A Division of U T a H D E P a R T M E N T O F N a T U R a L R

Total Page:16

File Type:pdf, Size:1020Kb

A Division of U T a H D E P a R T M E N T O F N a T U R a L R UTAH GEOLOGICAL SURVEY a division of Plate 1 Utah Dep artmen t o f Natural Reso urces Utah Geo lo gical Survey Op en -File Rep o rt 687DM In terim Geo lo gic Map o f the Sugar Ho use Quadran gle Qh Qh Qh Jtw 75 Qaly 72 60 Jtr Jtb Qlb 52 Qaf2 Qh Jtb Qmc Qafp B Jgs Qac Qlfp Qldbg Qms Jts Qc 65 Qac Qafp 83 T Qlsb Jtsg Qh 65 Qmt Jtw L 78 J^n Qh Qafb U J^n Qac Qh Qlfp Qaly Qms A Qmt Qh Qh Qafy Qmdf 60 Qac Jts Qmt E Qh F ^ag ^au ^au N Qldp Qac Qms ^au Jgs Jtr Jtb ^ag ^ag I Qldp Qac 47 Qmt L Qafy 63 ^am Qlam Qafy Qac Qmdf C Qaf 63 40 Jtl 4 ^am N Qafp/^a Qlsb H Qms Y Qldp Qldp/^a Qafy/J^n Qlsb/J^n 70 74 E Qct S Qldp/^a 80 N 59 C 60 Qh I 60 Qldp/^t L Qms 41 Qc Qafy/^a Qafy/^t C N N 44 Qaly 80 Qlsb/Jtc I 62 44 70 70 T O Qafy/Jtc Qac ^t 78 E N 75 ^au 75 Qlgb/Jtc 65 Jtsg 70 Y 56 Qac 76 A60 40 55 Qldp ^am N B Qldp/Jtc Jtc Qlgb 75 O 76 N Qlsb/J^n Qac/Jtc A N Y J^n 54 Qlgb/J^n 65 G C 71 A Qlfp Qlfp Qldp/^a Qafy/Jtc Qac/J^n I N Jtw Qac/^aQ ac R Qlsb/J^n Qh P 59 Qmdf 80 Qac Qldp/^t Qafy/J^n 60 S 66 C Qafy/J^n Qac/^a 8 70 Jtl 55 35 ^am ^ag T S Qh Qlsb/^a Qlgb/^a ^am 65 65 Qh 70 53 Y S 30 55 70 Qaly Qafy 85 E 53 64 Qafy/^a Qldp/^a 70 A Qaf2 Qafy 71 46 55 Qh ^t Jts Jtr L Qafy 55 Jtb Qafy Qafy/^t 30 Qms Jtb E Qafy 75 Qafy Qldp/^a 52 Jgs R 54 45 Jtw 57 80 64 61 64 80 56 26 65 Qac Tind SH2015-73 55 55 Qaly Qh 88 50 Qmef A 50 Qac Qaly Qldp/^t ^t 45 Qlfp 75 P 65 Jts Qlgb/^t 80 81 Jtr Qct Qaf2 70 45 47 Qac Qms 47 J^n Qlfp ^t 60 Qldp 85 Qh Jtb ^am 52 30 70 Jtw 55 54 Jgs A 51 Qlgb 42 48 72 Qlfp Qh A′ Qac 61 62 73 56 Qh 66 54 Qc 29 66 65 41 J^n 60 Jtl 66 Jtr 65 73 Qac Qafy J^n Qafy 65 Jts Qafy 35 45 Qaly 39 48 Jtr Qafy Qh Jgs Qafy J^n Qldp Jtw 58 Qldp Jtsg Qat 78 ^au 66 Qldp Jtr Jtb Qac Qmsh Qh Qac 74 Qh J^n J^n 60 Jtb Qh Jtw 84 Qmt Qh 45 Qh S Qat 78 Jgs ^ag Qh 70 Jtr Jts Qmc 64 44 A Jtl J^n ^ag 54 Qac 73 Qmc L 74 49 Qlgb T Qlb 46 Qh Qldp Qaly Qldp Jtw 83 Qaly 54 58 Jtb 32 J^n Qms Qmsh Qafy 53 Jtr ^au Qh Jtsg L Qh Jtc ^ag Qlb 52 72 70 Qlgb A 65 ^au 71 50 60 ^am ^au J^n 53 Qmsh 75 K ^au ^ag Qafy Qaly 69 74 Qh 77 E Qaly 74 75 Qaly Qaly 64 ^am 60 Qms 76 65 Qlb Qlb Qms ^am ^am SH2015-68 Qafp Qlgb Qmt 49 C 65 Qafy Tld 65 I Qldp 60 47 Qac 62 60 65 45 45 T 60 Qlgb ^t 55 Y Qla ^t Qlfp Qafy 80 43 65 60 Qh Qafp ^t Qlfp Qac 80 85 S 82 ^t 55 ^t E Qafy 75 Qh 59 G Qldp ^t 47 ^t M E Qh 44 60 55 N Qlsb Qlfp 37 T Qlsb ^w 68 47 ^w Qlgb 56 ^w 52 B′ W Qh Qaf2 66 85 43 50 A 70 46 70 Qaly S Qat 70 55 85 Qh Qaly Qh 70 Pp 30 Qh Qat Qlsb 45 70 85 40 Pp A Qaly Qafy Pp 40 Qaly Qafb 72 T 50 P*w Qafy 37 57 40 Qaf2 Qat 33 50 C 40 75 Qlb 35 45 53 80 H Qh Qlsb 5 Qlgb 40 P*w 70 45 Qafp 55 Qaly Qac Qldp Qat 56 Qafy Qh 50 42 Qafy Qct Qaly 44 56 SH2015-67 60 Qmt Qafy Qmt F Tld P*w Qaly Qafy Tld Qaly Qmt Qafy A Qh Qac Qac 58 Qct U Qmt Qmt Qlf Qac Qldp Qh Qafy L Qafp 60 Qlfp Qlfp 57 T Qh Qafb Qaly Qafp Qafb P*w Qaly 55 59 69 Qldp Qafb 46 Z Qaly *rv Qh Qac O Qla Qh 35 N Qlgb *rv 65 Qaf Mdo E 2 *rv Qaf2 Qlgb 64 Qlfp 60 Qldp 35 Qac 55 *rv Qafy 53 56 *rv 60 Qac Mdo 50 Mdo Qms Qlfp Qac Mdo Qh Qms 45 T H 45 Qlf Qafy Qh 59 N D 65 R U M M O S Qms Qac Qafy Mh O