Supplementary Figure S1

Total Page:16

File Type:pdf, Size:1020Kb

Supplementary Figure S1 Supplementary FigureS1 G E C A Cancer Cell Fraction (%) Cancer Cell Fraction (%) Cancer Cell Fraction (%) 100% 100% 100% 20% 40% 60% 80% Cancer Cell Fraction (%) 20% 40% 60% 80% 20% 40% 60% 80% 100% 0% 0% 0% 20% 40% 60% 80% 0% 1DCIS-A 6ILC 8ILC 3DCIS 8LCIS-A 1DCIS-B 6LCIS-A 1DCIS−A 1DCIS−B 1LCIS−A 1LCIS−B 3IDC Cluster: 3DCIS 3LCIS (0.67) (0.68) 3IDC (0) (0) 8LCIS-B 1LCIS-A 6LCIS−A 6LCIS−B 8LCIS−A 8LCIS−B 6LCIS-B 4 SPAST (p.E602Q) Cluster: 4 4 TRIM63 (p.P120T) (0.69) (0.78) 6ILC 4 TULP1 (p.A114V) 3LCIS (0) 8ILC 4 CYB5R3 (p.P319R) Cluster: 5 5 TBX3 (p.R436Tfs*3) 5 DYSF (p.F205Sfs*35) Cluster: 1LCIS-B 5 DYSF (p.A214Lfs*45) (0.69) 2 ABL1 (p.P810L) (0) (0) (0.57) (0.59) 2 ANP32B (p.G237S) 2 ACKR2 (p.L85V) (0) 2 AHR (p.Q600E) 2 ANKRD34B (p.T302A) 2 C11orf1 (p.Y53C) 2 ART1 (p.R179Q) 4 ZNF484 (p.T708I) 2 ATRNL1 (p.I390V) 2 CBFB (p.X55_splice) 2 B4GALT2 (p.V207I) 1 ABCA3 (p.C1337Y) 4 4 AKT1 (p.L52R) 2 BBS9 (p.Q621*) 2 BBX (p.N563I) 2 BLACE (p.E153K) 1 ACAN (p.V1839L) 4 VPS13A (p.A2948T) 2 2 COPG1 (p.I92V) 2 BLK (p.A71T) 1 CDH1 (p.X571_splice) 4 ZNF426 (p.I297S) 2 C11orf35 (p.C345S) 2 LDB3 (p.R31Q) 2 C11orf35 (p.G207R) 1 EIF4E2 (p.R103C) 2 C2orf62 (p.A382V) 1 ATRX (p.T2295I) 2 C2orf62 (p.S384W) 2 PPAP2B (p.S254N) 2 C3orf35 (p.M1?) 1 FOXK2 (p.H308R) 1 COX8A (p.H61Y) 2 CA2 (p.Q74*) 2 SPEN (p.P677Lfs*132) 2 CCDC154 (p.I612M) 1 HDAC6 (p.T979I) 1 DNAH9 (p.R1533W) 2 CCDC64B (p.E240Q) 2 CEP290 (p.I2134T) 1 ITGAV (p.R152L) 2 CFHR5 (p.V379L) 1 G3BP2 (p.E279K) 2 WIZ (p.R100W) 2 CLIC6 (p.S269G) 1 KRTAP19−4 (p.G40R) 2 DAXX (p.A486G) 1 1 OGDHL (p.V304A) 4 TCF7L2 (p.G308Sfs*16) 2 DISC1 (p.E751Q) 1 LAMA5 (p.R2226Pfs*3) 2 DNAH12 (p.L2346F) 1 PDE10A (p.M460T) 2 DUPD1 (p.E25K) 1 4 GATA3 (p.R366*) 1 LMO7 (p.G1160E) 2 EPC2 (p.R510T) 1 PRR11 (p.E23Rfs*46) 2 ERAP2 (p.R751C) 1 LTBP2 (p.K392T) 4 GLUD2 (p.R76H) 2 FAM161B (p.P688S) 2 FAM47A (p.E507Q) 1 SERPINA3 (p.M290L) 7 2 FNDC3A (p.E360K) 1 RBM10 (p.S622L) 4 BCL11B (p.T435I) 1DCIS−B 2 FUT7 (p.A270T) 1LCIS−B 1 SERPINA3 (p.M290K) 4 2 GATA1 (p.R113H) 1 SLC17A6 (p.E339K) 1LCIS−A 2 GPIHBP1 (p.S144F) 1 SYNM (p.R1092C) 4 FAM149A (p.L332I) 2 GSTO2 (p.M29I) 5 1 SOGA2 (p.N219S) 2 HIST1H4L (p.G10D) 1 TNFRSF8 (p.Q202K) 4 FAM174A (p.A31V) 2 HMCN1 (p.V3540I) 1 WDR3 (p.P804H) 2 HP1BP3 (p.I516L) 2 ICT1 (p.R8L) 1 YY1AP1 (p.G107E) 1 WWP2 (p.N592K) 4 KLHL26 (p.S179L) 7 2 IGLV1−50 (p.N74S) 1 2 KIFC1 (p.R219Q) D 3 CDH1 (p.P127Afs*41) 6 7 2 KIRREL3 (p.I190V) C 1 ZYX (p.Q233L) 2 KRT75 (p.R527Q) 4 MACF1 (p.X4015_splice) L I C 3 ANKRD11 (p.R840Q) S 2 LCE2B (p.I51S) 4 C1orf173 (p.E749K) 2 I 6ILC 2 LEMD3 (p.S164L) 1 S 4 SAG (p.R179C) B 6 2 LRRIQ1 (p.N1702Ifs*20) 3 ARHGAP11A (p.V410I) 4 C2CD5 (p.D67V) B 2 MALRD1 (p.D1091G) L 2 MASP2 (p.D120G) 3 CABIN1 (p.D1749N) 3 BTRC (p.L389Ffs*5) C 4 FRMD3 (p.G200W) 2 MATN4 (p.P508L) I p.X55_splice S 2 MESP2 (p.H241Y) 4 4 HSCB (p.M157T) 3 CASQ1 (p.M87T) 2 MSLNL (p.E702Q) 3 GK2 (p.N92S) A 2 MUC7 (p.L249P) 4 NPFFR2 (p.P214S) 1 3 CEP68 (p.F367Y) 2 MUTYH (p.R171W) 3 3 MAPK8IP2 (p.G227S) 2 NEB (p.E1469D) I 3 DCPS (p.R315H) 2 NID1 (p.R757H) 4 PGBD2 (p.E53*) L 1 2 NOS3 (p.E463D) C 5 3 PEF1 (p.L179V) 2 NRXN3 (p.S184L) 3 DNAJC30 (p.P14L) 4 WEE2 (p.D48V) 6LCIS−B 2 OR5AR1 (p.I225V) 3 SPEN (p.L2247Cfs*106) 2 OR5AS1 (p.D191N) 4 ZNF229 (p.T211S) 3 HLA−DMA (p.G181A) 2 OR6T1 (p.I36T) 3 2 PCDHGA10 (p.E257Q) 2 BCL11A (p.P480L) 3 OR10J3 (p.V205I) 3 TFEC (p.P10S) 2 PCDHGA8 (p.E316Q) 2 PHKB (p.M185I) 2 DNAH17 (p.E2368K) 3 OR52J3 (p.R224C) 2 PIK3C2G (p.A1360V) 3 VKORC1L1 (p.R8S) 2 PKP4 (p.D604G) 3 2 2 PTCH1 (p.T1195S) 2 GAS7 (p.A323V) 3 PGM2 (p.V102M) 3LCIS 2 2 3 AKR1C4 (p.G298V) 2 PTPRC (p.I296L) 8LCIS−B 2 MID1 (p.Y542F) 2 RASGRF1 (p.R478C) 8LCIS−A 3 SCLT1 (p.D104E) 3IDC 2 RNLS (p.M308I) 2 2 RPRM (p.E43K) 2 PYDC2 (p.D48E) 1 3 ATP8A1 (p.I306V) 3 SLC9A5 (p.K642M) 2 SBK1 (p.L32V) 2 5 L 2 SH3RF3 (p.A35T) 2 RREB1 (p.E1498G) C 3 NAP1L5 (p.A22V) 2 SH3TC1 (p.L1016V) L 3 SPEG (p.R1340Q) C 1DCIS−A I 2 SMG1 (p.R1418T) S I 3 ARHGEF12 (p.R705H) 3DCIS 2 SNED1 (p.R129Q) S 6LCIS−A 3 TCP11L2 (p.D261N) 3 SENP6 (p.S606R) 2 SNRNP70 (p.R356Q) 1 B 8 8ILC 3 C11orf35 (p.R141W) NCOR1 2 SORL1 (p.E270K) 3 TMEM108 (p.A255V) 2 SPIC (p.K109R) 1 L 1 1 CBFB (p.X133_splice) 9 2 SPTAN1 (p.D1676H) 3 CASD1 (p.F17L) C 0 1q3 TMEM42gain (p.M96V) 2 ST6GAL2 (p.F30Y) I L 8 S 2 TAF1C (p.G635S) GATA3,HMCN1 C I 3 CXorf66 (p.N244D) 1 CDH1 (p.Y413Ifs*6) D L I A 3 TRBV4−1 (p.Y54*) 2 TBX22 (p.N368H) S C 3 DNAH9 (p.T3487M) C 2 TELO2 (p.A11T) 1q gain, 16q loss I TBX3 1 CEBPA (p.G255E) B S 2 TELO2 (p.A11D) 7 3 TTN (p.P15979L) 3 2 TENM1 (p.G344S) A 3 DTHD1 (p.E725Q) 2 TLX1 (p.G31D) 3 ZNF541 (p.G296W) 1 ELP2 (p.Q500Rfs*7) D 1q gain 2 TNXB (p.T1916A) 3 DYTN (p.F565S) C 2 TRMT10B (p.G186E) I 3 ZNF561 (p.K22T) 1 GATAD2A (p.K367R) S 2 USP29 (p.E400Q) CDH1 p.L731Gfs*38 , 3 EFTUD2 (p.R730H) 2 ZBTB7C (p.V353G) A 2 AP3B1 (p.S855C) 2 ZIM3 (p.K438*) NCOR1 ,CBFB 3 FPR3 (p.C126F) 2 ZNF182 (p.H592Y) 1 1 GNAT2 (p.R105Q) 1 5 2 ATP2B2 (p.D518N) 6 2 ZNF467 (p.E567K) 1q gain, 16q loss 3 COG4 (p.N345T) 3 GUSB (p.A380T) I 3 D L 1q gain 1 GRSF1 (p.I341S) 3 HELZ2 (p.V1034M) C 2 B3GALNT1 (p.G109V) 3 HRH2 (p.A209T) C 3 MYH1 (p.V140L) 3 ZCCHC5 (p.R19W) I 1 HMGCS2 (p.R188H) 3 KIAA1462 (p.A1045V) TBX3 2 CBFB (p.X55_splice) S 3 WFIKKN2 (p.K107R) 3 8 CATSPER1 (p.T628M) 1 3 LSAMP (p.P131Q) 2 CDH1 (p.G690fs) 1 HYAL2 (p.D133N) 8 DFNA5 (p.G59D) 1q gain 8 DNAH8 (p.R1977K) 2 DHX15 (p.E208*) 8 GHRHR (p.I387F) 3 MUC16 (p.S13209N) 1 IGDCC3 (p.M348T) 8 GPR143 (p.C316Y) Cancer CellFraction(%) Cancer CellFraction(%) Cancer CellFraction(%) Cancer CellFraction(%) 8 HS3ST6 (p.K239R) 3 NBPF20 (p.F69C) 2 DVL3 (p.P22R) 8 8 KRT8 (p.S59A) ,GATA3,HMCN1 1 INTS2 (p.Q123H) 8 LMO4 (p.C50G) 