Pharmacological Evaluation of Novel Dimers of an Arylpropionic Acid Class of Non-Selective Cyclooxygenase Inhibitors

Total Page:16

File Type:pdf, Size:1020Kb

Pharmacological Evaluation of Novel Dimers of an Arylpropionic Acid Class of Non-Selective Cyclooxygenase Inhibitors Halimi et al Tropical Journal of Pharmaceutical Research February 2017; 16 (2): 327-336 ISSN: 1596-5996 (print); 1596-9827 (electronic) © Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria. All rights reserved. Available online at http://www.tjpr.org http://dx.doi.org/10.4314/tjpr.v16i2.10 Original Research Article Pharmacological evaluation of novel dimers of an arylpropionic acid class of non-selective cyclooxygenase inhibitors Syed Muhammad Ashhad Halimi1*, Muhammad Saeed1, Safiullah1 and Khalid Muhammed Khan2 1Department of Pharmacy, University of Peshawar, Peshawar 25120, 2H.E.J. International Centre for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan *For correspondence: Email: [email protected]; Tel: +92 91 9216750; Fax: +92 91 9218318 Received: 4 August 2016 Revised accepted: 5 January 2017 Abstract Purpose: To explore and identify cyclooxygenase (COX) inhibitors with optimal potency and efficacy using an arylpropionic acid class of drugs as lead molecules. Methods: The selected lead molecules were dimerised through chemical processes (reflux condensation) and characterised in terms of structural properties using infrared, proton nuclear magnetic resonance, electron impact mass spectrometry, and elemental analysis techniques. The molecules were evaluated pharmacologically for acute toxicity and anti-inflammatory (carrageenan- induced paw oedema test), analgesic (acetic acid-induced writhing test in mice), and antipyretic (Brewer’s yeast-induced pyrexia test in mice) activities against control (normal saline) and relevant reference standard drugs. Docking analyses were also performed to assess possible protein–ligand interactions. Results: The test compounds were non-toxic at doses of 50, 100 and 150 mg/kg body weight, ip. Pharmacological evaluation revealed that the test compounds, TC-I through TC-IV, had significant anti- inflammatory and peripheral analgesic activities (p < 0.001). An antipyretic test showed that TC-I, -II, and -III showed highly significant antipyretic activities at all doses tested. TC-IV at 20 and 30 mg/kg body weight exhibited significant antipyretic activities (p < 0.05), while at 50 mg/kg body weight, the activity was highly significant (p < 0.001). Molecular modelling revealed strong inhibitory interactions with docking scores of 116.2, 128.8, 144.2, and 136.0 kcal/mol, respectively, in comparison with the reference ligand, flurbiprofen (94.9 kcal/mol). Conclusion: The dimerised lead drug molecules showed significant anti-inflammatory, analgesic, and antipyretic activities in animals and may further be explored as potential new drug candidates for inflammatory conditions. Keywords: Analgesic, Anti-inflammatory, Antipyretic, Arylpropionic acid, COX-2 inhibitors, Molecular docking Tropical Journal of Pharmaceutical Research is indexed by Science Citation Index (SciSearch), Scopus, International Pharmaceutical Abstract, Chemical Abstracts, Embase, Index Copernicus, EBSCO, African Index Medicus, JournalSeek, Journal Citation Reports/Science Edition, Directory of Open Access Journals (DOAJ), African Journal Online, Bioline International, Open-J-Gate and Pharmacy Abstracts INTRODUCTION analgesic, and antipyretic activities. A diverse collection of NSAIDs, such as arylpropionic Cyclooxygenase (COX) inhibitors, non-steroidal acids, arylacetic acids, β­ketoenols, and diary anti-inflammatory drugs (NSAIDs), are commonly heterocycles, acts by inhibiting the activity of prescribed and used for their anti-inflammatory, cyclooxygenase (COX) enzymes [1]. NSAID Trop J Pharm Res, February 2017; 16(2): 327 Halimi et al selection depends on the clinical condition of the Proton nuclear magnetic resonance (1H NMR) patient under treatment, COX1 and COX2 measurements were performed using a Bruker selectivity, duration of use, and gastric ulcerative AV 300 system (400 MHz) with dimethyl and cardiovascular risks [2]. sulphoxide (DMSO) as the solvent. Electron impact mass spectroscopy (EI MS) was A prolific area of research looks at existing drug conducted with a JEOL MS Route spectrometer molecules that may be further amplified in terms (JMS 