The Age of a New World View: AP World History

Total Page:16

File Type:pdf, Size:1020Kb

The Age of a New World View: AP World History The Age of A New World View: AP World History In dialectical and functional thinking this age may be human histories most significant. The Renaissance gave us the creative burst to remove ourselves from the self‐imposed “nonage”/doldrums that was the Middle Ages. The Renaissance gave us the knowledge that human beings had extraordinary talents above and beyond religious submission. The critical stage came in the form of the Reformation, which saw human beings change the very entity that had yielded them into submission for nearly 1000 years. The change that occurred was remarkable, responding to the changes societies engaged in warfare and exploration competing with each other in both venues. Slowly simmering in the backwaters of the Reformation was a new movement that was emerging in response to both the Renaissance and the Reformation; a new World View. The ages mentioned had empowered people to think, and they had done so creatively and critically. What was left was the revolution that would bring about synthesis‐the advent of a new order; an order developed out of the wake of old orders. Brand new ideas and concepts were emerging in response to the combination between classical antiquity and Ren/Ref thought processes. The ages of creativity, criticism and discovery will lead to the age that will bring about a new world order, an order based on human intelligence, observation and rationality. The Scientific Revolution: Science is described as the precise knowledge of the physical world based on the union of experimental observations with sophisticated mathematics. Science had been subordinate to the past, to religion and to darkness. The advent of modern science and the subsequent social scientific thought is the basis for the modern world. Scientific Thought in 1500: The Aristotelian Universe: According to Christian theology the Prime Mover that enveloped the system became the “God” figure. This feature made Aristotle the only respected opinion amongst developing Christians and by the age of Scientific exploration the views of the Aristotelian universe will as much a part of church dogma as those ideas that Martin Luther challenged. Aristotle (384 ‐ 322 BC), who studied under Plato, believed the heavens were more perfect than the Earth and that everything in the heavens was unchanging. He explained planetary motion as being uniform circular motion (motion of a constant angular speed on a circle) because cyclical motion brought an object back to its original starting point and therefore the object was unchanging. Aristotleʹs Universe consists of 55 concentric crystalline spheres to which the celestial objects were attached. The Earth is at the center and the last sphere is that of the Prime Mover. The Prime Mover caused the outermost sphere to rotate at a constant angular velocity. This movement was then imparted to the other spheres. The major problems with Aristotleʹs model were its inability to explain varying planetary brightness (as the planets were supposed to never change) or the retrograde motion of the planets. To explain this, Aristotle created epicycles. Aristarchus of Samos (~250 BC) is the first recorded person to develop a sun‐centered solar system. Although Copernicus is regarded as the father of this model, it is recorded within his published works that he was aware that Aristarchus was before him. Aristarchus not only was before his time in terms of the sun being the center, he also proposed that the Earth rotates as it revolves around the sun. Aristarchus was not well received however because Aristotleʹs model had a very strong following and the introduction of Ptolemyʹs similar proposal a little afterwards made Aristotleʹs hold even stronger. The Ptolemaic Universe: Ptolemy (~200 AD) fully believed in the Aristotelian model of the solar system and simply made some further refinements upon it to account for the detailed motion of the celestial sphere. Epicycles upon epicycles were needed, however in many models, the epicycles no longer revolved around the deferent (center), but instead a point displaced from the center. Eventually the Prime Mover was replaced by God and its sphere by heaven to accommodate the constant theme of centering scientific study around religion. Aristotle on Elements: Aristotleʹs theory of the basic constituents of matter looks to a modern scientist perhaps something of a backward step from the work of the atomists and Plato. Aristotle assumed all substances to be compounds of four elements: earth, water, air and fire, and each of these to be a combination of two of four opposites, hot and cold, and wet and dry. (Actually, the words he used for wet and dry also have the connotation of softness and hardness). Aristotleʹs whole approach is more in touch with the way things present themselves to the senses, the way things really seem to