How to Measure Trees to Determine Their Board-Foot Volume and Value

Total Page:16

File Type:pdf, Size:1020Kb

How to Measure Trees to Determine Their Board-Foot Volume and Value Illinois Forest Management Newsletter is produced by the University of Illinois Department of Natural Resources and Environmental Sciences and the Cooperative Extension Service. Our newsletter features information from many sources to help you make informed decisions concerning your woodland resources. We encourage your questions and comments which we will share with our readers as space permits. Direct your inquiries to: Editor, IFM Newsletter, W-503 Turner Hall, 1102 S. Goodwin Ave. Urbana, IL 61801. HOW TO MEASURE TREES TO DETERMINE THEIR BOARD-FOOT VOLUME AND VALUE We frequently receive calls from landowners who have been approach by a buyer who has expressed interest in their timber. The first question posed in the conversation normally is..."How do I know if I have been offered a fair price?"...and is followed by..."How do I know what my timber is worth?" Obviously there is no way of answering the first part of the question without walking the timber, making some observations, and taking some measurements. And even then, what is a fair offer to one person may be totally out of line to another. A buyer may be making a genuinely fair offer based on his ability to market the timber he buys. Another buyer might come along with a totally different set of markets and be able to make the first buyer look like an absolute crook in the eyes of the landowner. Who made the fair offer? Most likely both did, but their ability to market the timber reflects what they could afford to pay for it. The following example emphasizes this point. A recent sealed bid sale in Illinois brought bids in the range of $32,000 to $123,000. Most of the bids were grouped toward the bottom of this range. It's probably not hard to guess who the landowner sold to, and in fact, most of the unsuccessful timber buyers wanted to know how the successful bidder could afford to pay that much for the timber. As it turned out he had a veneer market for the large volume of sycamore logs that the others did not have. Our suggestion to landowners who know little about their timber or how to market it is not to get in a hurry and give serious thought to hiring a forester to represent their interest. Diameter Measurement Nationwide less that 10% of the timber sold involves a professional forester. In Illinois, this figure is probably closer to The diameter of the exposed end of a log is easily measured using 5%. The more you know about your timber, the better prepared a ruler or carpenter's tape. A standing tree presents a problem. you will be deal with unsolicited offers that come your way. You The standard point of measure for tree diameter is 4 1/2 feet may be pleasantly surprised to find that something you above the ground (above the ground on the uphill side if the tree considered to be of minimal value may, in fact, be worth quite a is on a slope). This is called diameter breast high, and is usually bit, and with a little management could be worth considerably abbreviated as "DBH." more in the future. Diameter tape To answer the second part of the question..."How do I know what my timber is worth?"...you could hire a consulting forester to A diameter tape can be used to measure a tree's diameter. The appraise your timber or you could learn how to measure and tape is calibrated to read the tree's diameter by measuring its evaluate the timber yourself. This article presents the basics on circumference or distance around its trunk. If used correctly, this tree measurement for landowners who want to learn more about is a very accurate measuring device and the tree's diameter can be the value of their timber. read to the nearest tenth of an inch. The two measurements used to estimate the volume of a tree or Diameter tapes cost about $20 to $50 each. If you wish, you may log are diameter and height or length. Determination of the use a regular cloth measuring tape to measure around the tree and volume of wood in a tree is surprisingly complicated. The main divide the reading by 3.14 to obtain the diameter. Measuring stem (bole), for one thing, does not fit any standard geometric DBH to the nearest even inch (12, 14, 16, etc.) is adequate for the form. However, volume tables have been developed that ease the forest measurements described in this article. A 12-inch tree has a cumbersome task of volume computation. DBH between 11.1 and 13.0 inches, a 14-inch tree between 13.1 and 15.0 inches, etc. Taking tree measurements requires the use of some simple instruments which can be purchased or made. If you decide to order the equipment described below, supply sources include: Ben Meadows Company 3589 Broad St. P.O. Box 80549 Atlanta, GA 30366-9821 1-800-241-6401 or Forestry Suppliers, Inc. 205 West Rankin St. P.O. Box 8397 Jackson, MS 39284-8397 1-800-647-5368 or International Reforestation Suppliers P.O. Box 4195 Pineville, LA 71361 1-800-321-1037 All have catalogs available which you can request. There are certain rules one should remember when using a The