STS-130 a Room with a View PRESS KIT/JANUARY 2010

Total Page:16

File Type:pdf, Size:1020Kb

STS-130 a Room with a View PRESS KIT/JANUARY 2010 National Aeronautics and Space Administration SPACE SHUTTLE MISSION STS-130 A Room with a View PRESS KIT/JANUARY 2010 www.nasa.gov CONTENTS Section Page STS-130/20A MISSION OVERVIEW ....................................................................................... 1 STS-130 TIMELINE OVERVIEW ............................................................................................... 9 MISSION PROFILE ................................................................................................................... 13 MISSION OBJECTIVES ............................................................................................................ 15 MISSION PERSONNEL ............................................................................................................. 17 STS-130 CREW ....................................................................................................................... 19 PAYLOAD OVERVIEW .............................................................................................................. 27 NODE 3 ................................................................................................................................................ 27 THE CUPOLA OBSERVATION MODULE .................................................................................................. 33 RENDEZVOUS & DOCKING ....................................................................................................... 43 UNDOCKING, SEPARATION, AND DEPARTURE ...................................................................................... 44 SPACEWALKS ......................................................................................................................... 47 EXPERIMENTS ......................................................................................................................... 53 DETAILED TEST OBJECTIVES AND DETAILED SUPPLEMENTARY OBJECTIVES ....................................... 53 SHORT-DURATION U.S. INTEGRATED RESEARCH TO BE COMPLETED DURING STS-130/20A .............. 54 TROPI-2: STUDYING PLANT GROWTH IN SPACE .................................................................................. 59 ADDITIONAL STATION RESEARCH FROM NOW UNTIL THE END OF EXPEDITION 21/22 ........................ 63 SHUTTLE REFERENCE DATA .................................................................................................... 69 LAUNCH AND LANDING ........................................................................................................... 87 LAUNCH ............................................................................................................................................... 87 ABORT-TO-ORBIT (ATO) ...................................................................................................................... 87 TRANSATLANTIC ABORT LANDING (TAL) ............................................................................................. 87 RETURN-TO-LAUNCH-SITE (RTLS) ....................................................................................................... 87 ABORT ONCE AROUND (AOA) ............................................................................................................... 87 LANDING ............................................................................................................................................. 87 FEBRUARY 2010 CONTENTS i Section Page ACRONYMS AND ABBREVIATIONS ......................................................................................... 89 MEDIA ASSISTANCE ............................................................................................................... 103 PUBLIC AFFAIRS CONTACTS .................................................................................................. 105 ii CONTENTS FEBRUARY 2010 STS-130/20A MISSION OVERVIEW Space shuttle Endeavour launches on the STS-127 mission to the International Space Station in 2009. Endeavour’s 13-day mission will deliver and station with six windows around its sides and assemble the last U.S.-built modules onto another in the center that will provide a the International Space Station, giving the panoramic view of Earth, celestial objects and laboratory a room with quite a view. The visiting spacecraft. mission kicks off the final year of shuttle flights, with five missions planned through September. Tucked away inside Tranquility and Endeavour’s middeck will be a ton of Node 3, known as Tranquility, will provide equipment, supplies and experiments for the additional room for crew members and many space station. Included are a new distillation of the space station’s life support and assembly and fluid control pump assembly for environmental control systems. Attached to the the urine processing assembly, an external filter node is a cupola, which is a robotic control assembly for the water processing assembly, a FEBRUARY 2010 MISSION OVERVIEW 1 new bed for the carbon dioxide removal Zamka, 47, a U.S. Marine Corps colonel, served assembly, laptop computers, crew provisions, as pilot on STS-120 in 2007. He will be joined health care supplies, spacewalk tools and on the mission by pilot Terry Virts, 41, a others. U.S. Air Force colonel, who will be making his first trip to space. Mission specialists are Endeavour, commanded by spaceflight veteran Kathryn Hire, a U.S. Navy Reserve captain who George Zamka, is scheduled to lift off from flew on STS-90 in 1998; Stephen Robinson who Kennedy Space Center at 4:39 a.m. EST on flew on STS-85 in 1997, STS-95 in 1988 and Sunday, Feb. 7, and arrive at the orbiting STS-114 in 2005; Nicholas Patrick who flew on complex in the early morning hours Tuesday, STS-116 in 2006; and Robert Behnken, a Feb. 9. lieutenant colonel in the U.S. Air Force, who While docked to the station, Endeavour’s crew flew on STS-123 in 2008. Robinson, Patrick and will conduct three spacewalks and extensive Behnken all have doctorates in mechanical robotic operations to install Tranquility and engineering. then relocate its cupola. Astronaut George Zamka, STS-130 commander, dons a training version of his shuttle launch and entry suit in preparation for a training session in the Space Vehicle Mock-up Facility at NASA’s Johnson Space Center. United Space Alliance suit technician Joel Alvarado assisted Zamka. 