80% <CCF100% 60% <CCF<=80% 40% <CCF<=60% 20% <CCF<=40% 10% <CCF<=20% 0% <CCF<=10% CCF =0% 80% <CCF100% 60% <CCF<=80% 40% <CCF<=60% 20% <CCF<=40% 10% <CCF<=20% 0% <CCF<=10% CCF =0% 80% <CCF100% 60% <CCF<=80% 40% <CCF<=60% 20% <CCF<=40% 10% <CCF<=20% 0% <CCF<=10% CCF =0% 3 NUP214 (p.L59F) 2 IDH3G (p.P67S) 80% <CCF100% 60% <CCF<=80% 40% <CCF<=60% 20% <CCF<=40% 10% <CCF<=20% 0% <CCF<=10% CCF =0% 8 SZT2 (p.F1400L) 1q gain, 16q loss 8 TEX13A (p.P150T) 2 1 KDM6A (p.R658*) 3 OR2L2 (p.T105I) 2 MPRIP (p.R67Q) 8 TTN (p.V27187I) 8 EPHB1 (p.I330T) CDH1 p.L731Gfs*38 , ,CBFB 3 PABPC3 (p.F335Lfs*19) 2 MVD (p.G365D) 1 MADD (p.W250C) 8 TSPYL2 (p.R13H) 1 C7orf57 (p.R231*) 1q gain, 16q loss 3 RGMB (p.D103Y) 2 QARS (p.L252P) 1 CDK3 (p.D38N) 1 MRGPRF (p.G63R) 1 DDX11 (p.S561F) 1 FETUB (p.M106I) 3 SPATS2 (p.Y437S) 2 RABGAP1L (p.A306T) 1 FIZ1 (p.S117F) 1 OSGIN1 (p.A11T) 1 1 FREM2 (p.V1876I) 3 TOPBP1 (p.C76Y) 2 SPDEF (p.P321L) 1 HLA−DRB5 (p.R77Q) 1 OVCH1 (p.S688R) 1 LPCAT4 (p.L213I) 3 ZDBF2 (p.R291C) 2 ST5 (p.I889V) 1 NCOR1 (p.L57Afs*23) 1 PRSS1 (p.N246D) 1 TNNT3 (p.R63H) 1 PRSS3 (p.R158Sfs*11) 2 ZNF281 (p.E640G) 1 PRSS3 (p.T160Sfs*4) H F D Cancer Cell Fraction (%) B 100% Cancer Cell Fraction (%) Cancer Cell Fraction (%) 20% 40% 60% 80% 0% 100% 100% Cancer Cell Fraction (%) 20% 40% 60% 80% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 0% 0% 5ILC 9IDC 7DCIS 2ILC CDH1,ELF3, ARID1A,ASXL1,NCOR1,ZNF292 TCF7L2 ,GATA3,CBFB RUNX1p.X118_splice SPENp.P677Lfs*132 1q gain, 16q loss 9LCIS-A p.I1220L p.Q264* 7IDC BTRC, GK2,SPEN p.L2247Cfs*106 1q gain, 16q loss KDM6A ,RUNX1 APC,HMCN1, KDM6A p.W1219C 2LCIS-A 5LCIS 7LCIS−A 7LCIS−B 5ILC 5LCIS 2LCIS−A 2LCIS−B 1q gain 16q loss ,CBFB p.X133_splice7DCIS Cluster: 7ILC 7IDC CDH1,CEBPA,KDM6A 7ILC (0.36) (0.59) 9LCIS-B Cluster: 2ILC ARID1A,ASXL1,NCOR1,ZNF292 Cluster: (0.65) (0.55) (0.69) 2LCIS-B (0.69) (0.65) CDH1,ELF3, ,RUNX1p.X118_splice (0.65) 2 AQPEP (p.E55K) (0.6) p.W1219C p.I1220L p.Q264* 7LCIS-A 1q gain, 16q loss APC,HMCN1, KDM6A ,KDM6A ,RUNX1 1q gain,16q loss ,CBFB p.X133_splice ,CDH1,CEBPA,KDM6A (0) 9LCIS−B 2 BAZ2B (p.Q499*) 9LCIS−A 2 C1orf177 (p.L376Yfs*3) 1 AC002472.13 (p.D116G) 2 CCDC109B (p.Q181*) 9IDC 2 CCDC84 (p.K146N) BTRC, GK2,SPEN p.L2247Cfs*106 2 CDH1 (p.X130_splice) 1 CDH1 (p.L582Cfs*2) TCF7L2 ,GATA3,CBFBp.X55_splice ,SPENp.P677Lfs*132 2 CHADL (p.G539R) 1 CBFB (p.Q67H) Cluster: 2 CHD1 (p.L1358P) 1 GPR39 (p.I15V) 2 CPA3 (p.X328_splice) 7LCIS-B 1q gain, 16q loss 1 2 DDX31 (p.R20W) (0.57) 1 KIAA1429 (p.D395G) 2 ELF3 (p.S133A) 1 CDH1 (p.L731Gfs*38) (0) (0) 2 ERCC2 (p.N238S) 1 MYH9 (p.E929dup) 2 FAM154B (p.P265S) 2 FAT2 (p.V3519I) 1 CENPJ (p.V555I) 1 SOX10 (p.S135G) 2 FBXO11 (p.D908N) 2 FRMPD1 (p.E744K) 1 ZNF473 (p.D76N) 2 GDE1 (p.S52F) 1 DFNA5 (p.S474C) 3 FSCB (p.A181V) 2 GRB10 (p.Q411*) 1 ZNF575 (p.A142T) 2 INSM1 (p.G148R) 2 ITGA10 (p.A633V) 2 AC138647.1 (p.R141C) 