya Chan-ard Yodchaiy Chuaynkern OEPP BIODIVERSITY SERIES volume nine OFFICE OF ENVIRONMENTAL POLICY AND PLANNING MINISTRY OF SCIENCE TECHNOLOGY AND ENVIRONMENT 60/1 SOI PIBULWATTANA VII, RAMA VI RD., BANGKOK 10400 THAILAND TEL. (662) 2797180, 2714232, 2797186-9 FAX. (662) 2713226 Office of Environmental Policy and Planning 2000 NOT FOR SALE NOT FOR SALE NOT FOR SALE Compiled by Jarujin Nabhitabhata Tanya Chan-ard Yodchaiy Chuaynkern Office of Environmental Policy and Planning 2000 First published : September 2000 by Office of Environmental Policy and Planning (OEPP), Thailand. ISBN : 974–87704–3–5 This publication is financially supported by OEPP and may be reproduced in whole or in part and in any form for educational or non–profit purposes without special permission from OEPP, providing that acknowledgment of the source is made. No use of this publication may be made for resale or for any other commercial purposes. Citation : Nabhitabhata J., Chan ard T., Chuaynkern Y. 2000. Checklist of Amphibians and Reptiles in Thailand. Office of Environmental Policy and Planning, Bangkok, Thailand. Authors : Jarujin Nabhitabhata Tanya Chan–ard Yodchaiy Chuaynkern National Science Museum Available from : Biological Resources Section Natural Resources and Environmental Management Division Office of Environmental Policy and Planning Ministry of Science Technology and Environment 60/1 Rama VI Rd. Bangkok 10400 THAILAND Tel. (662) 271–3251, 279–7180, 271–4232–8 279–7186–9 ext 226, 227 Facsimile (662) 279–8088, 271–3251 Designed & Printed :Integrated Promotion Technology Co., Ltd. Tel. (662) 585–2076, 586–0837, 913–7761–2 Facsimile (662) 913–7763 2 1.
    [Show full text]
  • The Sclerotic Ring: Evolutionary Trends in Squamates
    The sclerotic ring: Evolutionary trends in squamates by Jade Atkins A Thesis Submitted to Saint Mary’s University, Halifax, Nova Scotia in Partial Fulfillment of the Requirements for the Degree of Master of Science in Applied Science July, 2014, Halifax Nova Scotia © Jade Atkins, 2014 Approved: Dr. Tamara Franz-Odendaal Supervisor Approved: Dr. Matthew Vickaryous External Examiner Approved: Dr. Tim Fedak Supervisory Committee Member Approved: Dr. Ron Russell Supervisory Committee Member Submitted: July 30, 2014 Dedication This thesis is dedicated to my family, friends, and mentors who helped me get to where I am today. Thank you. ! ii Table of Contents Title page ........................................................................................................................ i Dedication ...................................................................................................................... ii List of figures ................................................................................................................. v List of tables ................................................................................................................ vii Abstract .......................................................................................................................... x List of abbreviations and definitions ............................................................................ xi Acknowledgements ....................................................................................................
    [Show full text]
  • Bibliography and Scientific Name Index to Amphibians
    lb BIBLIOGRAPHY AND SCIENTIFIC NAME INDEX TO AMPHIBIANS AND REPTILES IN THE PUBLICATIONS OF THE BIOLOGICAL SOCIETY OF WASHINGTON BULLETIN 1-8, 1918-1988 AND PROCEEDINGS 1-100, 1882-1987 fi pp ERNEST A. LINER Houma, Louisiana SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE NO. 92 1992 SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE The SHIS series publishes and distributes translations, bibliographies, indices, and similar items judged useful to individuals interested in the biology of amphibians and reptiles, but unlikely to be published in the normal technical journals. Single copies are distributed free to interested individuals. Libraries, herpetological associations, and research laboratories are invited to exchange their publications with the Division of Amphibians and Reptiles. We wish to encourage individuals to share their bibliographies, translations, etc. with other herpetologists through the SHIS series. If you have such items please contact George Zug for instructions on preparation and submission. Contributors receive 50 free copies. Please address all requests for copies and inquiries to George Zug, Division of Amphibians and Reptiles, National Museum of Natural History, Smithsonian Institution, Washington DC 20560 USA. Please include a self-addressed mailing label with requests. INTRODUCTION The present alphabetical listing by author (s) covers all papers bearing on herpetology that have appeared in Volume 1-100, 1882-1987, of the Proceedings of the Biological Society of Washington and the four numbers of the Bulletin series concerning reference to amphibians and reptiles. From Volume 1 through 82 (in part) , the articles were issued as separates with only the volume number, page numbers and year printed on each. Articles in Volume 82 (in part) through 89 were issued with volume number, article number, page numbers and year.
    [Show full text]
  • THE ORIGIN and EVOLUTION of SNAKE EYES Dissertation
    CONQUERING THE COLD SHUDDER: THE ORIGIN AND EVOLUTION OF SNAKE EYES Dissertation Presented in Partial Fulfillment for the Requirements for the Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By Christopher L. Caprette, B.S., M.S. **** The Ohio State University 2005 Dissertation Committee: Thomas E. Hetherington, Advisor Approved by Jerry F. Downhower David L. Stetson Advisor The graduate program in Evolution, John W. Wenzel Ecology, and Organismal Biology ABSTRACT I investigated the ecological origin and diversity of snakes by examining one complex structure, the eye. First, using light and transmission electron microscopy, I contrasted the anatomy of the eyes of diurnal northern pine snakes and nocturnal brown treesnakes. While brown treesnakes have eyes of similar size for their snout-vent length as northern pine snakes, their lenses are an average of 27% larger (Mann-Whitney U test, p = 0.042). Based upon the differences in the size and position of the lens relative to the retina in these two species, I estimate that the image projected will be smaller and brighter for brown treesnakes. Northern pine snakes have a simplex, all-cone retina, in keeping with a primarily diurnal animal, while brown treesnake retinas have mostly rods with a few, scattered cones. I found microdroplets in the cone ellipsoids of northern pine snakes. In pine snakes, these droplets act as light guides. I also found microdroplets in brown treesnake rods, although these were less densely distributed and their function is unknown. Based upon the density of photoreceptors and neural layers in their retinas, and the predicted image size, brown treesnakes probably have the same visual acuity under nocturnal conditions that northern pine snakes experience under diurnal conditions.
    [Show full text]