Tree/Log Scale Stick diameter tape. These are: A rather ingenious instrument, the tree/log scale stick, speeds the Be certain DBH is measured at 4 1/2 feet above the process of DBH measurements. It is not as accurate as the ground on the uphill side. If a tree forks below the measuring diameter tape, but if used with reasonable care it is adequate for point, measure it as two trees. If it forks above the measuring timber inventory work. Tree/log scale sticks cost around $10 and point, measure it as one tree (Figure 2). usually include the Merritt hypsometer used for estimating tree heights (described later). Do not let the tape sag-it must be horizontal around the tree (Figure 3). A purchased scale stick may not work for everyone since most are calibrated for use at a 25 inch distance (reach) from the eye. If your fully extend reach is less than 25 inches, the measurements you take with a purchased scale stick will be wrong. A scale stick can be easily constructed to fit any reach using the following formula: where: I = distance in inches from zero end of the stick to scale graduation, E = distance in inches from eye to the stick (your reach distance, which for many people is 25 inches), and D = tree's diameter in inches. A strip of wood about 1/4-inch thick, 1 inch wide, and 27 inches long can be used to fashion a scale stick. Use the formula above to mark off the DBH values on the stick. For example, if your reach is 23 inches, the diameter markings in Table 1 (next page) would be made on the stick as shown in Figure 4 below. Table 1. Distances to mark on a scale stick for DBH readings of your reach (the eye-to-stick distance you used to calibrated (Note: for a person with a 23 inch reach) your stick). Purchased scale sticks are normally calibrated for a 25 inch reach. Diameter Distance from Zero end of the stick in inches 2. Look directly at the center of the trunk. Without moving your 2 1.9 head, shift your eyes to the left side of the tree trunk and line the 4 3.7 zero end of the scale stick up with the left edge of the tree. 6 5.3 3. Without moving your head, shift your eyes to the right side of 8 6.9 the tree and observe where the tree's right side intercepts the 10 8.3 stick. This is the diameter measurement. 12 9.7 14 11.0 16 12.3 18 13.5 20 14.6 22 15.7 24 16.8 26 17.8 28 18.8 30 19.8 32 20.7 34 21.6 36 22.5 38 23.3 40 24.2 If you do not have a measuring tape marked in tenths of inches, the readings can be changed to 1 / 16" by the relation: measurement in 1/16" units = measurement in tenths 0.063 For the 12-inch DBH mark, the distance from the zero end of the stick is 9.7 inches, or 9 11/16 inches. Here's how to use the scale stick to determine the tree's diameter (refer to Figures 5 and 6). If you are using a purchased scale stick that has both tree and log scales on it, make sure you use the tree scale for both the diameter and height measurements: 1. Determine where 4 1/2 feet above ground hits you. Face the tree and center yourself on its trunk. Move up against the tree to determine where the 4 1/2 foot mark is on the tree's trunk. Hold the scale stick horizontally against the tree on the 4 1/2 foot mark and back away from the tree the length 4. Because trees are not round, it is good practice to take another This works because of similar triangles. That is, the length of the diameter measurement one-fourth of the way around the trunk (90 stick above your fist equals your reach so the tree's height equals degrees to your first measurement). Average the two the horizontal distance to the tree.
Recommended publications
  • Calculating Board Feet Board Feet Linear Feet Z "Board Feet" Is a Measurement of Lumber Square Feet Volume
    Calculating Board Feet board Feet linear feet z "Board Feet" is a measurement of lumber square feet volume. z A board foot is equal to 144 cubic inches of wood. TED 126 Spring 2007 z Actually it's easy to calculate using the following formula: Bd. Ft. = T (inches) x W (inches) x L (feet) / 12 2 Board Feet Board Feet z When you are figuring up board feet, keep in mind a waste factor. Bd. Ft. = T (inches) x W (inches) x L (feet) / 12 z If you purchase good clear material add about 15% for waste, Bd. Ft. = T (inches) x W (inches) x L (inches) / 144 z if you elect to use lower grade material you will have to allow for defects and more wasted material ---add about 30%. 3 4 Board Feet and Linear feet Board Feet and Linear feet z A linear foot is a measure of length 12 inches z To convert linear feet to board feet: long and a Thickness” x Width” x Length’ ÷ 12 z board foot is a number calculated by determining the volume of a board that is 12 z To convert board feet to linear feet: inches wide and 1 inch thick. • In other words, a 1" x 6" board that measures 24" 12 ÷ Thickness” x Width” x Board Foot long is exactly one board foot. (width" x thickness" x length' / 12) 5 6 1 Linear feet and Square Feet The math…. z It is not possible to convert linear footage into z A Linear Feet is just a measurement of square footage because a linear foot is only one length and does not take into account its dimension and a square foot is two dimensions, width or thickness.