2 KIF21B (p.K545R) 1 KY (p.G51E) 2 3 CDH1 (p.X178_splice) 2 KRTAP4−8 (p.C95S) 3 2 ADAMTSL4 (p.L905P) 2 MGST2 (p.S15L) 2 MOXD1 (p.D105Y) 1 MAGEA11 (p.K240*) 2 ARHGAP22 (p.R57C) 2 MROH2B (p.E1109K) 3 CYP4F3 (p.R390W) 2 PGAP1 (p.E461Q) 1 2 CBFB (p.Q134*) 2 PGAP1 (p.E44K) 1 PIK3CA (p.H1047R) 2 PIK3CA (p.E545K) 2 EMILIN2 (p.G934R) 2 PPP6R3 (p.G97E) 3 TCEAL2 (p.R128H) 2 RABEP2 (p.S265L) 1 PLCE1 (p.P698S) 2 GATA3 (p.X308_splice) 2 RIBC2 (p.R132W) 2 2 RNMTL1 (p.Q74L) 2 KLHL36 (p.Q84*) 2 RUNX1 (p.X118_splice) 1 SLC44A4 (p.X377_splice) 1 ADI1 (p.X81_splice) 2 SPINT1 (p.D49N) 2 LDB3 (p.T527N) 2 SYTL4 (p.E286K) 2 TMEM156 (p.I195T) 2 LYN (p.L93Wfs*14) 2 TSPYL2 (p.E93K) 1 TOR1AIP2 (p.V418G) 1 C14orf1 (p.N73S) 2 TXNDC11 (p.M213R) C D 2 NINL (p.A859S) P 2 VPS13D (p.L4009F) H I K 2 ZFYVE26 (p.S1768P) 1 CALCRL (p.X390_splice) 1 P 2 PIK3CA (p.H1047R) 3 2 ZNF341 (p.D25Y) ,CBFB,GATA3,LYN C I P APC 3 ADNP (p.E883Q) p.Q23* A 1 C3orf67 (p.D536E) K I 1q gain,16q loss p.E545K K 3 ANKLE2 (p.S181Rfs*13) 2 TENM4 (p.D1313N) 3 1 ITPRIPL1 (p.V158I) 3 C 3 ARL5C (p.V19L) C 4 FDX1L (p.G87E) A 3 ASXL1 (p.E670Gfs*7) A 1 GDF3 (p.E323Q) ATRX p.E545K 3 ATP10B (p.V1277I) 2 GFM2 (p.D131Y) , C p.H1047R
Recommended publications
  • Genetic Variation Across the Human Olfactory Receptor Repertoire Alters Odor Perception
    bioRxiv preprint doi: https://doi.org/10.1101/212431; this version posted November 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Genetic variation across the human olfactory receptor repertoire alters odor perception Casey Trimmer1,*, Andreas Keller2, Nicolle R. Murphy1, Lindsey L. Snyder1, Jason R. Willer3, Maira Nagai4,5, Nicholas Katsanis3, Leslie B. Vosshall2,6,7, Hiroaki Matsunami4,8, and Joel D. Mainland1,9 1Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA 2Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, New York, USA 3Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA 4Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA 5Department of Biochemistry, University of Sao Paulo, Sao Paulo, Brazil 6Howard Hughes Medical Institute, New York, New York, USA 7Kavli Neural Systems Institute, New York, New York, USA 8Department of Neurobiology and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, North Carolina, USA 9Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA *[email protected] ABSTRACT The human olfactory receptor repertoire is characterized by an abundance of genetic variation that affects receptor response, but the perceptual effects of this variation are unclear. To address this issue, we sequenced the OR repertoire in 332 individuals and examined the relationship between genetic variation and 276 olfactory phenotypes, including the perceived intensity and pleasantness of 68 odorants at two concentrations, detection thresholds of three odorants, and general olfactory acuity.