U N T R A Y Md 65 T Qh 60 41 80 Qac Qldp 50 Qaf4 50 Mg Qac Mg Md 45 Qmc MDf Md Qgmbc Mh 48 _o Qac Qaf4 _t Qlfp Qafy 58 MDf Qlgb Qafy _o Qat Qh 65 Mg 50 Qafy 34 S Qac Qat MDf 47 _t SH2016-203MDf 35 _t Qlgp Qafy SH2015-41Tind 36 A 30 Qafy 45 45 35 Qlfp 54 _o MDf 40 47 34 Qgmbc 80 _t Qafy 52 43 L Qac 33 Qaf5 Qac _m Qaf Qac _o _t 5 Qaf5 64 Qh T _o Qlgp Qaf4 MDf Qms _t 60 Qlf Qat 40 Qgbc 48 59 42 Qac Qaf5 Qmt Qat L 50 40 Qgbc Qms? 55 A Qlgb 80 Qmt Qafy 60 55 Qac Zm Qafy Qlsp K Qlgp Qmt E _t Qlgb _o Qaf2 Qac Qmt Zm Qat Zm 45 Zbcs Qlf C Qlgp 49 Zbcq Qms Qat Qaf2 I 52 40 65 Qlsp T Qgbc Qaly 50 Qmt _t Qmt 55 Qgmbc Y Qg 30 34 Zbcs 50 Qmt Zbcq Zbcs Qlf Zm Qmt Qgmbc S 40 Qafy Qafy Zbcq 50 Zm Qmt E 40 Zbcq Qat 55 Zm Zbcs Zbcs G 40 Qlgp 50 Qmt Qct Zbcs 59 56 Qmt Qmt M Qla Qh 50 53 20 35 Qmt Qml? E 37 Zm 36 Qmc Qg Qlf 24 N Qlgp Zbcq Zbcq Qmc 76 T Qct Zbcq Qlgb Zbcs Qla Zbcs Qmt Qla Qaf C Qal1 1 63 Qct Qmt O Zbcs Zbcs Qaf1 Zbcq T 70 45 Zbcq Zbcq Zbcs Qlgp T Zbcq Qac Qla Qafy Zbcq Zbcs Zbcs O Zbcs Qlsp N 45 35 Qat Qlgb Qct Zbcq Qaf2 40 W 40 Zbcq Zbcs Qldp Zbcs Zbcs 52 Qaly Qla Qafy O 52 Zbcs 30 Qms 60 Qac Zbcq Qal O Zbcq Qal 2 Qldp Qafy 35 26 1 50 40 Zbcs SH2015-7 Qafy D Qaly Tsd Qlf Qldp Qmso 35 Qh Qldp 60 Qaf2 Zbcq 60 Zbcs F Qct Qlgb Qafy A Qlsp Qh 80 Qafy Zbcs U Qmsh Qh Qldp Qldp 30 Zbcs Qal1 Qaf L 2 Qldp Qafy Qh Zbcq Qms 46 T 40 Zbcq Qmt 68 Zbcq 40 75 Qal2 Qafy Zbcs Qh Qldp Qldb 80 59 Qh Qlsp Qaly 65 Zbcq Qlgp Qldp Qldb Qal Qal1 1 Qlsp Zbcq 71 Tind Qal SH2015-23 1 Qmsh Tind 36 Qaf2 40 Qaf2 Zbcs Qal Qlgp Qldb Qal2 Qldp SH2015-13 Zbcq 1 Qafp Qafy 56 Qafp Zbcq Zbcq Zbcs Qat Qc Tsd 52 41 Qal1 50 40 Qh Qldb Zbcs 70 Qct Qafy Qct SH2015-9 Qct This open-file release makes information available to the public during the review and production period necessary for a formal Ba se from U SGS Suga r House 7.5’ Qua dra n gle (1998). UGS publication. The map may be incomplete, and SCALE 1:24,000 Projection a n d da tum for ba se m a p a re U T M NAD 27 a n d GIS inconsistencies, errors, and omissions have not been resolved. 1 0.5 0 1 M ILE da ta a re U T M NAD 83. T o con form to a djoin in g geologic m a ps, While the document is in the review process, it may not conform to UGS standards; therefore, it may be premature for the geology is m a pped to the 7.5' boun da ry of older U T M NAD 27 ba sem a ps to the west a n d n ewer U T M NAD 83 ba sem a ps to an individual or group to take actions based on its contents. 1000 0 1000 2000 3000 4000 5000 6000 7000 FEET Although this product represents the work of professional the ea st; this expla in s the visible differen ce in the boun da ries of the geology a n d the ba se m a p. T he geology is a ccura tely shown scientists, the Utah Department of Natural Resources, Utah 11° 22' rela tive to cultura l a n d topogra phic fea tures on the ba se m a p. Geological Survey, makes no warranty, expressed or implied, 1 0.5 0 1 KILOM ET ER regarding its suitability for a particular use. The Utah H T H Project M a n a ger: Jon K.
Recommended publications
  • Reconnaissance of Toxic Substances in the Jordan River, Salt Lake County, Utah