600-H). Infrared (IR) spectra were obtained of potency, efficacy, selectivity, or safety. The with a Jasco IR-A-302 spectrometer. Ultraviolet development and successful testing of molecular (UV) spectra were generated with a Thermo computations for both the receptors (proteins) Electron Vision Pro (ver. 4.10). C:H:N analyses and ligands (drugs) has further aided the efforts were performed with a Carlo of researchers, to the point of designing ErbaStrumentazione system (Mod-1106, Italy). appropriate drug structures for both known and Anti-inflammatory activity tests were conducted unknown proteins, receptors, or enzymes [3,4]. using a plethysmometer (Model LE 7500 Plan lab S.L.). Antinociceptive activity was assessed with Well-established lead NSAID molecules for a hot plate analgesiometer (Harvard Apparatus, synthesising derivatives have the advantages of USA). Antipyretic activity was measured using a predicable pharmacological activities, known digital thermometer (Model CA92121, ACON doses, durations of action, and side and toxic Laboratories, USA). effects. The pharmacological evaluation of such synthesised analogues, in vivo and through Synthesis computer docking, can provide useful data for further augmentation of the existing lead Ethyl ester analogues of naproxen, flurbiprofen, molecule; for more benefits and fewer side and ibuprofen were synthesised through reflux effects, the ‘better’ structure could be screened condensation of the reactants in an equimolar out among the synthesised analogues for further (0.1 mmol:0.1 mmol) ratio in an acidic optimisation of its pharmacological activity. environment, with the addition of a few drops of Several success stories have been reported to concentrated sulphuric acid to the reaction [9]. date regarding such computer-aided drug Completion of the reaction was monitored using discoveries [5]. thin layer chromatography (TLC), with ethyl acetate and hexane as the mobile phase. The Naproxen [6], flurbiprofen [7], and ibuprofen [8], reaction duration ranged from 12–18 h. The belonging to the arylpropionic acid class of non- resulting solid products were filtered, washed selective COX inhibitors, were selected for with hot hexane (200–400 mL) and distilled water synthesis of their dimers and further exploration (400–500 mL), and then dried (Step 1). Esterified of these dimers for anti-inflammatory, analgesic, compounds thus synthesised were treated with and antipyretic activities. Molecular docking hydrazine hydrate, and again subjected to reflux analyses were also performed to assess condensation for 24–48 h, using ethanol as the probable drug-receptor interactions with this new solvent [10]. Completion of the reactions was COX inhibitor approach. ascertained using TLC. The products were then purified with different techniques (Step 2). The EXPERIMENTAL esters and hydrazides thus synthesised were refluxed overnight, in the presence of Chemicals carbonyldiimidazole (CDI) as the catalyst, using acetonitrile as the reaction medium. General Pharmaceutical-grade ibuprofen, flurbiprofen, Scheme I shows dimer formation in a three-step and naproxen were provided by Polyfine reaction. The products formed were then purified Chemipharma (Pvt.) Ltd, Hayatabad, Peshawar, similarly through the different techniques. Pakistan. Ethanol and concentrated sulphuric acid were obtained from Sigma-Aldrich, USA. Experimental animals Lambda carrageenan (Sigma, USA), glacial acetic acid (Panreac, Spain), Brewer’s yeast Mice (BALB-c) from the National Institute of (Merck, Germany), and sterile normal saline I/V Health (NIH) Islamabad, Pakistan, were used for (Otsoka Japan) were used as received. the experimental studies. Mice were fed with standard food ad libitum with free access to The purity of the products was checked on thin- drinking water, and kept at 25 ± 2°C with a 12- layer chromatographic plates of aluminium h/12-h day/night cycle. The animal studies were coated with silica gel (Kieselgel 60 F25, Merck, approved by the Ethical Committee of the Germany). Melting points were assessed with a University of Peshawar, Pakistan (ref no. 01/EC- Bicot apparatus (Bibby Scientific Ltd., UK). Trop J Pharm Res, February 2017; 16(2): 328 Halimi et al where = naproxen, flurbiprofen, and ibuprofen. Table 1: Dimers of naproxen, flurbiprofen, and ibuprofen Test Structure IUPAC name Formula compound 2-(2-fluorobiphenyl-3-yl)-N'-((S)-2-(6- C29H27FN2O3 