    [Show full text]
  • Atlas Antibodies in Breast Cancer Research Table of Contents
    ATLAS ANTIBODIES IN BREAST CANCER RESEARCH TABLE OF CONTENTS The Human Protein Atlas, Triple A Polyclonals and PrecisA Monoclonals (4-5) Clinical markers (6) Antibodies used in breast cancer research (7-13) Antibodies against MammaPrint and other gene expression test proteins (14-16) Antibodies identified in the Human Protein Atlas (17-14) Finding cancer biomarkers, as exemplified by RBM3, granulin and anillin (19-22) Co-Development program (23) Contact (24) Page 2 (24) Page 3 (24) The Human Protein Atlas: a map of the Human Proteome The Human Protein Atlas (HPA) is a The Human Protein Atlas consortium cell types. All the IHC images for Swedish-based program initiated in is mainly funded by the Knut and Alice the normal tissue have undergone 2003 with the aim to map all the human Wallenberg Foundation. pathology-based annotation of proteins in cells, tissues and organs expression levels. using integration of various omics The Human Protein Atlas consists of technologies, including antibody- six separate parts, each focusing on References based imaging, mass spectrometry- a particular aspect of the genome- 1. Sjöstedt E, et al. (2020) An atlas of the based proteomics, transcriptomics wide analysis of the human proteins: protein-coding genes in the human, pig, and and systems biology. mouse brain. Science 367(6482) 2. Thul PJ, et al. (2017) A subcellular map of • The Tissue Atlas shows the the human proteome. Science. 356(6340): All the data in the knowledge resource distribution of proteins across all eaal3321 is open access to allow scientists both major tissues and organs in the 3.
    [Show full text]
  • NIH Public Access Author Manuscript Psychiatry Res
    NIH Public Access Author Manuscript Psychiatry Res. Author manuscript; available in PMC 2014 November 30. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Psychiatry Res. 2013 November 30; 210(1): 287–293. doi:10.1016/j.psychres.2013.05.026. Assessment of gene expression in peripheral blood using RNAseq before and after weight restoration in anorexia nervosa Yunjung Kima,1, Sara Elizabeth Traceb,1, James Joseph Crowleya, Kimberly Ann Brownleyb, Robert Mark Hamerb,c, David Stephen Pisetskyd,e,f, Patrick Francis Sullivana,b, and Cynthia Marie Bulikb,g,* aDepartment of Genetics, University of North Carolina at Chapel Hill, NC, USA bDepartment of Psychiatry, University of North Carolina, Chapel Hill, NC, USA cDepartment of Biostatistics, University of North Carolina, Chapel Hill, NC, USA dDepartment of Medicine, Duke University, Durham, NC, USA eDepartment of Immunology, Duke University, Durham, NC, USA fMedical Research Service, Durham Veterans Administration Medical Center, Durham, NC, USA gDepartment of Nutrition, University of North Carolina, Chapel Hill, NC, USA Abstract We examined gene expression in the blood of six females with anorexia nervosa (AN) before and after weight restoration using RNAseq. AN cases (aged 19-39) completed clinical assessments and had blood drawn for RNA at hospital admission (T1, < ~75% ideal body weight, IBW) and again at discharge (T2, ≥ ~85% IBW). To examine the relationship between weight restoration and differential gene expression, normalized gene expression levels were analyzed using a paired design. We found 564 genes whose expression was nominally significantly different following weight restoration (p < 0.01, 231 increased and 333 decreased).
    [Show full text]
  • Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
    Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A.