    [Show full text]
  • Feasibility Analysis of a Small Log Sawmill in Southeast Alaska
    1 Feasibility analysis of a small log sawmill in Southeast Alaska Executive Summary Unlike most Southern Yellow Pine sawmills, a small log mill in Southeast Alaska that manufactured lumber from 60-year old trees, would not be profitable. There are many additional operating costs in the remote forests of Southeast Alaska that the Southern Yellow Pine sawmills do not incur. The two most costly disadvantages are; 1. An additional $SO per thousand board feet of lumber that is required to transport lumber from Southeast Alaska to the Pacific Northwest and, 2. The lack ofany reasonable economy of scale. The small timber sale volume projected to be available to the manufacturing industry in Southeast Alaska is inadequate to support more than a single mid-size sawmill. Consequently the regions sawmills will not produce any income from the residual products - chips, sawdust and bark. The chips are currently barged to pulp mills in the Pacific Northwest and Canada, while the Yellow Pine sawmills can deliver chips to nearby pulp mills at a much lower cost than the Alaska sawmills. Similarly, there are no fiberboard plants to utilize the sawdust from Southeast Alaska sawmills and there is no market for the bark in Southeast Alaska. Instead, most ofthe sawdust and bark must be disposed of in landfills. Introduction The purpose of this analysis is to compare several financial estimates of the feasibility of manufacturing lumber from immature young growth timber in Southeast Alaska. Four sawmill proformas are 1 examined : 1. A summary of five actual Southern Yellow Pine sawmills. This proforma was used because much of the rhetoric surrounding the Secretary of Agriculture unilateral decision to transition to 60+ year old Alaska young growth was based on assertions that Yellow Pine sawmills harvest their 2 timber before age 60 • Other than the obvious difference in tree species, the yellow pine region has much different logistic issues than Southeast Alaska.
    [Show full text]
  • Useful Forestry Measurements Acre: a Unit of Area Equaling 43,560
    Useful Forestry Measurements Acre: A unit of area equaling 43,560 square feet or 10 square chains. Basal Area: The area, usually in square feet, of the cross-section of a tree stem near its base, generally at breast height and inclusive of bark. The basal area per acre measurement gives you some idea of crowding of trees in a stand. Board Foot: A unit of area for measuring lumber equaling 12 inches by 12 inches by 1 inch. Chain: A unit of length. A surveyor’s chain equals 66 feet or 1/80-mile. Cord: A pile of stacked wood measuring 4 feet by 4 feet by 8 feet when originally conceived. Cubic Foot: A unit of volume measure, wood equivalent to a solid cube that measures 12 inches by 12 inches by 12 inches or 1,728 cubic inches. Cunit: A volume of wood measuring 3 feet and 1-1/2 inches by 4 feet by 8 feet and containing 100 solid cubic feet of wood. D.B.H. (diameter breast height): The measurement of a tree’s diameter at 4-1/2 feet above the ground line. M.B.F. (thousand board feet): A unit of measure containing 1,000 board feet. Section: A unit of area containing 640 acres or one square mile. Square Foot: A unit of area equaling 144 square inches. Township: A unit of land area covering 23,040 acres or 36 sections. Equations Cords per acre (based on 10 Basal Area Factor (BAF) angle gauge) (# of 8 ft sticks + # of trees)/(2 x # plots) Based on 10 Basal Area Factor Angle Gauge Example: (217+30)/(2 x 5) = 24.7 cords/acre BF per acre ((# of 8 ft logs + # of trees)/(2 x # plots)) x 500 Bd ft Example: (((150x2)+30)/(2x5))x500 = 9000 BF/acre or
    [Show full text]
  • Estimating the Board Foot to Cubic Foot Ratio