2 MISSION OVERVIEW FEBRUARY 2010 The major tasks for the mission are to install, The day after launch, Zamka, Virts, Hire and activate and checkout Tranquility, including Patrick will take turns from Endeavour’s aft connecting internal and external avionics, flight deck maneuvering its robotic arm in the cables, and ammonia cooling system jumpers; traditional day-long scan of the reinforced relocating the Cupola from the end port of carbon-carbon on the leading edges of the Tranquility to its Earth-facing port and then shuttle’s wings and its nose cap. This initial activating and checking out the Cupola; inspection, using a 50-foot-long robotic arm relocating the Pressurized Mating Adapter 3 extension equipped with sensors and lasers, (PMA 3) from the top of the Harmony node to called the Orbiter Boom Sensor System (OBSS), the port side of Tranquility; and transferring will provide imagery experts on the ground a water, equipment and experiments to the close-up look at the orbiter’s heat shield station. following the dynamic liftoff. A follow-up inspection will take place after Endeavour undocks from the station. Astronaut Terry Virts, STS-130 pilot, attired in a training version of his shuttle launch and entry suit, occupies the pilot’s station during a training session in the Mission Simulation Development Facility at NASA’s Johnson Space Center. FEBRUARY 2010 MISSION OVERVIEW 3 While the inspection takes place, Behnken and firings to fine-tune Endeavour’s path to the Patrick will prepare the spacesuits they will complex, the shuttle will arrive at a point about wear for their three spacewalks out of the Quest 600 feet directly below the station about an airlock at the station. Robinson will assist with hour before docking. At that time, Zamka will spacewalk tool preparation that day as he will execute the rendezvous pitch maneuver, a serve as the internal choreographer of the one-degree-per-second rotational “backflip” to excursions. Docking preparations will occupy enable station crew members to snap hundreds the remainder of the crew’s workday. of detailed photos of the shuttle’s heat shield and other areas of potential interest – another On the third day of the flight, Endeavour will data point for imagery analysts to pore over in be flown by Zamka and Virts on its approach determining the health of the shuttle’s thermal for docking to the station. After a series of jet protection system. Astronaut George Zamka (foreground), STS-130 commander; and astronaut Nicholas Patrick, mission specialist, work with an Extravehicular Mobility Unit (EMU) spacesuit during a training session in an International Space Station mock-up/trainer in the Space Vehicle Mock-up Facility at NASA’s Johnson Space Center. 4 MISSION OVERVIEW FEBRUARY 2010 Once the rotation is completed, Zamka will fly Behnken (EV 1) will wear a suit with stripes. Endeavour in front of the station before slowly Patrick (EV 2) will wear a suit with no stripes. closing in for a linkup to the forward docking Behnken performed three spacewalks during port on the Harmony module. Less than the STS-123 mission in March 2008 totaling two hours later, hatches will be opened 19 hours and 19 minutes. The spacewalks between the two spacecraft
Recommended publications
  • Charles Bolden, NASA Administrator Science and Technology Policy Institute Washington, DC August 14, 2012 • Thank You, Mark [D
    Charles Bolden, NASA Administrator Science and Technology Policy Institute Washington, DC August 14, 2012 Thank you, Mark [Dr. Mark Lewis] for that gracious introduction and for the opportunity to talk with you about some of the many exciting things that are happening at NASA. This is my first public speaking opportunity since last week’s historic landing of the Curiosity rover on the surface of Mars – so I can’t help but begin by sharing our excitement about this success and what it means going forward. I hope you all got a chance to see this historic achievement and are following the steady flow of stunning pictures on NASA.gov. 1 As you may know, Curiosity is the most sophisticated rover ever built and sent to another planet. For the next two years, it will seek to answer ago-old questions about whether life ever existed on Mars – or if the planet can sustain life in the future. The landing, which was dubbed “Seven Minutes of Terror,” was the most difficult and challenging mission in the history of robotic planetary exploration. New technologies previously unused or proven were created for this journey. Quite frankly, we did not know if we would make it, but we went for the gold and scored a perfect 10. This was an amazing achievement, made possible by a team of scientists and engineers from around the world and led by the extraordinary men and women of NASA and our Jet Propulsion Lab in Pasadena, California. 2 I know that this group is very interested in the cost-benefit analysis of the nation’s investment in science and technology.