    [Show full text]
  • European Patent Office of Opposition to That Patent, in Accordance with the Implementing Regulations
    (19) TZZ Z_T (11) EP 2 884 280 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: G01N 33/566 (2006.01) 09.05.2018 Bulletin 2018/19 (21) Application number: 13197310.9 (22) Date of filing: 15.12.2013 (54) Method for evaluating the scent performance of perfumes and perfume mixtures Verfahren zur Bewertung des Duftverhaltens von Duftstoffen und Duftstoffmischungen Procédé d’evaluation de senteur performance du parfums et mixtures de parfums (84) Designated Contracting States: (56) References cited: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB WO-A2-03/091388 GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR • BAGHAEI KAVEH A: "Deorphanization of human olfactory receptors by luciferase and Ca-imaging (43) Date of publication of application: methods.",METHODS IN MOLECULAR BIOLOGY 17.06.2015 Bulletin 2015/25 (CLIFTON, N.J.) 2013, vol. 1003, 19 June 2013 (2013-06-19), pages229-238, XP008168583, ISSN: (73) Proprietor: Symrise AG 1940-6029 37603 Holzminden (DE) • KAVEH BAGHAEI ET AL: "Olfactory receptors coded by segregating pseudo genes and (72) Inventors: odorants with known specific anosmia.", 33RD • Hatt, Hanns ANNUAL MEETING OF THE ASSOCIATION FOR 44789 Bochum (DE) CHEMORECEPTION, 1 April 2011 (2011-04-01), • Gisselmann, Günter XP055111507, 58456 Witten (DE) • TOUHARA ET AL: "Deorphanizing vertebrate • Ashtibaghaei, Kaveh olfactory receptors: Recent advances in 44801 Bochum (DE) odorant-response assays", NEUROCHEMISTRY • Panten, Johannes INTERNATIONAL, PERGAMON PRESS, 37671 Höxter (DE) OXFORD, GB, vol.
    [Show full text]
  • Multiple Loci Modulate Opioid Therapy Response for Cancer Pain
    Published OnlineFirst May 27, 2011; DOI: 10.1158/1078-0432.CCR-10-3028 Clinical Cancer Predictive Biomarkers and Personalized Medicine Research Multiple Loci Modulate Opioid Therapy Response for Cancer Pain Antonella Galvan1, Frank Skorpen2,Pal Klepstad2,3, Anne Kari Knudsen2, Torill Fladvad2, Felicia S. Falvella1, Alessandra Pigni1, Cinzia Brunelli1, Augusto Caraceni1,2, Stein Kaasa2,4, and Tommaso A. Dragani1 Abstract Purpose: Patients treated with opioid drugs for cancer pain experience different relief responses, raising the possibility that genetic factors play a role in opioid therapy outcome. In this study, we tested the hypothesis that genetic variations may control individual response to opioid drugs in cancer patients. Experimental Design: We tested 1 million single-nucleotide polymorphisms (SNP) in European cancer patients, selected in a first series, for extremely poor (pain relief 40%; n ¼ 145) or good (pain relief 90%; n ¼ 293) responses to opioid therapy using a DNA-pooling approach. Candidate SNPs identified by SNP- array were genotyped in individual samples constituting DNA pools as well as in a second series of 570 patients. Results: Association analysis in 1,008 cancer patients identified eight SNPs significantly associated with À pain relief at a statistical threshold of P < 1.0 Â 10 3, with rs12948783, upstream of the RHBDF2 gene, À showing the best statistical association (P ¼ 8.1 Â 10 9). Functional annotation analysis of SNP-tagged genes suggested the involvement of genes acting on processes of the neurologic system. Conclusion: Our results indicate that the identified SNP panel can modulate the response of cancer patients to opioid therapy and may provide a new tool for personalized therapy of cancer pain.
    [Show full text]
  • Single Cell Derived Clonal Analysis of Human Glioblastoma Links
    SUPPLEMENTARY INFORMATION: Single cell derived clonal analysis of human glioblastoma links functional and genomic heterogeneity ! Mona Meyer*, Jüri Reimand*, Xiaoyang Lan, Renee Head, Xueming Zhu, Michelle Kushida, Jane Bayani, Jessica C. Pressey, Anath Lionel, Ian D. Clarke, Michael Cusimano, Jeremy Squire, Stephen Scherer, Mark Bernstein, Melanie A. Woodin, Gary D. Bader**, and Peter B. Dirks**! ! * These authors contributed equally to this work.! ** Correspondence: [email protected] or [email protected]! ! Supplementary information - Meyer, Reimand et al. Supplementary methods" 4" Patient samples and fluorescence activated cell sorting (FACS)! 4! Differentiation! 4! Immunocytochemistry and EdU Imaging! 4! Proliferation! 5! Western blotting ! 5! Temozolomide treatment! 5! NCI drug library screen! 6! Orthotopic injections! 6! Immunohistochemistry on tumor sections! 6! Promoter methylation of MGMT! 6! Fluorescence in situ Hybridization (FISH)! 7! SNP6 microarray analysis and genome segmentation! 7! Calling copy number alterations! 8! Mapping altered genome segments to genes! 8! Recurrently altered genes with clonal variability! 9! Global analyses of copy number alterations! 9! Phylogenetic analysis of copy number alterations! 10! Microarray analysis! 10! Gene expression differences of TMZ resistant and sensitive clones of GBM-482! 10! Reverse transcription-PCR analyses! 11! Tumor subtype analysis of TMZ-sensitive and resistant clones! 11! Pathway analysis of gene expression in the TMZ-sensitive clone of GBM-482! 11! Supplementary figures and tables" 13" "2 Supplementary information - Meyer, Reimand et al. Table S1: Individual clones from all patient tumors are tumorigenic. ! 14! Fig. S1: clonal tumorigenicity.! 15! Fig. S2: clonal heterogeneity of EGFR and PTEN expression.! 20! Fig. S3: clonal heterogeneity of proliferation.! 21! Fig.
