Osteology and Relationships of the Lanternfishes (Family Myctophidae) X I 03 on Icht Ny in I Notolychn I Ni Gym Nosc Omani

Total Page:16

File Type:pdf, Size:1020Kb

Osteology and Relationships of the Lanternfishes (Family Myctophidae) X I 03 on Icht Ny in I Notolychn I Ni Gym Nosc Omani OSTEOLOGY AND RELATIONSHIPS OF THE LANTERNFISHES (FAMILY MYCTOPHIDAE) X I 03 ON ICHT NY IN I NOTOLYCHN I NI GYM NOSC OMANI 1 ./' WIC TOPHIN I DIAPHINI MYCTOPHINAE LAMPANYCTINAE Tribal relationships within the family Myctophidae, illustrating photophore patterns of repre- sentative species. OSTEOLOGY AND RELATIONSHIPS OF THE LANTERNFISHES (FAMILY MYCTOPHIDAE) By JOHN R. PAXTON BULLETIN OF THE NATURAL HISTORY MUSEUM OF LOS ANGELES COUNTY SCIENCE: NUMBER 13 JUNE 28, 1972 PROFESSIONAL PUBLICATIONS OF THE NATURAL HISTORY MUSEUM OF LOS ANGELES COUNTY The professional publications of the Natural History Museum of Los Angeles County include two series, Contributions and Bulletins. In the past, articles, monographs and cata- logs in the fields of history and science have appeared under various headings—Contribu- tions, Science Series, History Leaflet Series and unnumbered catalogs of exhibitions and collections. To simplify and to standardize matters, all professional publications of the History and Science Division of the Museum will now be issued at irregular intervals either as Contributions, or as Bulletins. The former will contain short, technical papers which may be occasionally gathered in volumes, octavo in size. The latter will contain longer, separate monographs and catalogs, usually quarto in size, although this will depend on the needs of the presentation. Papers in each series are to be numbered consecutively. These papers are original articles and studies based on the collections and work of the Museum, presenting newly acquired information and understanding in the fields of Anthro- pology, Botany, Geology, History, Mineralogy, Paleontology, Technology and Zoology. GILES W. MEAD, Director Natural History Museum of Los Angeles County VIRGINIA D. MILLER Editor All communications concerning science manuscripts, exchange of science publications, and the purchase of science publications should be sent to the Editor, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007. TABLE OF CONTENTS INTRODUCTION 1 Historical Review 3 Acknowledgments 4 MATERIALS AND METHODS 5 OSTEOLOGY 9 Superficial Dermal Bones 9 Mandibular Arch .................................................................................................................. 12 Palatine Arch ....................................................................................................................... 17 Hyoid Arch ............................................................................................................................. 19 Opercular Apparatus 23 Branchi al Arches .................................................................................................................... 24 Pectoral Girdle 28 Pelvic Girdle 31 Axial Skeleton ........................................................................................................................ 32 Caudal Skeleton 32 LUMINESCENT ORGANS ........................................................................................................................................... 37 Luminous Tissue ................................................................................................................... 37 Photophores ............................................................................................................................ 38 THE EVOLUTIONARY LINEAGES ........................................................................................................................... 40 Key to the Supraspecific Taxa .............................................................................................. 51 EVOLUTIONARY RELATIONSHIPS ........................................................................................................................... 54 Familial Affinities ................................................................................................................. 54 Subfamilial Relationships .................................................................................................... 