be, as opposed to abstract geometric considerations. Hot and cold, wet and dry are qualities immediately apparent to anyone, this seems a very natural way to describe phenomena. He probably thought that the Platonic approach in terms of abstract concepts, which do not seem to relate to our physical senses but to our reason, was a completely wrongheaded way to go about the problem. It has turned out, centuries later, that the atomic and mathematical approach was on the right track after all, but at the time, and in fact until relatively recently, Aristotle seemed a lot closer to reality. He discussed the properties of real substances in terms of their ʺelementalʺ composition at great length, how they reacted to fire or water, how, for example, water evaporates on heating because it goes from cold and wet to hot and wet, becoming air, in his view. Innumerable analyses along these lines of commonly observed phenomena must have made this seem a coherent approach to understanding the natural world. In the Aristotelian view the elements that made up matter moved by their weight the light elements Air/Fire moved upward whereas the heavy elements Water/Earth moved downward, further solidifying our universe. The Copernican Hypothesis: Copernicus made a great leap forward by realizing that the motions of the planets could be explained by placing the Sun at the center of the universe instead of Earth. In his view, Earth was simply one of many planets orbiting the Sun, and the daily motion of the stars and planets were just a reflection of Earth spinning on its axis. Although the Greek astronomer Aristarchus developed the same hypothesis more than 1500 years earlier, Copernicus was the first person to argue its merits in modern times. In Copernicus’ Sun‐centered (heliocentric) view of the cosmos, the planets’ occasional backward, or retrograde, motion comes about naturally through the combined motions of Earth and the planets. As Earth speeds around the Sun in its faster orbit, it periodically overtakes the outer planets. Like a slower runner in an outside lane at a track meet, the more distant planet appears to move backward relative to the background scenery. Copernicus’ model also explains why the two planets closest to the sun, Mercury and Venus, never stray far from the Sun in our sky. And it allowed Copernicus to calculate the approximate scale of the solar system for the first time. That’s not to say Copernicus’ model was without problems: He still clung to the classical idea that the planets should move in circular orbits at constant speeds, so like Ptolemy, he had to jury‐rig a system of circles within circles to predict the planets’ positions with reasonable accuracy. Despite the basic truth of his model, Copernicus did not prove that Earth moved around the Sun. That was left for later astronomers. The first direct evidence came from Newton’s laws of motion, which say that when objects orbit one another, the lighter object moves more than the heavier one. Because the Sun has about 330,000 times more mass than Earth, our planet must be doing almost all the moving. A direct observation of Earth’s motion came in 1838 when the German astronomer Friedrich Bessel measured the tiny displacement, or parallax, of a nearby star relative to the more distant stars. This minuscule displacement reflects our planet’s changing vantage point as we orbit the Sun during the year. Copernicus realized the gravity and complex nature of his discovery, he waited until he felt he was near death before publishing his momentous “On the Revolutions of the Heavenly Spheres”, largely for fear of the religious controversies it was sure to yield. Images and portions of text courtesy of Stephen Hawking. Tycho Brahe: (courtesy of Michael Fowler Uva.) Tycho Brahe, born in 1546, was the eldest son of a noble Danish family, and as such appeared destined for the natural aristocratic occupations of hunting and warfare. However, he had an uncle Joergen, a country squire and vice‐admiral, who was more educated, and childless. Tychoʹs father had agreed with the uncle before Tycho was born that if Tycho was a boy, the uncle could adopt and raise him. He changed his mind and reneged. Then, when a younger brother was born, the uncle kidnapped Tycho. The father threatened to murder the uncle, but eventually calmed down, since Tycho stood to inherit a large estate from the uncle. When Tycho was seven, his uncle insisted that he begin studying Latin. His parents objected, but the uncle said this would help Tycho become a lawyer. At age thirteen, Tycho entered the University of Copenhagen to study law and philosophy. At this impressionable age, an event took place that changed his life. There was a partial eclipse of the sun. This had been predicted, and took place on schedule. It struck Tycho as ʺsomething divine that men should know the motions of the stars so accurately that they were able a long time beforehand to predict their places and relative positionsʺ.