methoxynaphthalen-2- TC-I yl)propanoyl)propanehydrazide 2-(4-isobutylphenyl)-N'-(2-(3- C26H36N2O2 isopropylphenyl)propanoyl)propanehydr TC-II azide S)-2-(6-methoxynaphthalen-2-yl)-N'- C28H28N2O4 ((S)-2-(6-methoxynaphthalen-2- TC-III yl)propanoyl)propanehydrazide 2-(2-fluoro-[1,1’-biphenyl]-4-yl)-N’-(2-(2- C30H26F2N2O fluoro-[1,1diphenyl]-4- 2 yl)propanoyl)propanehydrazide TC-IV 15/Pharm), according to international guidelines For the toxicity study, 18 mice were distributed for the handling of animals [11,12]. randomly into three groups, n = 6 each. Groups were treated with 50, 100, and 500 mg/kg body Acute toxicity test weight of the test compounds intraperitoneally (ip) through injection. The animals were observed for 6 h for any behavioural changes; Trop J Pharm Res, February 2017; 16(2): 329 Halimi et al mortality rates were determined at 24 h after hot plate test after 30- and 60-min intervals; the administration of the test
Recommended publications
  • Antipyretic Efficacy of an Initial 30-Mg/Kg Loading Dose of Acetaminophen Versus a 15-Mg/Kg Maintenance Dose
    Antipyretic Efficacy of an Initial 30-mg/kg Loading Dose of Acetaminophen Versus a 15-mg/kg Maintenance Dose Jean Marc Tre´luyer, MD, PhD*; Sylvie Tonnelier, PharmD*; Philippe d’Athis‡; Beatrice Leclerc§; Isabelle Jolivet-Landreau, MD§; and Ge´rard Pons, MD, PhD* ABSTRACT. Objective. To compare the antipyretic comfort.1 Among the available antipyretic agents, efficacy of an initial 30-mg/kg acetaminophen loading acetaminophen is one of the most widely used be- dose versus a 15-mg/kg maintenance dose. cause it has an antipyretic efficacy equivalent to the Methods. A double-blind, parallel-group, random- other antipyretic drugs and a good safety profile.2–4 ized clinical trial was conducted. A total of 121 febrile Acetaminophen antipyretic efficacy is dose-depen- (rectal temperature between 39°C and 40°C) but other- dent.5,6 The recommended dose is 15 mg/kg every 6 wise healthy outpatients who were 4 months to 9 years of 2 age and weighed 4 to 26 kg were assigned randomly to 1 hours. Following this dosing schedule, it usually -takes several hours after the first acetaminophen ad ؍ and 30 mg/kg (n (62 ؍ of the dose groups: 15 mg/kg (n 59). ministration to obtain the maximal clinical efficacy of Results. In an “intention to treat” analysis, the time to the drug.7 Therefore, Mahar et al8 suggested a phys- obtain a temperature lower than 38.5°C was significantly ical “cold therapy” at the initiation of the chemical shorter in the 30-mg/kg than in the 15-mg/kg group treatment to decrease the time course to antipyretic minutes vs 139 ؎ 113 minutes).
    [Show full text]
  • Clinical Report—Fever and Antipyretic Use in Children Abstract
    Guidance for the Clinician in Rendering Pediatric Care Clinical Report—Fever and Antipyretic Use in Children Janice E. Sullivan, MD, Henry C. Farrar, MD, and the abstract SECTION ON CLINICAL PHARMACOLOGY AND THERAPEUTICS, and COMMITTEE ON DRUGS Fever in a child is one of the most common clinical symptoms managed by pediatricians and other health care providers and a frequent cause KEY WORDS fever, antipyretics, children of parental concern. Many parents administer antipyretics even when ABBREVIATIONS there is minimal or no fever, because they are concerned that the child NSAID—nonsteroidal anti-inflammatory drug must maintain a “normal” temperature. Fever, however, is not the The guidance in this report does not indicate an exclusive primary illness but is a physiologic mechanism that has beneficial course of treatment or serve as a standard of medical care. effects in fighting infection. There is no evidence that fever itself wors- Variations, taking into account individual circumstances, may be ens the course of an illness or that it causes long-term neurologic appropriate. complications. Thus, the primary goal of treating the febrile child This document is copyrighted and is property of the American Academy of Pediatrics and its Board of Directors. All authors should be to improve the child’s overall comfort rather than focus on have filed conflict of interest statements with the American the normalization of body temperature. When counseling the parents Academy of Pediatrics. Any conflicts have been resolved through or caregivers of a febrile child, the general well-being of the child, the a process approved by the Board of Directors.