56 Tribal Relationships 58 Generic Relationships .......................................................................................................... 63 EVOLUTIONARY SIGNIFICANCE OF PHOTOPHORE PATTERNS ............................................................... 73 LITERATURE CITED .................................................................................................................................................... 78 ••■ OSTEOLOGY AND RELATIONSHIPS OF THE 1 LANTERNFISHES (FAMILY MYCTOPHIDAE) By JOHN R. PAXTON2 ABSTRACT: Analyses of the osteological features, except the neurocra- nium and axial skeleton, and the luminescent organs of representatives of all currently recognized genera in the family Myctophidae revealed a number of evolutionary trends and groups within the family. The subfamilies Mycto- phinae and Lampanyctinae differ in the number of extrascapular elements, the presence or absence of a shelf on the cleithrum, the number and position of the Pic photophores, and the shape of the larval eyes. Two tribes, the Myc- tophini and the Gonichthyini, within the Myctophinae differ in the shape of the antorbital bone, the length of the jaw, the fusion of the procurrent caudal rays, and the position of the mouth and PLO photophore. The Myctophini includes the genera Protomyctophum, Electrona, Diogenichthys, Benthosema, Hygophum, Myctophum, and Symbolophorus; the Gonichthyini includes Loweina, Tarletonbeania, Gonichthys, and Centrobranchus. Four tribes, the Notolychnini, Lampanyctini, Diaphini, and Gymnoscopelini, comprise the subfamily Lampanyctinae. The monotypic Notolychnini displays some char- acters of each subfamily. The remaining three tribes differ in the number, shape, or position of the procurrent caudal rays, distal pectoral radials, supra- maxillary, dentary teeth, and Dn, PO, and PVO photophores. The Lam- panyctini includes the genera Lam padena, Taaningichthys, Bolinichthys, Lepidophanes, Ceratoscopelus, Stenobrachius, Lampanyctus, and Triphoturus. Diaphus and Lobianchia comprise the Diaphini and Lampanyctodes, Gymno- scopelus, Notoscopelus, Scopelopsis, Lampichthys, and Hintonia the Gymnoscopelini. Osteological evidence indicates that myctophids are most closely related to and probably derived from the family Neoscopelidae. A supramaxillary is present in some species, as is a foramen in the ceratohyal, features not pre- viously reported for the family. Osteological trends within the family include streamlining of the body in the Gonichthyini, lengthening of the jaws, sculp- turing of the circumorbitals, and fusion of the extrascapulars in the Lam- panyctinae, increase in the number of procurrent caudal rays and develop- ment of a supramaxillary in the Gymnoscopelini, and a fusion of these rays in a number of lines. Changes in photophore pattern and development of secondary luminous structures closely parallel the osteological trends apparent in the various lineages and the phylogeny presented is basically similar to those previously proposed on the basis of photophore patterns alone. INTRODUCTION Myctophids undertake extensive vertical migra- tions; in one study they were found to range diur- Lantemfishes of the family Myctophidae are nally from 400 to 750 meters and nocturnally to world-wide in distribution and are found in the the upper 100 meters (Paxton, 1967a). Many midwater regions of all major oceans. Myctophids species are taken at the surface under a night-light, are the most speciose of midwater fish families with more than 300 nominal species and probably about 200 valid species. In a long-term trawling 'EDITORIAL COMMITTEE FOR THIS BULLETIN Robert J. Lavenberg project off Bermuda, these representatives of the H. Goeffrey Moser order Myctophiformes (Iniomi, Scopeliformes) Basil G. Nafpaktitis were second only to the bristlemouth Cyclot hone of Camm C. Swift the family Gonostomatidae in the number of speci- 'The Australian Museum, Sydney, New South Wales, mens captured (Beebe, 1937) ; in many areas, Australia; and Research Associate in Ichthyology, lantemfishes make up the largest fish biomass of a Natural History Museum of Los Angeles County, Los midwater trawl catch. Angeles, Calif. 90007. 