Recommended publications
  • Resolved Astrometric Binary Stars Brian D. Mason
    Resolved Astrometric Binary Stars Brian D. Mason 9/12/2012 U.S. Naval Observatory 1 Background Astrometric contributions of Friedrich Bessel (1784-1846) •Parallax of 61 Cygni (1838) U.S. Naval Observatory Background Astrometric contributions of Friedrich Bessel (1784-1846) •Parallax of 61 Cygni (1838) •Non-linear proper motion of Sirius and Procyon (1844) Image: http://vega.lpl.arizona.edu/sirius/A5.html U.S. Naval Observatory Background Astrometric contributions of Friedrich Bessel (1784-1846) •Parallax of 61 Cygni (1838) •Non-linear proper motion of Sirius and Procyon (1844) Due to stellar types (main- sequence and white dwarf) motion affect significant, but Image: http://vega.lpl.arizona.edu/sirius/A5.html companion hard to detect. • Sirius B first resolved in 1862 by Alvan Graham Clark (right) testing 18.5 ” Clark refractor. U.S. Naval Observatory Background Astrometric contributions of Friedrich Bessel (1784-1846) •Parallax of 61 Cygni (1838) •Non-linear proper motion of Sirius and Procyon (1844) Due to stellar types (main- sequence and white dwarf) motion affect significant, but companion hard to detect. • Sirius B first resolved in 1862 by Alvan Graham Clark (right) testing 18.5 ” Clark refractor. • Procyon B first resolved in 1896 by John Martin Schaeberle with Lick 36 ” Clark refractor. U.S. Naval Observatory CurrentCurrent Orbit: Orbit: Procyon Sirius AB AB • Broken line is line of nodes. • Green plus signs and asterisks: micrometry. • Pink asterisks: photography • Blue circles: HST/WFPC2 • Scales on axis are in arcseconds. • Direction of orbital motion at lower right. • Sirius Period = 50.090y. • Procyon Period = 40.82y. U.S. Naval Observatory Orbits • The 6 th Catalog of Orbits of Visual Binary Stars has 2298 orbits of 2187 systems.
    [Show full text]
  • Essays-Mechanics / Electrodynamics/Download/8831
    WHAT IF THE GALILEO AFFAIR NEVER HAPPENED? ABSTRACT From the 5th Century A.D. to the advent of Scholastic Aristotelianism, the curriculum in Roman Catholic universities in Europe taught a Rotating Geocentric Earth. St. Thomas Aquinas (1225 A.D.-1274 A.D.) introduced the writings of Aristotle (384 B.C.-322 B.C.) and of Claudius Ptolemy (100 A.D.-170 A.D.) in the 13th Century A.D., and the curriculum changed to teach a Non-Rotating Geocentric Earth. In this GSJ presentation, an Alternate History is presented. The famous Trial of Galileo never happened and the book by Nicolaus Copernicus was never banned by the Vatican of the Roman Catholic Church. The Roman Catholic Church simply ignored Galileo & his insulting book of 1632 A.D. The Roman Catholic Church Astronomers produced the Gregorian Calendar in 1583 A.D. The Roman Catholic Astronomers had abandoned the Aristotle/Ptolemy Model of Astronomy and had replaced it with the Non-Rotating Tychonian Model. This is NOT Alternate History. Johann Kepler published. That is NOT Alternate History. Isaac Newton published Principia, too. Christian Huygens contributed to the technology of the Mechanical Clock. Mechanical Time and Sundial Time demonstrate two similar but not identical paths. This is NOT Alternate History, either. The writer that is known as Voltaire (1694-1778) campaigned for Newton’s Principia as did Willem Gravesande (1688-1742). Pierre-Simon LaPlace (1748-1827) rescued Newton’s Celestial Mechanics of Universal Gravitation and Kepler’s Elliptical Orbits from disequilibrium issues in 1804A.D. Friedrich Bessel (1784-1846) discovered the first star to exhibit Stellar Parallax in 1838.