    [Show full text]
  • Ibuprofen: Pharmacology, Therapeutics and Side Effects
    Ibuprofen: Pharmacology, Therapeutics and Side Effects K.D. Rainsford Ibuprofen: Pharmacology, Therapeutics and Side Effects K.D. Rainsford Biomedical Research Centre Sheffield Hallam University Sheffield United Kingdom ISBN 978 3 0348 0495 0 ISBN 978 3 0348 0496 7 (eBook) DOI 10.1007/978 3 0348 0496 7 Springer Heidelberg New York Dordrecht London Library of Congress Control Number: 2012951702 # Springer Basel 2012 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • The Use of Stems in the Selection of International Nonproprietary Names (INN) for Pharmaceutical Substances
    WHO/PSM/QSM/2006.3 The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances 2006 Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines Medicines Policy and Standards The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 © World Health Organization 2006 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.
    [Show full text]
  • Ibuprofen Safety at the Golden Anniversary. a Commentary and Recent Developments Giustino Varrassi1,* , Joseph V
    Submitted: 08 November, 2020 Accepted: 17 November, 2020 Published: 08 March, 2021 DOI:10.22514/sv.2020.16.0097 EDITORIAL Ibuprofen safety at the golden anniversary. A commentary and recent developments Giustino Varrassi1;* , Joseph V. Pergolizzi2 1Paolo Procacci Foundation, Via Tacito 7, Abstract 00193, Roma, Italy Ibuprofen is a long lasting non-steroidal anti-inflammatory drugs (NSAIDs) and still 2NEMA Research, Inc., Naples, Florida, United States of America represents one of the most diffused analgesics around the world. It has an interesting story started over 50 years ago. In this short comment to an already published paper, *Correspondence the authors try to focus some specific important point. On top, they illustrate the recent, [email protected] confusing and fake assertion on the potentially dangerous influence that ibuprofen could (Giustino Varrassi) have, increasing the risk of Coronavirus infection. This is also better illustrated in a previously published paper, where the readers could find more clear responses to eventual doubts. Keywords NSAIDs; Ibuprofen; COVID-19; Side effects 1. Introduction pathologies or patients’ necessities, but it is indisputable that ibuprofen is safe, and has extremely well-known side effects, The passing of Stewart Adams (Fig. 1) inspired the publica- mainly gastro-intestinal, like any other drug of its class [5]. tion of an interesting paper on the “golden anniversary” of Compared to other OTC analgesics, ibuprofen showed a better ibuprofen [1], whose inventor had been the mentioned great safety profile in a recent study analyzing several medicines Pharmacist [2]. [6]. Also, in a meta-analysis comparing over 1,000 patients He had joined the Boots Pure Drug Co., Ltd.
    [Show full text]
  • Different Techniques for Analysis of Aspirin, Caffeine, Diclofenac Sodium and Paracetamol: Review Article
    ISSN 2692-4374 Pharmaceutical Sciences | Review Article Different techniques for Analysis of Aspirin, Caffeine, Diclofenac Sodium and Paracetamol: Review Article Mahmoud M. Sebaiy1*, Sobhy M. El-Adl1, and Amr A. Mattar1&2 1 Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt. 2 Pharmaceutical Medicinal Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt. *Аuthоrcоrrеspоndеncе: Е-mаil: mmsеbаiу@zu.еdu.еg; sеbаiуm@gmаil.cоm.Tеl: 01062780060. Fаx: 0552303266 Submitted: 27 April 2020 Approved: 11 May 2020 Published: 14 May 2020 How to cite this article: Sebaiy MM, El-Adl SM, Mattar AA. Different techniques for Analysis of Aspirin, Caffeine, Diclofenac Sodium and Paracetamol: Review Article. G Med Sci. 2020; 1(1): 013-031. https://www.doi.org/10.46766/thegms.pharma.20042701 Copyright: © 2020 Mahmoud MS. This is an open access article distributed under the Creative Commons Attribution License, which permits unre- stricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTracT Early treatment of pain is of a great importance as unrelieved pain can have profound psychological effects on the patient, and acute pain that is poorly managed initially can degenerate into chronic pain, which may prove to be much more difficult to treat. It is important to assess and treat the article,mental weand will emotional shed the aspects light on of different the pain waysas well of assome its physicalanalgesic aspects. drugs monitoring Although drug and therapyanalysis isusing a mainstay different of techniques pain treatment, in addition physical to methodsthe most such as physiotherapy (including massage and the application of heat and cold), surgery, and drug monitoring are also very valuable.