    [Show full text]
  • Spacex Launch Manifest - a List of Upcoming Missions 25 Spacex Facilities 27 Dragon Overview 29 Falcon 9 Overview 31 45Th Space Wing Fact Sheet
    COTS 2 Mission Press Kit SpaceX/NASA Launch and Mission to Space Station CONTENTS 3 Mission Highlights 4 Mission Overview 6 Dragon Recovery Operations 7 Mission Objectives 9 Mission Timeline 11 Dragon Cargo Manifest 13 NASA Slides – Mission Profile, Rendezvous, Maneuvers, Re-Entry and Recovery 15 Overview of the International Space Station 17 Overview of NASA’s COTS Program 19 SpaceX Company Overview 21 SpaceX Leadership – Musk & Shotwell Bios 23 SpaceX Launch Manifest - A list of upcoming missions 25 SpaceX Facilities 27 Dragon Overview 29 Falcon 9 Overview 31 45th Space Wing Fact Sheet HIGH-RESOLUTION PHOTOS AND VIDEO SpaceX will post photos and video throughout the mission. High-Resolution photographs can be downloaded from: http://spacexlaunch.zenfolio.com Broadcast quality video can be downloaded from: https://vimeo.com/spacexlaunch/videos MORE RESOURCES ON THE WEB Mission updates will be posted to: For NASA coverage, visit: www.SpaceX.com http://www.nasa.gov/spacex www.twitter.com/elonmusk http://www.nasa.gov/nasatv www.twitter.com/spacex http://www.nasa.gov/station www.facebook.com/spacex www.youtube.com/spacex 1 WEBCAST INFORMATION The launch will be webcast live, with commentary from SpaceX corporate headquarters in Hawthorne, CA, at www.spacex.com. The webcast will begin approximately 40 minutes before launch. SpaceX hosts will provide information specific to the flight, an overview of the Falcon 9 rocket and Dragon spacecraft, and commentary on the launch and flight sequences. It will end when the Dragon spacecraft separates
    [Show full text]
  • One Small Step for the EPA, One Giant Leap for the Environment: a Hybrid Proposal for Regulating Rocket Emissions Due to the Rising Commercial Space Industry
    NOTES One Small Step for the EPA, One Giant Leap for the Environment: A Hybrid Proposal for Regulating Rocket Emissions Due to the Rising Commercial Space Industry Ashima Talwar* I. Introduction As the industry matures and costs decrease, satellite launches and space tourism will likely become commonplace. When asked what they want to be when they grow up, kids Scientists predict that these aggregated rocket emissions often respond, “An astronaut! I want to go to space!” But this could significantly exacerbate changes to the climate and the generation of children may not need to become astronauts ozone layer.3 Neither Congress nor the U.S. Environmental to go to space—the commercial space industry is rapidly on Protection Agency (“EPA”) has yet addressed this concern the rise. through legislation or regulation. However, in a policy deter- Along with the excitement at the prospect of space explo- mination letter, the EPA categorized rocket launching as a ration, tourism, and commercial enterprise, however, comes mobile source activity rather than a stationary source activity a new set of problems for the environmental and legal com- under the Clean Air Act (“CAA”), absolving a space com- munities to solve. One such difficulty this boon of progress pany of potential permitting requirements.4 This conclusion will pose is the emissions of air pollutants. Simply watch- provided the EPA less oversight over the company’s emissions ing a rocket lift off, with billows of black smoke gathering and lowered the company’s administrative burden. Although ominously below, should concern any environmentalist. the EPA’s decision is based on sound logic, it requires clarifi- Some experts have noted the relatively low environmental cation so that the burgeoning commercial space industry has cost attributed to rocket launches, based on certain exhaust certainty in how it can expect to be regulated in the future.