    [Show full text]
  • History of Astrometry
    5 Gaia web site: http://sci.esa.int/Gaia site: web Gaia 6 June 2009 June are emerging about the nature of our Galaxy. Galaxy. our of nature the about emerging are More detailed information can be found on the the on found be can information detailed More technologies developed by creative engineers. creative by developed technologies scientists all over the world, and important conclusions conclusions important and world, the over all scientists of the Universe combined with the most cutting-edge cutting-edge most the with combined Universe the of The results from Hipparcos are being analysed by by analysed being are Hipparcos from results The expression of a widespread curiosity about the nature nature the about curiosity widespread a of expression 118218 stars to a precision of around 1 milliarcsecond. milliarcsecond. 1 around of precision a to stars 118218 trying to answer for many centuries. It is the the is It centuries. many for answer to trying created with the positions, distances and motions of of motions and distances positions, the with created will bring light to questions that astronomers have been been have astronomers that questions to light bring will accuracies obtained from the ground. A catalogue was was catalogue A ground. the from obtained accuracies Gaia represents the dream of many generations as it it as generations many of dream the represents Gaia achieving an improvement of about 100 compared to to compared 100 about of improvement an achieving orbit, the Hipparcos satellite observed the whole sky, sky, whole the observed satellite Hipparcos the orbit, ear Y of them in the solar neighbourhood.
    [Show full text]
  • The Astronomers Tycho Brahe and Johannes Kepler
    Ice Core Records – From Volcanoes to Supernovas The Astronomers Tycho Brahe and Johannes Kepler Tycho Brahe (1546-1601, shown at left) was a nobleman from Denmark who made astronomy his life's work because he was so impressed when, as a boy, he saw an eclipse of the Sun take place at exactly the time it was predicted. Tycho's life's work in astronomy consisted of measuring the positions of the stars, planets, Moon, and Sun, every night and day possible, and carefully recording these measurements, year after year. Johannes Kepler (1571-1630, below right) came from a poor German family. He did not have it easy growing Tycho Brahe up. His father was a soldier, who was killed in a war, and his mother (who was once accused of witchcraft) did not treat him well. Kepler was taken out of school when he was a boy so that he could make money for the family by working as a waiter in an inn. As a young man Kepler studied theology and science, and discovered that he liked science better. He became an accomplished mathematician and a persistent and determined calculator. He was driven to find an explanation for order in the universe. He was convinced that the order of the planets and their movement through the sky could be explained through mathematical calculation and careful thinking. Johannes Kepler Tycho wanted to study science so that he could learn how to predict eclipses. He studied mathematics and astronomy in Germany. Then, in 1571, when he was 25, Tycho built his own observatory on an island (the King of Denmark gave him the island and some additional money just for that purpose).
    [Show full text]
  • Department of Statistics, UCLA
    UCLA Department of Statistics, UCLA Title Determination of the Accuracy of the Observations, by C. F. Gauss, Translation with preface Permalink https://escholarship.org/uc/item/4n21q6bx Author Ekström, Joakim Publication Date 2013-11-12 eScholarship.org Powered by the California Digital Library University of California Determination of the Accuracy of the Observations by Carl Friedrich Gauss. Translation by Joakim Ekström, with preface. Af«±§Zh±. Bestimmung der Genauigkeit der Beobachtungen is the second of the three major pieces that Gauss wrote on statistical hypothesis generation. It continues the methodological tradition of eoria Motus, producing estimates by maximizing probability density, however absence of the change-of- variables theorem causes technical diculties that compromise its elegance. In eoria Combinationis, Gauss abandoned the aforementioned method, hence placing Bestimmung der Genauigkeit at a cross- roads in the evolution of Gauss’s statistical hypothesis generation methodology. e present translation is paired with a preface discussing the piece and its historical context. Õ ó Translator’s Preface and Discussion by Joakim Ekström, UCLA Statistics Carl Friedrich Gauss (Õßßß-Õ¢¢) published three major pieces on statistical hypothesis generation: eoria Motus (ÕþÉ), Bestimmung der Genauigkeit (ÕÕä) and eoria Combinationis (ÕóÕ) (see Sheynin, ÕÉßÉ). eoria Motus was translated into English by C. H. Davis in Õ¢, eoria Combina- tionis was translated into English by G. W. Stewart in ÕÉÉ¢, but an English translation of Bestimmung der Genauigkeit has, in spite of great eorts, not been found in the literature. Hence the present translation. Bestimmung der Genauigkeit der Beobachtungen, as its complete title reads, is an interesting histor- ical text for many reasons.