    United States Department of Agriculture Estimating the Forest Service Forest Board Foot to Products Laboratory Cubic Foot Ratio Research Paper FPL-RP-616 Steve Verrill Victoria L. Herian Henry Spelter Abstract Contents Certain issues in recent softwood lumber trade negotiations Page have centered on the method for converting estimates of 1 Introduction .................................................................... 1 timber volumes reported in cubic meters to board feet. Such conversions depend on many factors; three of the most im- 2 The F3 × F2 × F1 Model.................................................. 2 portant of these are log length, diameter, and taper. Average log diameters vary by region and have declined in the west- 3 The F1 Factor.................................................................. 2 ern United States due to the growing scarcity of large diame- ter, old-growth trees. Such a systematic reduction in size in 4 F3 × F2............................................................................. 3 the log population affects volume conversions from cubic units to board feet, which makes traditional rule of thumb 5 Applying the F3 × F2 × F1 Model to a Population conversion factors antiquated. In this paper we present an of West Coast Logs ........................................................ 3 improved empirical method for performing cubic volume to board foot conversions. 6 Smoothing the F3 × F2 Surface....................................... 4 Keywords: Scribner scaling, diameter, length, taper, 7 Optimal Smoothing
    [Show full text]
  • California Assessment of Wood Business Innovation Opportunities and Markets (CAWBIOM)
    California Assessment of Wood Business Innovation Opportunities and Markets (CAWBIOM) Phase I Report: Initial Screening of Potential Business Opportunities Completed for: The National Forest Foundation June 2015 CALIFORNIA ASSESSMENT OF WOOD BUSINESS INNOVATION OPPORTUNITIES AND MARKETS (CAWBIOM) PHASE 1 REPORT: INITIAL SCREENING OF POTENTIAL BUSINESS OPPORTUNITIES PHASE 1 REPORT JUNE 2015 TABLE OF CONTENTS PAGE CHAPTER 1 – EXECUTIVE SUMMARY .............................................................................................. 1 1.1 Introduction ...................................................................................................................................... 1 1.2 Interim Report – brief Summary ...................................................................................................... 1 1.2.1 California’s Forest Products Industry ............................................................................................... 1 1.2.2 Top Technologies .............................................................................................................................. 2 1.2.3 Next Steps ........................................................................................................................................ 3 1.3 Interim Report – Expanded Summary .............................................................................................. 3 1.3.1 California Forest Industry Infrastructure .........................................................................................
    [Show full text]
  • Factors Determining Lumber Recovery in Sawmilling
    United States Department of Agriculture Factors Determining Forest Service Forest Products Lumber Recovery in Laboratory General Technical SawmiI ling Report FPL-39 Philip H. Steele Abstract Lumber volume recovery in sawmilling is determined by a confusing interaction of several factors. The more one knows about each individual factor, the more one can understand how the factors interact. The author identifies and discusses in detail seven factors influencing lumber recovery. Past and current research is cited, and examples are given to illustrate the points made. Keywords: Lumber recovery, sawmills, sawmilling. April 1984 Steele, Philip H. Factors determining lumber recovery in sawmilling. Gen. Tech. Rep. FPL-39. Madison, WI: U.S. Department of Agriculture, Forest Servrice, Forest Products Laboratory, 1984. 8 p. A limited number of free copies of this publication are available to the public from the Forest Products Laboratory, P.O. Box 5130, Madison, WI 63706. Laboratory publications are sent to over 1,000 libraries in the United States and elsewhere. The Laboratory is maintained in cooperation with the University of Wisconsin. Factors Determining Lumber Recovery in Sawmilling Philip H. Steele, Forest Products Technologist Forest Products Laboratory, Madison, Wis. Introduction The Factors Identified Lumber recovery in sawmilling is determined by a The following factors influence lumber recovery during the confusing interaction of several variables. Since no two sawmilling process and are examined in detail in this sawmills are alike, the variables that influence lumber report: recovery are seldom the same from one sawmill to (1) Log diameter, length, taper, and quality. another. This complexity confuses even those with a wide (2) Kerf width.