    [Show full text]
  • AAS/AIAA Astrodynamics Specialist Conference
    DRAFT version: 7/15/2011 11:04 AM http://www.alyeskaresort.com AAS/AIAA Astrodynamics Specialist Conference July 31 ‐ August 4, 2011 Girdwood, Alaska AAS General Chair AIAA General Chair Ryan P. Russell William Todd Cerven Georgia Institute of Technology The Aerospace Corporation AAS Technical Chair AIAA Technical Chair Hanspeter Schaub Brian C. Gunter University of Colorado Delft University of Technology DRAFT version: 7/15/2011 11:04 AM http://www.alyeskaresort.com Cover images: Top right: Conference Location: Aleyska Resort in Girdwood Alaska. Middle left: Cassini looking back at an eclipsed Saturn, Astronomy picture of the day 2006 Oct 16, credit CICLOPS, JPL, ESA, NASA; Middle right: Shuttle shadow in the sunset (in honor of the end of the Shuttle Era), Astronomy picture of the day 2010 February 16, credit: Expedition 22 Crew, NASA. Bottom right: Comet Hartley 2 Flyby, Astronomy picture of the day 2010 Nov 5, Credit: NASA, JPL-Caltech, UMD, EPOXI Mission DRAFT version: 7/15/2011 11:04 AM http://www.alyeskaresort.com Table of Contents Registration ............................................................................................................................................... 5 Schedule of Events ................................................................................................................................... 6 Conference Center Layout ........................................................................................................................ 7 Conference Location: The Hotel Alyeska ...............................................................................................
    [Show full text]
  • Nasa Advisory Council Human Exploration and Operations
    NASA ADVISORY COUNCIL HUMAN EXPLORATION AND OPERATIONS COMMITTEE NASA Headquarters Washington, DC January 13-14, 2021 MEETING REPORT _____________________________________________________________ N. Wayne Hale, Chair ____________________________________________________________ Bette Siegel, Executive Secretary Table of Contents Call to Order 3 Commercial Crew Program 5 Public Comments 8 Artemis Program 9 SMD Artemis CLPS Activities 11 Moon to Mars Update 12 Solar System and Beyond 12 HERMES Instrument Update Artemis III SDT Update Advancing Biological and Physical Sciences Through Lunar Exploration 14 SMD Mars Science Update 14 Artemis Accords 15 Planetary Protection Activities 15 Discussion/Findings and Recommendations 16 Appendix A- Attendees Appendix B- HEOC Membership Appendix C- Presentations Appendix D- Agenda Appendix E- Chat Transcript Prepared by Joan M. Zimmermann Zantech IT, Inc. 2 January 13, 2021 Call to order and welcome Dr. Bette Siegel, Executive Secretary of the Human Exploration and Operations Committee (HEOC), called the meeting to order, and provided details of the Federal Advisory Committee Act (FACA), which provides governance rules for the meeting. She introduced Mr. N. Wayne Hale, Chair of the HEOC. Mr. Hale noted to the public that this particular HEO meeting counts as the last meeting of 2020, and the next scheduled meeting in March/April will be the first meeting of 2021. Mr. Hale welcomed three new members, Ms. Lynn Cline, Mr. David Thompson, and Mr. Kwatsi Alibaruho. The present meeting is focused on an update on the HEO areas, and a joint meeting with the NASA Advisory Council (NAC) Science Committee. Mr. Hale asked if NAC Chair, General Lester Lyles, who was attending the meeting virtually, had any remarks to proffer.
    [Show full text]
  • Parent Memo-26 |
    Dear Parent, Hope you are well, As part of our Science and Technology Week, we are pleased to inform you that we will be hosting special events and activities for all students. One of the highlighted activities is a visit by a special guest speaker, Astronaut Nicole Stott. Nicole Stott is an American engineer and a retired NASA astronaut. She worked for NASA for 27 years in various positions and is one of very few women who conducted a spacewalk. Astronaut Stott served as a Flight Engineer on ISS Expedition 20 and Expedition 21 and was a Mission Specialist on STS-128 and STS-133. Please find attached her biography which denotes her very impressive career as an engineer, astronaut and director of missions. Nicole is the first person to tweet from space, and is an artist who has created several paintings while in space. She represents a perfect example of why we believe art must be integrated into the world of STEM to inspire creativity and innovation. This celebrated astronaut will be interacting with all of our students virtually starting May 3rd until May 6th 2020. Please find below the scheduled visits: Grade Date / Time Grades 5 and 6 Sunday, May 3rd at 1:00 p.m. Grades 7 and 8 Monday, May 4th at 1:00 p.m. Grades 9 and 10 Tuesday, May 5th at 1:00 p.m. Grades 11 and 12 Wednesday, May 6th at 1:00 p.m. Zoom Meeting IDs will be emailed to all students the night before. Each class will submit questions to the teachers beforehand and 6 of the best questions will be asked in the session to be answered by Astronaut Stott.