    [Show full text]
  • The Flint River Observer
    who attended the first club meeting in 1997, only five are still in FRAC: co-founders Larry Higgins, THE Ken Walburn and Bill Warren, and charter members Steven “Saratoga Smitty” Smith and John Wallace. FLINT RIVER Two thing occurred to me recently. First, many of you have never met the men who started FRAC and kept it going when no one OBSERVER outside the club thought it would survive. To borrow from Sir Isaac Newton’s famous statement, NEWSLETTER OF THE FLINT Larry, Ken, Bill, Smitty and John are the giants RIVER ASTRONOMY CLUB upon whose shoulders FRAC stands today. The second thing that occurred to me was, I An Affiliate of the Astronomical League can’t recall ever seeing them together at one time. Well, all of them will be at the July club Vol. 20, No. 2 June, 2016 meeting. Our program will be “1997: FRAC’s Officers: President, Dwight Harness (1770 First Year,” with refreshments afterward. So mark th Hollonville Rd., Brooks, Ga. 30205, 770-227-9321, down Thursday, July 14 as a special day on your [email protected]); Vice President, Bill calendar and please try to attend. It will be a night Warren (1212 Everee Inn Rd., Griffin, Ga. 30224, to remember. [email protected]); Secretary, Carlos Flores; Treasurer, Truman Boyle. -Dwight Harness Board of Directors: Larry Higgins; Aaron Calhoun; and Jeremy Milligan. * * * Facebook Coordinator: Laura Harness; Alcor, Last Month’s Meeting/Activities. As anyone who Carlos Flores; Webmaster, Tom Moore; has been in FRAC for longer than 15 minutes Program Coordinator/Newsletter Editor, Bill knows, our observing mantra has always been, Do Warren; Observing Coordinators, Dwight the best you can with what you have.
    [Show full text]
  • Thinking Outside the Sphere Views of the Stars from Aristotle to Herschel Thinking Outside the Sphere
    Thinking Outside the Sphere Views of the Stars from Aristotle to Herschel Thinking Outside the Sphere A Constellation of Rare Books from the History of Science Collection The exhibition was made possible by generous support from Mr. & Mrs. James B. Hebenstreit and Mrs. Lathrop M. Gates. CATALOG OF THE EXHIBITION Linda Hall Library Linda Hall Library of Science, Engineering and Technology Cynthia J. Rogers, Curator 5109 Cherry Street Kansas City MO 64110 1 Thinking Outside the Sphere is held in copyright by the Linda Hall Library, 2010, and any reproduction of text or images requires permission. The Linda Hall Library is an independently funded library devoted to science, engineering and technology which is used extensively by The exhibition opened at the Linda Hall Library April 22 and closed companies, academic institutions and individuals throughout the world. September 18, 2010. The Library was established by the wills of Herbert and Linda Hall and opened in 1946. It is located on a 14 acre arboretum in Kansas City, Missouri, the site of the former home of Herbert and Linda Hall. Sources of images on preliminary pages: Page 1, cover left: Peter Apian. Cosmographia, 1550. We invite you to visit the Library or our website at www.lindahlll.org. Page 1, right: Camille Flammarion. L'atmosphère météorologie populaire, 1888. Page 3, Table of contents: Leonhard Euler. Theoria motuum planetarum et cometarum, 1744. 2 Table of Contents Introduction Section1 The Ancient Universe Section2 The Enduring Earth-Centered System Section3 The Sun Takes
    [Show full text]