    [Show full text]
  • Old School Water and Wastewater Operator Training
    Inte rnational Correspondence Schools Scranton, Pa. Weights and Measures PREPARED ESPECIALLY FOR HOME ST UDY By I.C.S. STAFF 53766 1978 EDITION 1 WEIGHTS AND MEASURES Serial 1978 Edition I DENOMINATE NUlUBERS REVIEW NOTICE This t~xt includes tables a~d ezplanations of the various English ENGLISH MEASURES a.nd metnc ~easures. T~e subJects of reduction descending and reduc­ bon ascending are ezpla1ned and also the conversion from one system to anoth.er. There; a.re ~U ezplanations of the rules for the addition, su~trachon, multipl!cahon and . div~aion of compound numbers, and DEFJXITJOXS dnll problems shoWlng the apphcahon of these processes in practical problems. 1. Varieties of Measures.-A :m.easure is a standard From time t~ time s.light changes have been made in the text since it unit, established by law or custom, by means of which a quan­ was first pubhshed, 1~ order to ~i mplify those passages that were tity of any kind may be measured. For example, the inch and found to cause some d1~culty. Th1s text was reviewed in 1941 by J. W. Law.rence, A. M., Duector of the School of Mathematics of the the mile are measures of leugth; the pint and the gallon are Internabonal Correspondence Schools and found to be fundamentall aouna. ' Y measures of capacil)•, as used for liquids; the ounce and the ton are measnres of weight; the second and the month are measures Copyright, 1921, by I NTERNATIONAL T EXTBOOK COKPASY. Copyright in Great of time, and so on. Britain. All rights resen-ed 1978 Printed in U.
    [Show full text]
  • The International System of Units (SI) - Conversion Factors For
    NIST Special Publication 1038 The International System of Units (SI) – Conversion Factors for General Use Kenneth Butcher Linda Crown Elizabeth J. Gentry Weights and Measures Division Technology Services NIST Special Publication 1038 The International System of Units (SI) - Conversion Factors for General Use Editors: Kenneth S. Butcher Linda D. Crown Elizabeth J. Gentry Weights and Measures Division Carol Hockert, Chief Weights and Measures Division Technology Services National Institute of Standards and Technology May 2006 U.S. Department of Commerce Carlo M. Gutierrez, Secretary Technology Administration Robert Cresanti, Under Secretary of Commerce for Technology National Institute of Standards and Technology William Jeffrey, Director Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose. National Institute of Standards and Technology Special Publications 1038 Natl. Inst. Stand. Technol. Spec. Pub. 1038, 24 pages (May 2006) Available through NIST Weights and Measures Division STOP 2600 Gaithersburg, MD 20899-2600 Phone: (301) 975-4004 — Fax: (301) 926-0647 Internet: www.nist.gov/owm or www.nist.gov/metric TABLE OF CONTENTS FOREWORD.................................................................................................................................................................v
    [Show full text]
  • Making the Grade a Guide to Appearance Grading UK Grown Hardwood Timber
    Making the Grade A guide to appearance grading UK grown hardwood timber Contents Authors Ivor Davies 1 and Guy Watt 2 Introduction 3 Photography Unless otherwise stated, all photographs are by G R Brearley, Forest Research The appearance grading system used in this guide 5 Acknowledgements This guide has been commissioned by the Forestry Commission, the Welsh Development Detailed grading criteria Agency, the Northern Ireland Forest Service, 8 Scottish Enterprise and the Scottish Forestry Trust. Ash The authors gratefully acknowledge the 10 support of the project steering group and a large number of busy people throughout the hardwood supply-chain. Most of the Beech 12 timber samples were generously supplied by Woodschool Ltd, English Woodlands Timber Ltd and Scottish Wood Ltd. Oak 14 Disclaimer Appearance grading can only be a first approximation and it is always up to the customer to ensure that the characteristics of Sycamore 18 the timber selected will suit their envisaged use. In case of dispute, reference should be made to the relevant standards listed in the bibliography. While every effort has been made Sweet chestnut 20 to ensure the accuracy of this publication, the authors, sponsors, and publishers cannot accept liability for any loss or damage arising Cherry from the information supplied. 22 Publication details This publication should be cited as: Lime Davies I. and Watt G., 2005, 23 Making the Grade – A guide to appearance grading UK grown hardwood timber. Published by Elm 24 arcamedia 8 Campbell’s Close, Edinburgh EH8 8JJ Appendix 1 Telephone: 0131 556 7963 A comparison between this system and Email: [email protected] 26 the European and British standards Printed by Keyline ISBN 1-904320-03-1 Appendix 2 Text © Crown Copyright.