    [Show full text]
  • Tventy Five Years with CANADARM
    Canada celebrates Tventy five years with CANADARM -Canada’s ticket to the Space Shuttle and ISS Human participation is necessary in order to build large constructions in Like a space – that is a fact, to put it mildly human arm - but without the use of the right tools it will be impossible. With nerves When the plans for a shuttle of copper wiring, system first were introduced, a bones of graphite manipulator system was introduced as fibre, and electric a necessity, a robotic arm that could motors for muscles, deploy and retrieve space hardware Canadarm is like from the payload bay of the shuttle. the human arm. It Canadian industrial companies has rotating joints: accepted the challenge, and the two at the shoulder, manipulator system, Canadarm, made one at the elbow its space debut in November, 1981. and three at the The design and building of the Shuttle wrist. At 15 metres Remote Manipulator System also and weighing less marked the beginning of Canada’s than 480 kilograms, close collaboration with NASA in Canadarm can manned space flight. lift over 30,000 But the development did not kilograms in the stop there. A similar system for the weightlessness of Canadarm2 gives Canadian scientists space station was developed, and in space-or the mass of a fully loaded access to the Station’s laboratory April 2001, Space Shuttle Endeavour bus, using less electricity than a facilities to conduct experiments. delivered a package that was Canada’s teakettle. It also entitles key contribution to the International The brain of “In fact, the Station could Canada to send the system is a an astronaut to Space Station, the Canadarm 2.
    [Show full text]
  • STS-134 Press
    CONTENTS Section Page STS-134 MISSION OVERVIEW ................................................................................................ 1 STS-134 TIMELINE OVERVIEW ............................................................................................... 9 MISSION PROFILE ................................................................................................................... 11 MISSION OBJECTIVES ............................................................................................................ 13 MISSION PERSONNEL ............................................................................................................. 15 STS-134 ENDEAVOUR CREW .................................................................................................. 17 PAYLOAD OVERVIEW .............................................................................................................. 25 ALPHA MAGNETIC SPECTROMETER-2 .................................................................................................. 25 EXPRESS LOGISTICS CARRIER 3 ......................................................................................................... 31 RENDEZVOUS & DOCKING ....................................................................................................... 43 UNDOCKING, SEPARATION AND DEPARTURE ....................................................................................... 44 SPACEWALKS ........................................................................................................................
    [Show full text]
  • International Space Medicine Summit 2018
    INTERNATIONAL SPACE MEDICINE SUMMIT 2018 October 25–28, 2018 • Rice University’s Baker Institute for Public Policy • Houston, Texas INTERNATIONAL SPACE MEDICINE SUMMIT 2018 October 25–28, 2018 • Rice University’s Baker Institute for Public Policy • Houston, Texas About the Event As we continue human space exploration, much more research is needed to prevent and/or mitigate the medical, psychological and biomedical challenges spacefarers face. The International Space Station provides an excellent laboratory in which to conduct such research. It is essential that the station be used to its fullest potential via cooperative studies and the sharing of equipment and instruments between the international partners. The application of the lessons learned from long-duration human spaceflight and analog research environments will not only lead to advances in technology and greater knowledge to protect future space travelers, but will also enhance life on Earth. The 12th annual International Space Medicine Summit on Oct. 25-28, 2018, brings together the leading physicians, space biomedical scientists, engineers, astronauts, cosmonauts and educators from the world’s spacefaring nations for high-level discussions to identify necessary space medicine research goals as well as ways to further enhance international cooperation and collaborative research. All ISS partners are represented at the summit. The summit is co-sponsored by the Baker Institute Space Policy Program, Texas A&M University College of Engineering and Baylor College of Medicine. Organizers Rice University’s Baker Institute for Public Policy The mission of Rice University’s Baker Institute is to help bridge the gap between the theory and practice of public policy by drawing together experts from academia, government, media, business and nongovernmental organizations.