    RECONNAISSANCE OF TOXIC SUBSTANCES IN THE JORDAN RIVER, SALT LAKE COUNTY, UTAH by KendalI R. Thompson U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 84-4155 Prepared In cooperation with the SALT LAKE COUNTY DIVISION OF FLOOD CONTROL AND WATER QUALITY Salt Lake City, Utah 1984 UNITED STATES DEPARTMENT OF THE INTERIOR WILLIAM P. CLARK, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director For additional nformation Copies of the report can write to: be purchased from: District Chief Open-File Services Section U.S. Geological Survey Western Distribution Branch 1016 Administration Building U.S. Geological Survey 1745 West 1700 South Box 25425, Federal Center Salt Lake City, Utah 84014 Lakewood, Colorado 80225 Telephone [(303) 234-5888] CONTENTS Page Abstract ................................................................ 1 Introduction ............................................................ 2 Hydrologic setting ................................................. 2 Previous studies ................................................... 4 Sampling sites ..................................................... 5 Methods ............................................................ 5 State stream-use classes and associated standards for toxic substances ................................................. 6 Toxic substances ........................................................ 6 General discussion of toxic substances that exceeded State standards in the Jordan River study area ................... 6 Distribution of toxic substances in
    [Show full text]
  • Salt Lake County Integrated Watershed Plan (2015)
    2015 Salt Lake County Integrated Watershed Plan Update to the 2009 Salt Lake Countywide Water Quality Stewardship Plan This page is intentionally blank. 2015 Salt Lake County Integrated Watershed Plan 2015 Salt Lake County Integrated Watershed Plan Update to the 2009 Salt Lake Countywide Water Quality Stewardship Plan Published September 2016 Prepared By: Salt Lake County Watershed Planning & Restoration 2001 South State Street, Suite N3-120 Salt Lake City, UT 84190 HDR Engineering, Inc. 2825 East Cottonwood Parkway, Suite 200 Salt Lake City, UT 84121 ACKNOWLEDGEMENTS Water quality and watershed issues are complex, multi-faceted, and at times contradictory. Establishing and maintaining effective stewardship requires cooperation between local municipal governments, stakeholder groups, and various management and regulatory agencies. It is only with continued cooperation that we will collectively improve water quality and watershed health in Salt Lake County. Our thanks go to the numerous individuals and organizations that supported and contributed to the development of this plan as critical thinkers, technical experts, and reviewers. In particular, we thank Mayor Ben McAdams and Salt Lake County Council for their continued support of environmental stewardship and integrated watershed planning. Salt Lake County Mayor Ben McAdams Administration, Flood Control Engineering, Township Services, Parks and Recreation, Salt Lake County Health Department Salt Lake County Council Jim Bradley, Arlyn Bradshaw, Max Burdick, Steve DeBry, Sam Granato, Michael
    [Show full text]
  • Jordan River Total Maximum Daily Load Water Quality Study - Phase 1