    [Show full text]
  • Sex-Specific Transcriptome Differences in Human Adipose
    G C A T T A C G G C A T genes Article Sex-Specific Transcriptome Differences in Human Adipose Mesenchymal Stem Cells 1, 2, 3 1,3 Eva Bianconi y, Raffaella Casadei y , Flavia Frabetti , Carlo Ventura , Federica Facchin 1,3,* and Silvia Canaider 1,3 1 National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; [email protected] (E.B.); [email protected] (C.V.); [email protected] (S.C.) 2 Department for Life Quality Studies (QuVi), University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy; [email protected] 3 Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; fl[email protected] * Correspondence: [email protected]; Tel.: +39-051-2094114 These authors contributed equally to this work. y Received: 1 July 2020; Accepted: 6 August 2020; Published: 8 August 2020 Abstract: In humans, sexual dimorphism can manifest in many ways and it is widely studied in several knowledge fields. It is increasing the evidence that also cells differ according to sex, a correlation still little studied and poorly considered when cells are used in scientific research. Specifically, our interest is on the sex-related dimorphism on the human mesenchymal stem cells (hMSCs) transcriptome. A systematic meta-analysis of hMSC microarrays was performed by using the Transcriptome Mapper (TRAM) software. This bioinformatic tool was used to integrate and normalize datasets from multiple sources and allowed us to highlight chromosomal segments and genes differently expressed in hMSCs derived from adipose tissue (hADSCs) of male and female donors.
    [Show full text]
  • The Mutational Landscape of Human Olfactory G Protein-Coupled Receptors
    Jimenez et al. BMC Biology (2021) 19:21 https://doi.org/10.1186/s12915-021-00962-0 RESEARCH ARTICLE Open Access The mutational landscape of human olfactory G protein-coupled receptors Ramón Cierco Jimenez1,2, Nil Casajuana-Martin1, Adrián García-Recio1, Lidia Alcántara1, Leonardo Pardo1, Mercedes Campillo1 and Angel Gonzalez1* Abstract Background: Olfactory receptors (ORs) constitute a large family of sensory proteins that enable us to recognize a wide range of chemical volatiles in the environment. By contrast to the extensive information about human olfactory thresholds for thousands of odorants, studies of the genetic influence on olfaction are limited to a few examples. To annotate on a broad scale the impact of mutations at the structural level, here we analyzed a compendium of 119,069 natural variants in human ORs collected from the public domain. Results: OR mutations were categorized depending on their genomic and protein contexts, as well as their frequency of occurrence in several human populations. Functional interpretation of the natural changes was estimated from the increasing knowledge of the structure and function of the G protein-coupled receptor (GPCR) family, to which ORs belong. Our analysis reveals an extraordinary diversity of natural variations in the olfactory gene repertoire between individuals and populations, with a significant number of changes occurring at the structurally conserved regions. A particular attention is paid to mutations in positions linked to the conserved GPCR activation mechanism that could imply phenotypic variation in the olfactory perception. An interactive web application (hORMdb, Human Olfactory Receptor Mutation Database) was developed for the management and visualization of this mutational dataset.
    [Show full text]
  • WO 2019/068007 Al Figure 2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/068007 Al 04 April 2019 (04.04.2019) W 1P O PCT (51) International Patent Classification: (72) Inventors; and C12N 15/10 (2006.01) C07K 16/28 (2006.01) (71) Applicants: GROSS, Gideon [EVIL]; IE-1-5 Address C12N 5/10 (2006.0 1) C12Q 1/6809 (20 18.0 1) M.P. Korazim, 1292200 Moshav Almagor (IL). GIBSON, C07K 14/705 (2006.01) A61P 35/00 (2006.01) Will [US/US]; c/o ImmPACT-Bio Ltd., 2 Ilian Ramon St., C07K 14/725 (2006.01) P.O. Box 4044, 7403635 Ness Ziona (TL). DAHARY, Dvir [EilL]; c/o ImmPACT-Bio Ltd., 2 Ilian Ramon St., P.O. (21) International Application Number: Box 4044, 7403635 Ness Ziona (IL). BEIMAN, Merav PCT/US2018/053583 [EilL]; c/o ImmPACT-Bio Ltd., 2 Ilian Ramon St., P.O. (22) International Filing Date: Box 4044, 7403635 Ness Ziona (E.). 28 September 2018 (28.09.2018) (74) Agent: MACDOUGALL, Christina, A. et al; Morgan, (25) Filing Language: English Lewis & Bockius LLP, One Market, Spear Tower, SanFran- cisco, CA 94105 (US). (26) Publication Language: English (81) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of national protection available): AE, AG, AL, AM, 62/564,454 28 September 2017 (28.09.2017) US AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, 62/649,429 28 March 2018 (28.03.2018) US CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (71) Applicant: IMMP ACT-BIO LTD.