    [Show full text]
  • COX-1 and COX-2 Enzymes Synthesize Prostaglandins and Are Teacher Emeritus, University of Wisconsin-Madison) Mentor: Dr
    COX-1 And COX-2 Enzymes Synthesize Prostaglandins and Are Teacher Emeritus, University of Wisconsin-Madison) Mentor: Dr. David Nelson (Professor of Biochemistry, University of Wisconsin- (Student, University of Wisconsin-Madison) Center for Inhibited by NSAIDS (Nonsteroidal Anti-inflammatory Drugs) BioMolecular Madison West High School: Audra Amasino, Yuting Deng, Samuel Huang, Iris Lee, Adeyinka Lesi, Yaoli Pu, and Peter Vander Velden Modeling Advisor: Gary Graper, Teacher Emeritus, University of Wisconsin-Madison Mentors: Dr. David Nelson, Professor of Biochemistry, and Basudeb Bhattacharyya, Student, University of Wisconsin-Madison Abstract Prostaglandin Hormone Synthases (COX-1 and COX-2) are enzymes that produce prostaglandins. Prostaglandins are (1) Structure (3) Cyclooxygenase Active Sites responsible for fever, pain, and inflammation, but also the (5) Drugs maintenance of the lining of the stomach and prevention of In the pictures below, the heme is orange, the ulceration. COX-1 is found mainly in the gastrointestinal lining, hydrophobic knob is yellow, and the amino acids in the The three drugs below are all nonsteroidal anti- and COX-2 at sites of inflammation. NSAIDS (Nonsteroidal anti- Cyclooxygenase active site are colored in CPK (red for inflammatory drugs (NSAIDS). The first two NSAIDS, inflammatory drugs) such as aspirin, ibuprofen, naproxen, and oxygen, blue for nitrogen, and gray for carbon). aspirin and ibuprofen, are called nonselective Cox flurbiprofen inhibit both COX-1 and COX-2, and are taken inhibitors since they affect both COX-1 and COX-2 regularly by over 33 million Americans for pain and substantially (note their high COX-2/COX-1 effect inflammation. Some 10%-50% of these users suffer ratios).
    [Show full text]
  • Formulations Comprising Nanoparticulate Meloxicam
    (19) TZZ¥ZZ¥__T (11) EP 3 090 731 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 09.11.2016 Bulletin 2016/45 A61K 9/14 (2006.01) A61K 31/5415 (2006.01) (21) Application number: 16161176.9 (22) Date of filing: 27.02.2004 (84) Designated Contracting States: • Ryde, Tuula AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Malvern, PA Pennsylvania 19355 (US) HU IE IT LI LU MC NL PT RO SE SI SK TR • Pruitt, John, D. Suwanee, GA Georgia 30024 (US) (30) Priority: 03.03.2003 US 450705 P • Kline, Laura Harleysville, PA Pennsylvania 19438 (US) (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: (74) Representative: Wichmann, Hendrik 08006465.2 / 1 938 803 Wuesthoff & Wuesthoff 04785761.0 / 1 617 816 Patentanwälte PartG mbB Schweigerstraße 2 (71) Applicant: DV Technology LLC 81541 München (DE) Wilmington, Delaware 19801 (US) Remarks: (72) Inventors: This application was filed on 18-03-2016 as a • Cooper, Eugene, R. divisional application to the application mentioned Berwyn, PA Pennsylvania 19312 (US) under INID code 62. (54) FORMULATIONS COMPRISING NANOPARTICULATE MELOXICAM (57) The present invention is directed to composi- than about 2 microns; wherein said effective average par- tions comprising meloxicam. The stable meloxicam com- ticle size is different than the particle size of the nano- positions comprise (a) nanoparticulate particles of mel- particulate particles of meloxicam (a); and (c) at least one oxicam having an effective average particle size of less surface stabilizer. The invention relates also to uses of than about 2000 nm, (b) particles of meloxicam having the composition.