1 2 BULLETIN OF THE NATURAL HISTORY MUSEUM OF LOS ANGELES COUNTY No.13 while a very few forms apparently undergo no phology and position of body photophores do not vertical migration. Studies on the migration pat- suggest their adaptive significance, and several terns and swimbladder structure have indicated that hypotheses have been advanced to explain the lanternfishes are important contributors to the relatively common occurrence of luminous organs sonic scattering layers; bathyscaphe observations or tissue on the bodies of deep sea fishes. Harvey have confirmed that their migrations correspond (1952) and McAllister (1967) have made the to the scattering layer migrations (Barham, 1966; most extensive, recent reviews on the subject. Backus et al., 1968). Recent captures indicate None of the proposed hypotheses have been some species are associated with the bottom and tested experimentally in midwater fishes, because not restricted to the midwaters. none can presently be maintained alive for any Myctophids are utilized as a food source by length of time. In the shallow water midshipman many larger organisms, including a number of Porichthys, photophore display during courtship commercially important fishes. Lanternfishes them- has been reported (Crane, 1965). Most species of
Recommended publications
  • CHECKLIST and BIOGEOGRAPHY of FISHES from GUADALUPE ISLAND, WESTERN MEXICO Héctor Reyes-Bonilla, Arturo Ayala-Bocos, Luis E
    ReyeS-BONIllA eT Al: CheCklIST AND BIOgeOgRAphy Of fISheS fROm gUADAlUpe ISlAND CalCOfI Rep., Vol. 51, 2010 CHECKLIST AND BIOGEOGRAPHY OF FISHES FROM GUADALUPE ISLAND, WESTERN MEXICO Héctor REyES-BONILLA, Arturo AyALA-BOCOS, LUIS E. Calderon-AGUILERA SAúL GONzáLEz-Romero, ISRAEL SáNCHEz-ALCántara Centro de Investigación Científica y de Educación Superior de Ensenada AND MARIANA Walther MENDOzA Carretera Tijuana - Ensenada # 3918, zona Playitas, C.P. 22860 Universidad Autónoma de Baja California Sur Ensenada, B.C., México Departamento de Biología Marina Tel: +52 646 1750500, ext. 25257; Fax: +52 646 Apartado postal 19-B, CP 23080 [email protected] La Paz, B.C.S., México. Tel: (612) 123-8800, ext. 4160; Fax: (612) 123-8819 NADIA C. Olivares-BAñUELOS [email protected] Reserva de la Biosfera Isla Guadalupe Comisión Nacional de áreas Naturales Protegidas yULIANA R. BEDOLLA-GUzMáN AND Avenida del Puerto 375, local 30 Arturo RAMíREz-VALDEz Fraccionamiento Playas de Ensenada, C.P. 22880 Universidad Autónoma de Baja California Ensenada, B.C., México Facultad de Ciencias Marinas, Instituto de Investigaciones Oceanológicas Universidad Autónoma de Baja California, Carr. Tijuana-Ensenada km. 107, Apartado postal 453, C.P. 22890 Ensenada, B.C., México ABSTRACT recognized the biological and ecological significance of Guadalupe Island, off Baja California, México, is Guadalupe Island, and declared it a Biosphere Reserve an important fishing area which also harbors high (SEMARNAT 2005). marine biodiversity. Based on field data, literature Guadalupe Island is isolated, far away from the main- reviews, and scientific collection records, we pres- land and has limited logistic facilities to conduct scien- ent a comprehensive checklist of the local fish fauna, tific studies.
    [Show full text]
  • E 139 García-Godos Et Al.Pmd
    LAJAM 6(2): 171-183, December 2007 ISSN 1676-7497 PREY OCCURRENCE IN THE STOMACH CONTENTS OF FOUR SMALL CETACEAN SPECIES IN PERU IGNACIO GARCÍA-GODOS1,*, KOEN VAN WAEREBEEK2, JULIO C. REYES3, JOANNA ALFARO-SHIGUETO4,5 AND MILENA ARIAS-SCHREIBER6 ABSTRACT: The diets of long-beaked common dolphins Delphinus capensis (n=117), dusky dolphins Lagenorhynchus obscurus (n=72), Burmeister’s porpoises Phocoena spinipinnis (n=69) and offshore common bottlenose dolphins Tursiops truncatus (n=22) were determined based on the analysis of the stomach contents collected from animals landed in ports along the Peruvian central coast and from Marcona, in southern Peru, during 1987-1993. The number of prey ingested was obtained by counting the number of fish otoliths and cephalopod mandibles (beaks). Only fish could be identified to species level. Long-beaked common dolphins fed mainly on Peruvian anchovy Engraulis ringens (70.0% by number), Panama lightfish Vincigerria lucetia (7.8%) and slimtail lanternfish Lampanyctus parvicauda (6.7%). Dusky dolphins consumed mainly anchovies (49.7%, 16.8%), slimtail lanternfish (23.6%, 0.1%), Inca scad Trachurus murphyi (17.1%, 0%) and mote sculpin Normanichthys crockeri (0%, 76.0%) off the central Peruvian coast and Marcona, respectively. In the same areas, Burmeister’s porpoises fed mainly on anchovy (88.9%, 77.6%), silverside Odontesthes regia (6.5%, 0%), mote sculpin (0%, 8.1%) and South Pacific hake Merluccius gayi (0.6%, 7.9%). Offshore common bottlenose dolphins consumed mainly slimtail lanternfish (39.2%), barracuda Sphyraena sp. (13.5%) and Peruvian pilchard Sardinops sagax (13.3%). The diversity indices of the diet and temporal shifts in the main prey suggest an opportunistic feeding strategy for the four cetacean species studied, which take advantage of the locally most available epipelagic and mesopelagic schooling fish.