    Jordan River Total Maximum Daily Load Water Quality Study - Phase 1 Prepared for: Utah Department of Environmental Quality Division of Water Quality 195 North 1950 West Salt Lake City, Utah 84116 Carl Adams- Project Supervisor Hilary Arens- Project Manager Prepared by: Cirrus Ecological Solutions, LC 965 South 100 West, Suite 200 Logan, Utah 84321 Stantec Consulting Inc. 3995 South 700 East, Suite 300 Salt Lake City, Utah 84107 EPA APPROVAL DATE JUNE 5, 2013 i Jordan River TMDL Jordan River – 1 (UT16020204-001) Waterbody ID Jordan River – 2 (UT16020204-002) Jordan River – 3 (UT16020204-003) Parameter of Concern Dissolved Oxygen Pollutant of Concern Total Organic Matter Class 3B Protected for warm water species of game fish and aquatic life, including the necessary Impaired Beneficial Use aquatic organisms in their food chain. Loading Assessment Current Load 2,225,523 kg/yr Total Organic Matter Loading Capacity 1,373,630 kg/yr or 3,763 kg/day Total Organic Matter (38% reduction) Load capacity based on OM concentrations that result in DO model endpoint of 5.5 mg/L, Margin of Safety including 1.0 mg/L implicit MOS added to the instantaneous DO water quality standard of 4.5 mg/L. Bulk Load Allocation 684,586 kg/yr Total Organic Matter (35% reduction) Bulk Waste Load 689,044 kg/yr Total Organic Matter (41% reduction) Allocation Defined Total OM load to lower Jordan River (kg/yr) <= 1,373,630 kg/yr Targets/Endpoints Dissolved Oxygen => 4.5 mg/L Nonpoint Pollutant Utah Lake, Tributaries, Diffuse Runoff, Irrigation Return Flow, Groundwater Sources
    [Show full text]
  • Letter to the Editor
    GeoArabia, Vol. 10, No. 3, 2005 Gulf PetroLink, Bahrain LETTER TO THE EDITOR from Ghaida Al-Sahlan ([email protected]), Kuwait Oil Company, Ahmadi, Kuwait n the recent GeoArabia, Haq and Al-Qahtani (2005) updated the chronostratigraphic Arabian Plate Iframework of Sharland et al. (2001). These studies cite the paper by Yousif and Nouman (1997) to represent the Jurassic type section of Kuwait. Yousif and Nouman published the composite log for the Minagish-27 well (see Figure on page 194) and depicted the Jurassic formations and stages, side-by- side, but only in a generalized manner. In order to refine the ages for this section, I would like to share some preliminary unpublished biostratigraphic and Sr isotope data (see Table and Notes) from analyses by Varol Research (1997 unpublished report), ExxonMobil (1998 unpublished report) and Fugro-Robertson (2004 unpublished report). To convert Sr ages (Ma) to biostages, or biostages to ages, I have used the Geological Time Scale (GTS) 2004 (Gradstein et al., 2004). I thank G.W. Hughes, A. Lomando, M. Miller and O. Varol for their comments. Unit or Boundary Age and Stage Gradstein et al. (2004) Makhul (Offshore) Tithonian-Berriasian (Bio) Base Makhul (N. Kuwait) No younger than Tithonian (Bio) greater than 145.5 + 4.0 Top Hith (W. Kuwait) 150.0 (Sr) = c. Tithonian/Kimmeridgian ? 150.8 + 4.0 Upper Najmah (S. Kuwait) 155.0 (Sr) = c. Kimmeridgian/Oxfordian 155.7 + 4.0 Najmah (N. Kuwait) No older than Oxfordian (Bio) less than 161.2 + 4.0 Lower Najmah Shale (N. Kuwait) middle and late Bathonian (Bio) 166.7 to 164.7 + 4.0 Top Sargelu (S.