  • Astrometry and Optics During the Past 2000 Years
    1 Astrometry and optics during the past 2000 years Erik Høg Niels Bohr Institute, Copenhagen, Denmark 2011.05.03: Collection of reports from November 2008 ABSTRACT: The satellite missions Hipparcos and Gaia by the European Space Agency will together bring a decrease of astrometric errors by a factor 10000, four orders of magnitude, more than was achieved during the preceding 500 years. This modern development of astrometry was at first obtained by photoelectric astrometry. An experiment with this technique in 1925 led to the Hipparcos satellite mission in the years 1989-93 as described in the following reports Nos. 1 and 10. The report No. 11 is about the subsequent period of space astrometry with CCDs in a scanning satellite. This period began in 1992 with my proposal of a mission called Roemer, which led to the Gaia mission due for launch in 2013. My contributions to the history of astrometry and optics are based on 50 years of work in the field of astrometry but the reports cover spans of time within the past 2000 years, e.g., 400 years of astrometry, 650 years of optics, and the “miraculous” approval of the Hipparcos satellite mission during a few months of 1980. 2011.05.03: Collection of reports from November 2008. The following contains overview with summary and link to the reports Nos. 1-9 from 2008 and Nos. 10-13 from 2011. The reports are collected in two big file, see details on p.8. CONTENTS of Nos. 1-9 from 2008 No. Title Overview with links to all reports 2 1 Bengt Strömgren and modern astrometry: 5 Development of photoelectric astrometry including the Hipparcos mission 1A Bengt Strömgren and modern astrometry ..
    [Show full text]
  • Rabbi Reuven Landau and the Jewish Reaction to Copernican Thought in Nineteenth Century Europe
    JEREMY BROWN Rabbi Reuven Landau and the Jewish Reaction to Copernican Thought in Nineteenth Century Europe n the opening years of this century, Rabbi Shlomo Benizri, once Israel’s Minister of Labor and Social Affairs, published a comprehen- sive textbook on the Jewish calendar titled Ha-shamayim Mesapperim I 1 (The Heavens Proclaim). Most of R. Benizri’s work covers the complex mathematical and astronomical foundations which determine the struc- ture of the lunar based Jewish calendar, and the last part of the book describes the nature of the solar system. In this last section, R. Benizri concludes that despite nearly five hundred years of scientific and astro- nomical evidence to the contrary, it is the sun that revolves around the earth, not vice-versa. Although R. Benizri was educated in traditional Orthodox yeshivot and never attended university, his book made use of many modern scientific instruments and discoveries. It reproduced high resolution telescopic images of the surface of the planets (including those sent from the famous Viking 1 Project) and described the composition of the atmosphere and surface of the planets using data from NASA’s solar explorations. And yet, after a lengthy analysis, R. Benizri stated that the earth does not orbit the sun, because, in his account, the Bible, the rabbis of the Talmud and their medieval commentators had all concluded that the earth lay at the center of the universe. JEREMY BROWN, M.D., is Associate Professor and Director of Research in the Department of Emergency Medicine at the George Washington University in Washington, D.C.