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Review: the Energetic Value of Zooplankton and Nekton Species of the Southern Ocean
    Marine Biology (2018) 165:129 https://doi.org/10.1007/s00227-018-3386-z REVIEW, CONCEPT, AND SYNTHESIS Review: the energetic value of zooplankton and nekton species of the Southern Ocean Fokje L. Schaafsma1 · Yves Cherel2 · Hauke Flores3 · Jan Andries van Franeker1 · Mary‑Anne Lea4 · Ben Raymond5,4,6 · Anton P. van de Putte7 Received: 8 March 2018 / Accepted: 5 July 2018 / Published online: 18 July 2018 © The Author(s) 2018 Abstract Understanding the energy fux through food webs is important for estimating the capacity of marine ecosystems to support stocks of living resources. The energy density of species involved in trophic energy transfer has been measured in a large number of small studies, scattered over a 40-year publication record. Here, we reviewed energy density records of Southern Ocean zooplankton, nekton and several benthic taxa, including previously unpublished data. Comparing measured taxa, energy densities were highest in myctophid fshes (ranging from 17.1 to 39.3 kJ g−1 DW), intermediate in crustaceans (7.1 to 25.3 kJ g−1 DW), squid (16.2 to 24.0 kJ g−1 DW) and other fsh families (14.8 to 29.9 kJ g−1 DW), and lowest in jelly fsh (10.8 to 18.0 kJ g−1 DW), polychaetes (9.2 to 14.2 kJ g−1 DW) and chaetognaths (5.0–11.7 kJ g−1 DW). Data reveals diferences in energy density within and between species related to size, age and other life cycle parameters. Important taxa in Antarctic food webs, such as copepods, squid and small euphausiids, remain under-sampled.
    [Show full text]
  • Age and Growth of Brauer's Lanternfish Gymnoscopelus Braueri and Rhombic Lanternfish Krefftichthys Anderssoni (Family Myctophidae) in the Scotia Sea, Southern Ocean
    Received: 22 July 2019 Accepted: 14 November 2019 DOI: 10.1111/jfb.14206 REGULAR PAPER FISH Age and growth of Brauer's lanternfish Gymnoscopelus braueri and rhombic lanternfish Krefftichthys anderssoni (Family Myctophidae) in the Scotia Sea, Southern Ocean Ryan A. Saunders1 | Silvia Lourenço2,3 | Rui P. Vieira4 | Martin A. Collins1 | Carlos A. Assis5,6 | Jose C. Xavier7,1 1British Antarctic Survey, Natural Environment Research Council, Cambridge, UK Abstract 2MARE - Marine and Environmental Sciences This study examines age and growth of Brauer's lanternfish Gymnoscopelus braueri and Centre, Polytechnic of Leiria, Peniche, Portugal rhombic lanternfish Krefftichthys anderssoni from the Scotia Sea in the Southern Ocean, 3CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, through the analysis of annual growth increments deposited on sagittal otoliths. Oto- University of Porto, Matosinhos, Portugal lith pairs from 177 G. braueri and 118 K. anderssoni were collected in different seasons 4 Centre for Environment Fisheries and from the region between 2004 and 2009. Otolith-edge analysis suggested a seasonal Aquaculture Sciences, Lowestoft, UK change in opaque and hyaline depositions, indicative of an annual growth pattern, 5MARE-ULisboa – Marine and Environmental Sciences Centre, Faculty of Sciences, although variation within the populations of both species was apparent. Age estimates University of Lisbon, Lisbon, Portugal varied from 1 to 6 years for G. braueri (40 to 139 mm standard length; LS)andfrom 6Department of Animal Biology, Faculty of Sciences, University of Lisbon, Lisbon, Portugal 0 to 2 years for K. anderssoni (26 to 70 mm LS). Length-at-age data were broadly con- 7Department of Life Sciences, MARE-UC, sistent with population cohort parameters identified in concurrent length-frequency University of Coimbra, Coimbra, Portugal data from the region for both species.