    [Show full text]
  • Bibliographic Essay and Chapter Notes
    BIBLIOGRAPHIC ESSAY People make history; then, the history becomes documented through primary texts and official records. However, the history of Shuttle-Mir comes first from those who experienced it. This book presents the human side through a detailed chronology and background information. Much of the material was provided by the NASA Johnson Space Center Oral History Project for which dozens of Shuttle-Mir participants (see list below) offered their words, their stories, their memories. Historian Stephen Ambrose wrote in the introduction to his book, Citizen Soldiers, “Long ago my mentors … taught me to let my characters speak for themselves by quoting them liberally. They were there. I wasn't. They saw with their own eyes; they put their lives on the line. I didn't. They speak with an authenticity no one else can match. Their phrases, their word choices, their slang are unique — naturally enough, as their experiences were unique.” 1 Shuttle-Mir was likewise unique. And, its oral histories will continue through the years to illustrate the humanity and illuminate the importance of the Program. Also, this book reflects the changing of the times. The Internet came of age during the Shuttle-Mir Program, and many of the book’s sources reflect the Internet’s capabilities. For historical background, NASA history offices maintain an ever-growing library of electronic texts. NASA’s various Centers maintain Internet Web sites pertinent to their missions, such as the Shuttle launch records at Kennedy Space Center and human spaceflight information at the Johnson Space Center (JSC). During and after the Program, JSC hosted a Shuttle-Mir Web site that included weekly updates and interviews.
    [Show full text]
  • Mary Ellen Weber, Ph.D
    Biographical Data Lyndon B. Johnson Space Center National Aeronautics and Houston, Texas 77058 Space Administration March 2018 MARY ELLEN WEBER, PH.D. NASA ASTRONAUT (FORMER) PERSONAL DATA: Dr. Weber was born in 1962 in Cleveland, Ohio. Bedford Heights, Ohio, is her hometown. She is married to Dr. Jerome Elkind, who is originally from Bayonne, New Jersey. She is an avid skydiver and golfer, and also enjoys scuba diving. Her mother, Joan Weber, currently resides in Mentor, Ohio. Her father, Andrew Weber, Jr., is deceased. EDUCATION: Graduated from Bedford High School in 1980; received a Bachelor of Science degree in Chemical Engineering (with honors) from Purdue University in 1984; received a Ph.D. in Physical Chemistry from the University of California at Berkeley in 1988; and received a Master of Business Administration degree from Southern Methodist University in 2002. EXPERIENCE: During her undergraduate studies at Purdue, Dr. Weber was an engineering intern at Ohio Edison, Delco Electronics and 3M. Following this, in her doctoral research at Berkeley, she explored the physics of gas-phase chemical reactions involving silicon. She then joined Texas Instruments to research new processes for making computer chips. Texas Instruments assigned her to a consortium of semiconductor companies, SEMATECH, and subsequently, to Applied Materials, to create a revolutionary reactor for manufacturing next-generation chips. She has received one patent and published eight papers in scientific journals. Dr. Weber has logged nearly 5,000 skydives and is an active skydiver, with 13 silver and bronze medals to date at the U.S. National Skydiving Championships and a world record in 2002 for the largest freefall formation, with 300 skydivers.
    [Show full text]
  • Professor Jun'ichiro Kawaguchi: Particles Brought Back From
    Japan Aerospace Exploration Agency January 2011 No. 03 Special Features Professor Jun’ichiro Kawaguchi: Refl ecting on the Hayabusa mission and the future of space exploration Particles brought back from Asteroid Itokawa: What methods did researchers use to discover particles inside Hayabusa’s sample-return capsule? Contents No. 03 Japan Aerospace Exploration Agency 1−7 Interview with Professor Jun’ichiro Welcome to JAXA TODAY Kawaguchi The Japan Aerospace Exploration Agency (JAXA) works to realize its Midori Nishiura, advisor to JAXA vision of contributing to a safe and prosperous society through the on public affairs, interviewed pursuit of research and development in the aerospace fi eld to deepen Professor Jun’ichiro Kawaguchi humankind’s understanding of the universe. JAXA’s activities cover a on such topics as the development broad spectrum of the space and aeronautical fi elds, including satellite of Japan’s space probes and the development and operation, astronomical observation, planetary future of space exploration. exploration, participation in the International Space Station (ISS) project, and the development of new rockets and next-generation aeronautical technology. 8-11 With the aim of disseminating information about JAXA’s activities How many particles from Itokawa and recent news relating to Japan’s space development programs to was Hayabusa able to capture? as wide an audience as possible, we launched JAXA TODAY in January 2010. Marking the fi rst anniversary of the launch of JAXA TODAY, in What methods did research- this, the third issue, we feature an interview with Professor Jun’ichiro ers use to discover the particles Kawaguchi, who led the Hayabusa project, and also provide a close-up brought back from Asteroid look at how the particles brought back from Asteroid Itokawa were dis- Itokawa inside Hayabusa’s covered inside Hayabusa’s sample-return capsule.
    [Show full text]