    [Show full text]
  • Non Steroidal Anti-Inflammatory Drugs
    Non Steroidal Anti‐inflammatory Drugs (NSAIDs) 4 signs of inflammation • Redness ‐ due to local vessel dilatation • Heat ‐ due to local vessel dilatation • Swelling – due to influx of plasma proteins and phagocytic cells into the tissue spaces • Pain – due to local release of enzymes and increased tissue pressure NSAIDs • Cause relief of pain ‐. analgesic • Suppress the signs and symptoms of inflammation. • Exert antipyretic action. • Useful in pain related to inflammation. Esp for superficial/integumental pain . Classification of NSAIDs • Salicylates: aspirin, Sodium salicylate & diflunisal. • Propionic acid derivatives: ibuprofen, ketoprofen, naproxen. • Aryl acetic acid derivatives: diclofenac, ketorolac • Indole derivatives: indomethacin, sulindac • Alkanones: Nabumetone. • Oxicams: piroxicam, tenoxicam Classification of NSAIDs ….. • Anthranilic acid derivatives (fenamates): mefenamic acid and flufenamic acid. • Pyrazolone derivatives: phenylbutazone, oxyphenbutazone, azapropazone (apazone) & dipyrone (novalgine). • Aniline derivatives (analgesic only): paracetamol. Clinical Classif. • Non selective Irreversible COX inhibitors • Non slective Reversible COX inhibitors • Preferential COX 2 inhibitors • 10‐20 fold cox 2 selective • meloxicam, etodolac, nabumetone • Selective COX 2 inhibitors • > 50 fold COX ‐2 selective • Celecoxib, Etoricoxib, Rofecoxib, Valdecoxib • COX 3 Inhibitor? PCM Cyclooxygenase‐1 (COX‐1): -constitutively expressed in wide variety of cells all over the body. -"housekeeping enzyme" -ex. gastric cytoprotection, hemostasis Cyclooxygenase‐2 (COX‐2): -inducible enzyme -dramatically up-regulated during inflammation (10-18X) -constitutive : maintains renal blood flow and renal electrolyte homeostasis Salicylates Acetyl salicylic acid (aspirin). Kinetics: • Well absorbed from the stomach, more from upper small intestine. • Distributed all over the body, 50‐80% bound to plasma protein (albumin). • Metabolized to acetic acid and salicylates (active metabolite). • Salicylate is conjugated with glucuronic acid and glycine. • Excreted by the kidney.
    [Show full text]
  • Uses and Abuses of Antipyretic Therapy
    USES AND ABUSES OF ANTIPYRETIC THERAPY By Alan K. Done, M.D. Department of Pediatrics, Stanford University School of Medicine F undoubtedly the most common ben of points which deserve consideration symptom confronting the physician before one elects to use an antipyretic. who treats children. It is fought as though DuBois’ summarized a lifetime of study it were the patient’s primary disease, and on fever and the regulation of body tem. its mere presence is often accepted as being penature with the statement: “Fever is only sufficient indication for the institution of a symptom and we are not sure that it is antipyretic therapy. It is not surprising, an enemy. Perhaps it is a friend.” The litena- therefore, that therapeutists and pharma- tune concerning the possible role of fever in ceutical concerns have energetically sought body defenses is extensive and inconclusive. new and better drugs for the control of There is little question that artificially in- fever. In the past few years there has ap- duced fever is of some value in the treat- peared on the market a number of new ment of such diseases as neurosyphilis, cer- formulations which are purported to offer tam inflammations of the eye, and arthritis. distinct advantages in terms of antipyretic In animal experiments, elevation of body potency, acceptance by children, and/or temperature has been shown to be of im- reduced toxicity. portance in resistance to certain infections.2 It is axiomatic that virtually any claim Body temperatures of greater than 106#{176}F regarding a drug can be supported by pub- (41.1#{176}C) rarely occur except under highly lished data, if the proper study is selected anomalous circumstances, and this level is and interpretation is sufficiently influenced probably safely below the point at which by conviction.