    [Show full text]
  • Lecture 5: Stellar Distances 10/2/19, 802 AM
    Lecture 5: Stellar Distances 10/2/19, 802 AM Astronomy 162: Introduction to Stars, Galaxies, & the Universe Prof. Richard Pogge, MTWThF 9:30 Lecture 5: Distances of the Stars Readings: Ch 19, section 19-1 Key Ideas Distance is the most important & most difficult quantity to measure in Astronomy Method of Trigonometric Parallaxes Direct geometric method of finding distances Units of Cosmic Distance: Light Year Parsec (Parallax second) Why are Distances Important? Distances are necessary for estimating: Total energy emitted by an object (Luminosity) Masses of objects from their orbital motions True motions through space of stars Physical sizes of objects The problem is that distances are very hard to measure... The problem of measuring distances Question: How do you measure the distance of something that is beyond the reach of your measuring instruments? http://www.astronomy.ohio-state.edu/~pogge/Ast162/Unit1/distances.html Page 1 of 7 Lecture 5: Stellar Distances 10/2/19, 802 AM Examples of such problems: Large-scale surveying & mapping problems. Military range finding to targets Measuring distances to any astronomical object Answer: You resort to using GEOMETRY to find the distance. The Method of Trigonometric Parallaxes Nearby stars appear to move with respect to more distant background stars due to the motion of the Earth around the Sun. This apparent motion (it is not "true" motion) is called Stellar Parallax. (Click on the image to view at full scale [Size: 177Kb]) In the picture above, the line of sight to the star in December is different than that in June, when the Earth is on the other side of its orbit.
    [Show full text]
  • Galileo in Early Modern Denmark, 1600-1650
    1 Galileo in early modern Denmark, 1600-1650 Helge Kragh Abstract: The scientific revolution in the first half of the seventeenth century, pioneered by figures such as Harvey, Galileo, Gassendi, Kepler and Descartes, was disseminated to the northernmost countries in Europe with considerable delay. In this essay I examine how and when Galileo’s new ideas in physics and astronomy became known in Denmark, and I compare the reception with the one in Sweden. It turns out that Galileo was almost exclusively known for his sensational use of the telescope to unravel the secrets of the heavens, meaning that he was predominantly seen as an astronomical innovator and advocate of the Copernican world system. Danish astronomy at the time was however based on Tycho Brahe’s view of the universe and therefore hostile to Copernican and, by implication, Galilean cosmology. Although Galileo’s telescope attracted much attention, it took about thirty years until a Danish astronomer actually used the instrument for observations. By the 1640s Galileo was generally admired for his astronomical discoveries, but no one in Denmark drew the consequence that the dogma of the central Earth, a fundamental feature of the Tychonian world picture, was therefore incorrect. 1. Introduction In the early 1940s the Swedish scholar Henrik Sandblad (1912-1992), later a professor of history of science and ideas at the University of Gothenburg, published a series of works in which he examined in detail the reception of Copernicanism in Sweden [Sandblad 1943; Sandblad 1944-1945]. Apart from a later summary account [Sandblad 1972], this investigation was published in Swedish and hence not accessible to most readers outside Scandinavia.
    [Show full text]
  • Copernicus and Tycho Brahe
    THE NEWTONIAN REVOLUTION – Part One Philosophy 167: Science Before Newton’s Principia Class 2 16th Century Astronomy: Copernicus and Tycho Brahe September 9, 2014 TABLE OF CONTENTS I. The Copernican Revolution .................................................................................................................. 1 A. Ptolemaic Astronomy: e.g. Longitudes of Mars ................................................................... 1 B. A Problem Raised for Philosophy of Science ....................................................................... 2 C. Background: 13 Centuries of Ptolemaic Astronomy ............................................................. 4 D. 15th Century Planetary Astronomy: Regiomantanus ............................................................. 5 E. Nicolaus Copernicus: A Brief Biography .............................................................................. 6 F. Copernicus and Ibn al-Shāţir (d. 1375) ……………………………………………………. 7 G. The Many Different Copernican Revolutions ........................................................................ 9 H. Some Comments on Kuhn’s View of Science ……………………………………………... 10 II. De Revolutionibus Orbium Coelstium (1543) ..................................................................................... 11 A. From Basic Ptolemaic to Basic Copernican ........................................................................... 11 B. A New Result: Relative Orbital Radii ................................................................................... 12 C. Orbital
    [Show full text]