    [Show full text]
  • A Comparison of the Dinosaur Communities from the Middle
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 July 2018 doi:10.20944/preprints201807.0610.v1 Peer-reviewed version available at Geosciences 2018, 8, 327; doi:10.3390/geosciences8090327 1 Review 2 A comparison of the dinosaur communities from 3 the Middle Jurassic of the Cleveland (Yorkshire) 4 and Hebrides (Skye) basins, based on their ichnites 5 6 Mike Romano 1*, Neil D. L. Clark 2 and Stephen L. Brusatte 3 7 1 Independent Researcher, 14 Green Lane, Dronfield, Sheffield S18 2LZ, England, United Kingdom; 8 [email protected] 9 2 Curator of Palaeontology, The Hunterian, University of Glasgow, University Avenue, Glasgow 10 G12 8QQ, Scotland, United Kingdom; [email protected] 11 3 Chancellor's Fellow in Vertebrate Palaeontology, School of Geosciences, University of Edinburgh, 12 Grant Institute, The King's Buildings, James Hutton Road, Edinburgh EH9 3FE, Scotland, United Kingdom; 13 [email protected] 14 * Correspondence: [email protected]; Tel.: 01246 417330 15 16 Abstract: 17 Despite the Hebrides and Cleveland basins being geographically close, research has not 18 previously been carried out to determine faunal similarities and assess the possibility of links 19 between the dinosaur populations. The palaeogeography of both areas during the Middle Jurassic 20 shows that there were no elevated landmasses being eroded to produce conglomeratic material in 21 the basins at that time. The low-lying landscape and connected shorelines may have provided 22 connectivity between the two dinosaur populations. 23 The dinosaur fauna of the Hebrides and Cleveland basins has been assessed based primarily 24 on the abundant ichnites found in both areas as well as their skeletal remains.
    [Show full text]
  • Upper Bajocian– Callovian) of the Polish Jura Chain and Holy Cross Mountains (South-Central Poland)
    1661-8726/07/010153-12 Swiss j. geosci. 100 (2007) 153–164 DOI 10.1007/s00015-007-1207-3 Birkhäuser Verlag, Basel, 2007 A diverse crinoid fauna from the Middle Jurassic (Upper Bajocian– Callovian) of the Polish Jura Chain and Holy Cross Mountains (south-central Poland) MARIUSZ A. SALAMON*& MICHA¸ ZATO¡ Key words: crinoids, Middle Jurassic, Poland, palaeobiogeography, taphonomy, epibiontism ABSTRACT ZUSAMMENFASSUNG A systematic account of a diverse crinoid fauna from the Middle Jurassic Aus mitteljurassischen (Bajocian–Callovian) Sedimenten des südlichen (Upper Bajocian–Callovian) of the Polish Jura Chain and Holy Cross Moun- Zentralpolens (Krakow–Cz´stochowa Hochland und Heilig-Kreuz Gebirge) tains (south-central Poland) is presented. The description is supplemented wird eine diverse Crinoidenfauna systematisch beschrieben und stratigra- with a list of all crinoid species found hitherto in the Tatra Mountains and the phisch eingestuft. Die Beschreibung wird durch eine Zusammenstellung sämt- Pieniny Klippen Belt (Poland), which were a part of the northern margin of licher Crinoiden-Spezies ergänzt, die bislang im Tatra-Gebirge und im Pieniny the Tethys during Middle Jurassic time. Balanocrinus hessi seems to be en- Klippen-Gürtel gefunden wurden. Beide Regionen waren während des Mitt- demic and established its own population in the epicontinental sea. Other leren Jura Teil des Nordrandes der Tethys. Balanocrinus hessi bildete eigen- stalked crinoids entered from the Tethys through the East-Carpathian Gate or ständige Populationen in diesem epikontinentalen Meeresbereich und scheint from a westerly way, and constitute a typical Mediterranean fauna. Stemless endemisch gewesen zu sein. Andere gestielte Crinoiden drangen aus der forms are regarded to be unsuccessful immigrants.