    [Show full text]
  • Genetic Characterization of Greek Population Isolates Reveals Strong Genetic Drift at Missense and Trait-Associated Variants
    ARTICLE Received 22 Apr 2014 | Accepted 22 Sep 2014 | Published 6 Nov 2014 DOI: 10.1038/ncomms6345 OPEN Genetic characterization of Greek population isolates reveals strong genetic drift at missense and trait-associated variants Kalliope Panoutsopoulou1,*, Konstantinos Hatzikotoulas1,*, Dionysia Kiara Xifara2,3, Vincenza Colonna4, Aliki-Eleni Farmaki5, Graham R.S. Ritchie1,6, Lorraine Southam1,2, Arthur Gilly1, Ioanna Tachmazidou1, Segun Fatumo1,7,8, Angela Matchan1, Nigel W. Rayner1,2,9, Ioanna Ntalla5,10, Massimo Mezzavilla1,11, Yuan Chen1, Chrysoula Kiagiadaki12, Eleni Zengini13,14, Vasiliki Mamakou13,15, Antonis Athanasiadis16, Margarita Giannakopoulou17, Vassiliki-Eirini Kariakli5, Rebecca N. Nsubuga18, Alex Karabarinde18, Manjinder Sandhu1,8, Gil McVean2, Chris Tyler-Smith1, Emmanouil Tsafantakis12, Maria Karaleftheri16, Yali Xue1, George Dedoussis5 & Eleftheria Zeggini1 Isolated populations are emerging as a powerful study design in the search for low-frequency and rare variant associations with complex phenotypes. Here we genotype 2,296 samples from two isolated Greek populations, the Pomak villages (HELIC-Pomak) in the North of Greece and the Mylopotamos villages (HELIC-MANOLIS) in Crete. We compare their genomic characteristics to the general Greek population and establish them as genetic isolates. In the MANOLIS cohort, we observe an enrichment of missense variants among the variants that have drifted up in frequency by more than fivefold. In the Pomak cohort, we find novel associations at variants on chr11p15.4 showing large allele frequency increases (from 0.2% in the general Greek population to 4.6% in the isolate) with haematological traits, for example, with mean corpuscular volume (rs7116019, P ¼ 2.3 Â 10 À 26). We replicate this association in a second set of Pomak samples (combined P ¼ 2.0 Â 10 À 36).
    [Show full text]
  • Chr CNV Start CNV Stop Gene Gene Feature 1 37261312 37269719
    chr CNV start CNV stop Gene Gene feature 1 37261312 37269719 Tmem131 closest upstream gene 1 37261312 37269719 Cnga3 closest downstream gene 1 41160869 41180390 Tmem182 closest upstream gene 1 41160869 41180390 2610017I09Rik closest downstream gene 1 66835123 66839616 1110028C15Rik in region 2 88714200 88719211 Olfr1206 closest upstream gene 2 88714200 88719211 Olfr1208 closest downstream gene 2 154840037 154846228 a in region 3 30065831 30417157 Mecom closest upstream gene 3 30065831 30417157 Arpm1 closest downstream gene 3 35476875 35495913 Sox2ot closest upstream gene 3 35476875 35495913 Atp11b closest downstream gene 3 39563408 39598697 Fat4 closest upstream gene 3 39563408 39598697 Intu closest downstream gene 3 94246481 94410611 Celf3 in region 3 94246481 94410611 Mrpl9 in region 3 94246481 94410611 Riiad1 in region 3 94246481 94410611 Snx27 in region 3 104311901 104319916 Lrig2 in region 3 144613709 144619149 Clca6 in region 3 144613709 144619149 Clca6 in region 4 108673 137301 Vmn1r2 closest downstream gene 4 3353037 5882883 6330407A03Rik in region 4 3353037 5882883 Chchd7 in region 4 3353037 5882883 Fam110b in region 4 3353037 5882883 Impad1 in region 4 3353037 5882883 Lyn in region 4 3353037 5882883 Mos in region 4 3353037 5882883 Penk in region 4 3353037 5882883 Plag1 in region 4 3353037 5882883 Rps20 in region 4 3353037 5882883 Sdr16c5 in region 4 3353037 5882883 Sdr16c6 in region 4 3353037 5882883 Tgs1 in region 4 3353037 5882883 Tmem68 in region 4 5919294 6304249 Cyp7a1 in region 4 5919294 6304249 Sdcbp in region 4 5919294
    [Show full text]