    [Show full text]
  • Emit®Tox™ Salicylic Acid Assay
    3 METHODOLOGY The Emit® tox™ Salicylic Acid Assay is a homogeneous enzyme immunoassay technique used for the quantitative analysis of salicylic acid in human serum or plasma.7 In the performance of the Emit® tox™ Salicylic Acid Assay, serum or plasma is mixed with Reagent 1, which contains antibodies to salicylic acid and the coenzyme nicotinamide adenine dinucleotide (NAD). Subsequently, Reagent 2, which contains salicylic acid ™ labeled with the enzyme glucose-6-phosphate dehydrogenase (G6PDH), is added. Salicylic acid in Emit tox Salicylic Acid Assay the sample and salicylic acid-labeled G6PDH compete for antibody binding sites. Enzyme activity ® decreases upon binding to the antibody, so the salicylic acid concentration in the sample can be measured in terms of enzyme activity. Active enzyme converts oxidized NAD to NADH, resulting May 2012 7S052.2D_C in an absorbance change that is measured spectrophotometrically. Endogenous G6PDH does not interfere because the coenzyme functions only with the bacterial (Leuconostoc mesenteroides) enzyme employed in the assay. See shaded sections: Updated information from August 2010 version. 4 REAGENTS Reagents contain the following substances: Mouse monoclonal antibodies reactive to salicylic acid (60.4 µg/mL),* salicylic acid labeled with bacterial G6PDH (0.34 U/mL), glucose-6-phosphate (22 mM), nicotinamide adenine dinucleotide (18 mM), Tris buffer, bovine serum albumin, preservatives, and stabilizers. Catalog Quantity/ *The antibody titer and enzyme conjugate activity may vary from lot to lot. Number Product Description Volume For in vitro diagnostic use. OSR7S229 Emit® tox™ Salicylic Acid Assay Precautions OSR7S518 R1 (Antibody/Substrate Reagent 1) 2 x 32 mL • Reagents contains nonsterile mouse monoclonal antibodies.
    [Show full text]
  • 09 Non-Steroidal Anti-Inflammatory Drugs (Nsaids)
    Part I Anaesthesia Refresher Course – 2017 09 University of Cape Town Non-steroidal anti-inflammatory drugs (NSAIDs) Dr Ernest Welch Private Practice Honorary lecturer- Wits University Non-steroidal anti-inflammatory drugs (NSAIDs) are a group of unrelated chemical compounds that have analgesic, anti-inflammatory and antipyretic effects. The similarity in therapeutic actions and side effects is due to common mechanisms of action and as a result they can be studied as a single class of drugs. The understanding of the NSAIDs, their effects and controversies is dependent on knowledge of the COX (cyclo-oxygenase) enzyme system. Mechanism of action Basic physiology of the COX pathway: 1. Fatty acid metabolism results in the production of prostaglandins (PG) via the COX pathway. 2. PGs mediate: inflammation, pain, pyrexia, cell mitosis and neuromuscular function. 3. All NSAIDs inhibit cyclo-oxygenase (COX). Formation of prostaglandin Arachidonic acid (AA) is a phospholipid fatty acid found in cell membranes that is released by a variety of stimuli particularly membrane damage. Cyclo-oxygenase (COX) and lipoxygenase (LOX) enzymes convert Arachidonic acid (AA) to lipid mediator’s PG and leukotrienes (also known as the eicosanoids) The two COX isoforms (COX-1 and COX-2) catalyse AA to PG and thromboxane (TxA) Initially COX converts AA to prostaglandin G2 (PGG2), and then converts PGG2 to prostaglandin H2 (PGH2) PGH2 is converted to 5 active forms of PG prostaglandin D2 (PGD2), prostaglandin E2 (PGE2) prostaglandin F2α (PGF2α) prostacyclin (PGI2) thromboxane A2 (TxA2) These 5 prostanoids act as secondary messengers mainly on G protein-coupled receptors. THE SYNTHESIS OF PROSTOGLANDINS USING CYCLO-OXYGENASE S.
    [Show full text]