    [Show full text]
  • Ammonites from Bathonian and Callovian (Middle Jurassic)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universität München: Elektronischen Publikationen 253 Zitteliana 89 Ammonites from Bathonian and Callovian (Middle Jurassic) North of Damghan, Paläontologie Bayerische EasternGeoBio- Alborz, North Iran & Geobiologie Staatssammlung Center LMU München LMU München für Paläontologie und Geologie Kazem Seyed-Emami1* & Ahmad Raoufian2 München, 01.07.2017 1School of Mining Engineering, University College of Engineering, University of Tehran, Manuscript received P.O. Box 11365-4563, Tehran, Iran 2 26.09.2016; revision Daneshvar Center, Farhangian University, Neyshapour, Iran accepted 30.10.2016 *Corresponding author; E-mail: [email protected] ISSN 0373-9627 ISBN 978-3-946705-00-0 Zitteliana 89, 253–270. Abstract The following Middle Jurassic ammonite families (subfamilies) are described from the Dalichai Formation north of Damghan (eastern Alborz), some of them for the first time: Phylloceratidae, Lytoceratidae, Oppeliidae (Hecticoceratinae), Stephanoceratidae (Cadomitinae), Tulitidae and Reineckeiidae. The fauna is typically Northwest-Tethyan and closely related to Central Europe (Subboreal – Submediterra- nean Provinces). Key words: Ammonites, Dalichai Formation, Middle Jurassic, Alborz, Iran Zusammenfassung Aus der Dalichai Formation nördlich von Damghan (Ostalborz) werden einige mitteljurassische Ammoniten, teils zum ersten Mal, beschrieben. Folgende Familien und Unterfamilien sind vertreten: Phylloceratidae, Lytoceratidae, Oppeliidae (Hecticoceratinae), Steph- anoceratidae (Cadomitinae), Tulitidae und Reineckeiidae. Die Fauna ist typisch für die Nordwest-Tethys und zeigt enge Beziehungen zu Zentraleuropa (Subboreale und Submediterrane Faunenprovinz). Schlüsselwörter: Ammoniten, Dalichai Formation, Mittlerer Jura, Alborz, Iran Introduction the frame of a MSc. thesis. For the present study, a new section nearby was chosen and collections The present study is a continuation of a larger re- were made by A.
    [Show full text]
  • Pliensbachian Nannofossils from Kachchh: Implications on the Earliest Jurassic Transgressive Event on the Western Indian Margin
    53 he A Rei Series A/ Zitteliana An International Journal of Palaeontology and Geobiology Series A /Reihe A Mitteilungen der Bayerischen Staatssammlung für Paläontologie und Geologie 53 An International Journal of Palaeontology and Geobiology München 2013 Zitteliana Zitteliana A 53 (2013) 105 Pliensbachian nannofossils from Kachchh: Implications on the earliest Jurassic transgressive event on the western Indian margin Jyotsana Rai1 & Sreepat Jain2* Zitteliana A 53, 105 – 120 1Birbal Sahni Institute of Palaeobotany, 53 University Road, 226007, Lucknow, India München, 31.12.2013 2DG–2, Flat no. 52D, SFS Flats, Vikas Puri, New Delhi, 110018, India Manuscript received *Author for correspondence and reprint requests: E-mail: [email protected] 05.04.2013; revision accepted 16.11.2013 ISSN 1612 - 412X Abstract The oldest rocks within the Kachchh Basin belong to the sediments of Kaladongar Formation exposed in Kuar Bet, Pachchham Island (western India). The Formation’s lowest unit, the Dingi Hill Member has yielded a moderately diversified calcareous nannofossil assembla- ge that includes the marker species of Lotharingius contractus and Triscutum sullivanii of late Early Aalenian age associated with reworked species of Biscutum finchii, Bussonius prinsii, Crucirhabdus primulus, Crepidolithus pliensbachensis, Discorhabdus criotus and D. striatus suggesting an age spanning NJ4a to NJ7 Zones (Early Pliensbachian, Tethyan ammonite Jamesoni Zone to Middle Toarcian, Variabilis Zone). Additionally, samples from four other Kachchh domal localities (Kachchh Mainland: Jara, Jumara and Habo and the Island belt, Waagad) have also yielded reworked Pliensbachian-Toarcian age (~183 Ma) nannotaxa viz. Crepidolithus granulatus, Diductius constans, Mazaganella protensa, Mitrolithus elegans, Parhabdolithus liasicus, Similiscutum orbiculus, and Triscutum tiziense. This nannotaxa age is much earlier than the ammonite-based Earliest Bajocian date (~171.6 Ma) based on the presence of ammonite Calliphylloceras hetero- phylloides (Oppel).