    [Show full text]
  • Measuring Timber Products Harvested from Your Woodland Paul Oester and Steve Bowers
    Archival copy. For current version, see: https://catalog.extension.oregonstate.edu/ec1127 FOREST MEASUREMENT EC 1127 • Revised December 2009 Measuring Timber Products Harvested from Your Woodland Paul Oester and Steve Bowers Contents Fundamentals of measurement ..............1 anaging woodland property offers you the opportunity Measurement units ...............................2 Board foot ............................................. 2 to harvest a variety of products, depending on timber Cubic foot .............................................. 2 quality and quantity, harvest economics, and market Cord ..................................................... 2 M availability. Among these products are saw logs (for lumber Linear measurements .............................. 2 or plywood), peeler logs (for plywood), pulpwood, fuelwood, Weight .................................................. 3 poles, piling, and posts. Measuring logs ....................................3 Board-foot log rules ................................ 3 Knowledge of measurements used in the wood products Log scaling ............................................ 4 industry can help you make management and marketing deci- Board-foot volume .................................. 4 sions that ultimately will increase financial returns from your Selling logs by weight ............................. 4 woodlot. Cubic-foot volume ................................... 5 Defects .................................................. 7 This publication describes measurements used to buy and
    [Show full text]
  • Date Thesis Is Presented Analysis Has Further Usefulness in Projecting The
    AN ABSTRACT OF THE THESIS OF Douglas Sterling Smith for the Master of Science in Forest Management. Date thesis is presented November ZZ, 1966 Title A QUANTITATIVE ANALYSIS OF LOG VOLUME CONCEPTS AND PRODUCT DERIVATIVES Abstract approved Signature redacted for privacy. One of the most important challenges facing foresters is the development of a raw material measurement system designed to give a complete inventory of log volume and to assist in planning the com- plete management of log production.This paper introduces a concept of production analysis in terms of solid fiber content.The basis for the development of this concept is the measurement of logs and log production in terms of cubic feet.Total raw material accountability is maintained throughout the manufacturing process. A mill study was undertaken to compare the results of this type of analysis with results obtained by traditional analytical methods. It was found that raw material management by this analysis can be useful in measuring the effectiveness of a production design.This analysis has further usefulness in projecting the results of proposed changes in production design.The mill study was undertaken with 2 the log input, primary lumber products, and sawmill residuals measured in terms of cubic feet of wood fiber.This study is referred to as treatment A in this paper.The mill study data were used to project two changes in sawing practices, treatments B and C, and the expected results are presented.The 471 logs in the study had a volume of 172, 850 board feet gross, and 143, 490 board feet net, Scribner scale.The logs had a volume of 24, 574 cubic feet on the basis of Smalian? s cubic foot rule.The volumes in the study were assigned dollar values on the basis of grade and projected on the basis of an annual cut of 30 million board feet, assuming the same variables encountered in the test material.
    [Show full text]
  • A Collection of Log Rules U.S.D.A
    A COLLECTION OF LOG RULES U.S.D.A. FOREST SERVICE GENERAL TECHNICAL REPORT FPL U. S. DEPARTMENT OF AGRICULTURE FOREST SERVICE FOREST PRODUCTS LABORATORY MADISON, WIS. CONTENTS Introduction 1 Symbology 3 A graphic comparison of log rules 4 Section I. Log Rules of United States and 9 Canada Section II. Some Volume Formulae, Lumber 41 Measures, and Foreign Log Rules Tables showing the board foot volume of 16- 50 foot logs according to various log rules Bibliography 56 A COLLECTION OF LOG RULES By FRANK FREESE, Statistician Forest Products Laboratory Forest Service U.S. Department of Agriculture INTRODUCTION A log rule may be defined as a table or formula names. In addition, there are numerous local showing the estimated net yield for logs of a given variations in the application of any given rule. diameter and length. Ordinarily the yield is ex- Basically, there are three methods of develop- pressed in terms of board feet of finished lumber, ing a new log rule. The most obvious is to record though a few rules give the cubic volume of the the volume of lumber produced from straight, log or some fraction of it. Built into each log rule defect-free logs of given diameters and lengths are allowances for losses due to such things as and accumulate such data until all sizes of logs slabs, saw kerf, edgings, and shrinkage. have been covered. These “mill scale” or “mill At first glance, it would seem to be a relative- tally” rules have the virtue of requiring no as- ly simple matter to devise such a rule and having sumptions and of being perfectly adapted to all the done so that should be the end of the problem.
    [Show full text]