    [Show full text]
  • GEOLOGIC TIME SCALE V
    GSA GEOLOGIC TIME SCALE v. 4.0 CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST HIST. ANOM. (Ma) ANOM. CHRON. CHRO HOLOCENE 1 C1 QUATER- 0.01 30 C30 66.0 541 CALABRIAN NARY PLEISTOCENE* 1.8 31 C31 MAASTRICHTIAN 252 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 Lopin- 254 32 C32 72.1 635 2A C2A PIACENZIAN WUCHIAPINGIAN PLIOCENE 3.6 gian 33 260 260 3 ZANCLEAN CAPITANIAN NEOPRO- 5 C3 CAMPANIAN Guada- 265 750 CRYOGENIAN 5.3 80 C33 WORDIAN TEROZOIC 3A MESSINIAN LATE lupian 269 C3A 83.6 ROADIAN 272 850 7.2 SANTONIAN 4 KUNGURIAN C4 86.3 279 TONIAN CONIACIAN 280 4A Cisura- C4A TORTONIAN 90 89.8 1000 1000 PERMIAN ARTINSKIAN 10 5 TURONIAN lian C5 93.9 290 SAKMARIAN STENIAN 11.6 CENOMANIAN 296 SERRAVALLIAN 34 C34 ASSELIAN 299 5A 100 100 300 GZHELIAN 1200 C5A 13.8 LATE 304 KASIMOVIAN 307 1250 MESOPRO- 15 LANGHIAN ECTASIAN 5B C5B ALBIAN MIDDLE MOSCOVIAN 16.0 TEROZOIC 5C C5C 110 VANIAN 315 PENNSYL- 1400 EARLY 5D C5D MIOCENE 113 320 BASHKIRIAN 323 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 1500 CALYMMIAN 6 C6 APTIAN LATE 20 120 331 6A C6A 20.4 EARLY 1600 M0r 126 6B C6B AQUITANIAN M1 340 MIDDLE VISEAN MISSIS- M3 BARREMIAN SIPPIAN STATHERIAN C6C 23.0 6C 130 M5 CRETACEOUS 131 347 1750 HAUTERIVIAN 7 C7 CARBONIFEROUS EARLY TOURNAISIAN 1800 M10 134 25 7A C7A 359 8 C8 CHATTIAN VALANGINIAN M12 360 140 M14 139 FAMENNIAN OROSIRIAN 9 C9 M16 28.1 M18 BERRIASIAN 2000 PROTEROZOIC 10 C10 LATE
    [Show full text]
  • The Jurassic (Pliensbachian to Oxfordian) Palynology of the Algarve Basin and the Carrapateira Outlier, Southern Portugal
    1 The Jurassic (Pliensbachian to Kimmeridgian) palynology of the Algarve Basin and the 2 Carrapateira outlier, southern Portugal 3 4 Marisa E.N. Borges a,b, James B. Riding c*, Paulo Fernandes a, Zélia Pereira b 5 6 a CIMA - Centro de Investigação Marinha e Ambiental. Universidade do Algarve, 7 Campus de Gambelas, 8005-139 Faro, Portugal 8 b LNEG-LGM, Rua da Amieira, 4465-965 S. Mamede Infesta, Portugal 9 c British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham NG12 10 5GG, UK 11 12 * Corresponding author. Tel.: +44(0)115 9363447. 13 E-mail addresses: [email protected] (M.E.N. Borges), [email protected] (J.B. 14 Riding), [email protected] (P. Fernandes), [email protected] (Z. Pereira). 15 16 ABSTRACT 17 The palynology of the Jurassic (Upper Pliensbachian to Lower Kimmeridgian) 18 fill of the Algarve Basin and the Carrapateira outlier, southern Portugal was 19 investigated. Samples were collected from Armação Nova Bay, Mareta Beach, Cilheta 20 Beach and the Carrapateira outlier. At Armação Nova Bay the Upper Pliensbachian- 21 Lower Toarcian succession proved barren, or yielded sparse, non age-diagnostic 22 palynomorphs. Dinoflagellate cysts are confined to the Upper Bajocian to Upper 23 Callovian sedimentary rocks exposed at Mareta and Cilheta beaches and the Lower 24 Kimmeridgian strata of the Carrapateira outlier. At Mareta Beach, the Upper Bajocian, 25 Bathonian and Callovian produced relatively low to moderate diversity dinoflagellate 26 cyst assemblages. Several key bioevents confirm the Bathonian and Callovian ages of 27 the succession; no age-significant Late Bajocian bioevents were noted.
    [Show full text]
  • Ground Water in Utah's Densely Populated Wasatch Front Area the Challenge and the Choices
    Ground Water in Utah's Densely Populated Wasatch Front Area the Challenge and the Choices United States Geological Survey Water-Supply Paper 2232 Ground Water in Utah's Densely Populated Wasatch Front Area the Challenge and the Choices By DON PRICE U.S. GEOLOGICAL SURVEY WATER-SUPPLY PAPER 2232 UNITED STATES DEPARTMENT OF THE INTERIOR DONALD PAUL MODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1985 For sale by the Branch of Distribution U.S. Geological Survey 604 South Pickett Street Alexandria, VA 22304 Library of Congress Cataloging in Publication Data Price, Don, 1929- Ground water in Utah's densely populated Wasatch Front area. (U.S. Geological Survey water-supply paper ; 2232) viii, 71 p. Bibliography: p. 70-71 Supt. of Docs. No.: I 19.13:2232 1. Water, Underground Utah. 2. Water, Underground Wasatch Range (Utah and Idaho) I. Title. II. Series. GB1025.U8P74 1985 553.7'9'097922 83-600281 PREFACE TIME WAS Time was when just the Red Man roamed this lonely land, Hunted its snowcapped mountains, its sun-baked desert sand; Time was when the White Man entered upon the scene, Tilled the fertile soil, turned the valleys green. Yes, he settled this lonely region, with the precious water he found In the sparkling mountain streams and hidden in the ground; He built his homes and cities; and temples toward the sun; But without the precious water, his work might not be done. .**- ste'iA CONTENTS Page Preface ..................................................... Ill Abstract ................................................... 1 Significance Ground water in perspective ................................ 1 The Wasatch Front area Utah's urban corridor ....................................
    [Show full text]
  • Utah Forest Insect and Disease Conditons Report 2002-2004
    Utah State University DigitalCommons@USU Quinney Natural Resources Research Library, The Bark Beetles, Fuels, and Fire Bibliography S.J. and Jessie E. 2005 Utah Forest Insect and Disease Conditons Report 2002-2004 K Matthews V DeBlander L Pederson P Mocettini D Halsey Follow this and additional works at: https://digitalcommons.usu.edu/barkbeetles Part of the Ecology and Evolutionary Biology Commons, Entomology Commons, Forest Biology Commons, Forest Management Commons, and the Wood Science and Pulp, Paper Technology Commons Recommended Citation Matthews, K., DeBlander, V., Pederson, L., Mocettini, P. and Halsey, D. (2005). Utah forest insect and disease conditons report 2002-2004. USDA Forest Service, State and Private Forestry, Forest Health Protection, Intermountain Region, R4-OFO-TR-05012, 58 pp. This Full Issue is brought to you for free and open access by the Quinney Natural Resources Research Library, S.J. and Jessie E. at DigitalCommons@USU. It has been accepted for inclusion in The Bark Beetles, Fuels, and Fire Bibliography by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. United States Department of Agriculture Forest Service Utah State and Private Forestry Forest Health Forest Insect and Disease Protection Intermountain Region Conditions Report R4-OFO-TR-05-12 2002 - 2004 State of Utah Department of Natural Resources Division of Forestry, Fire and State Lands Butterfly Lake, Mirror Lake Highway Darren Blackford, USFS. FOREST HEALTH SPECIALISTS Forest Health Protection
    [Show full text]