    [Show full text]
  • XIV. Appendices
    Appendix 1, Page 1 XIV. Appendices Appendix 1. Vertebrate Species of Alaska1 * Threatened/Endangered Fishes Scientific Name Common Name Eptatretus deani black hagfish Lampetra tridentata Pacific lamprey Lampetra camtschatica Arctic lamprey Lampetra alaskense Alaskan brook lamprey Lampetra ayresii river lamprey Lampetra richardsoni western brook lamprey Hydrolagus colliei spotted ratfish Prionace glauca blue shark Apristurus brunneus brown cat shark Lamna ditropis salmon shark Carcharodon carcharias white shark Cetorhinus maximus basking shark Hexanchus griseus bluntnose sixgill shark Somniosus pacificus Pacific sleeper shark Squalus acanthias spiny dogfish Raja binoculata big skate Raja rhina longnose skate Bathyraja parmifera Alaska skate Bathyraja aleutica Aleutian skate Bathyraja interrupta sandpaper skate Bathyraja lindbergi Commander skate Bathyraja abyssicola deepsea skate Bathyraja maculata whiteblotched skate Bathyraja minispinosa whitebrow skate Bathyraja trachura roughtail skate Bathyraja taranetzi mud skate Bathyraja violacea Okhotsk skate Acipenser medirostris green sturgeon Acipenser transmontanus white sturgeon Polyacanthonotus challengeri longnose tapirfish Synaphobranchus affinis slope cutthroat eel Histiobranchus bathybius deepwater cutthroat eel Avocettina infans blackline snipe eel Nemichthys scolopaceus slender snipe eel Alosa sapidissima American shad Clupea pallasii Pacific herring 1 This appendix lists the vertebrate species of Alaska, but it does not include subspecies, even though some of those are featured in the CWCS.
    [Show full text]
  • Order MYCTOPHIFORMES NEOSCOPELIDAE Horizontal Rows
    click for previous page 942 Bony Fishes Order MYCTOPHIFORMES NEOSCOPELIDAE Neoscopelids By K.E. Hartel, Harvard University, Massachusetts, USA and J.E. Craddock, Woods Hole Oceanographic Institution, Massachusetts, USA iagnostic characters: Small fishes, usually 15 to 30 cm as adults. Body elongate with no photophores D(Scopelengys) or with 3 rows of large photophores when viewed from below (Neoscopelus).Eyes variable, small to large. Mouth large, extending to or beyond vertical from posterior margin of eye; tongue with photophores around margin in Neoscopelus. Gill rakers 9 to 16. Dorsal fin single, its origin above or slightly in front of pelvic fin, well in front of anal fins; 11 to 13 soft rays. Dorsal adipose fin over end of anal fin. Anal-fin origin well behind dorsal-fin base, anal fin with 10 to 14 soft rays. Pectoral fins long, reaching to about anus, anal fin with 15 to 19 rays.Pelvic fins large, usually reaching to anus.Scales large, cycloid, and de- ciduous. Colour: reddish silvery in Neoscopelus; blackish in Scopelengys. dorsal adipose fin anal-fin origin well behind dorsal-fin base Habitat, biology, and fisheries: Large adults of Neoscopelus usually benthopelagic below 1 000 m, but subadults mostly in midwater between 500 and 1 000 m in tropical and subtropical areas. Scopelengys meso- to bathypelagic. No known fisheries. Remarks: Three genera and 5 species with Solivomer not known from the Atlantic. All Atlantic species probably circumglobal . Similar families in occurring in area Myctophidae: photophores arranged in groups not in straight horizontal rows (except Taaningichthys paurolychnus which lacks photophores). Anal-fin origin under posterior dorsal-fin anal-fin base.
    [Show full text]
  • Frozen Desert Alive the Role of Sea Ice for Pelagic Macrofauna and Its Predators: Implications for the Antarctic Pack-Ice Food Web
    Frozen Desert Alive The role of sea ice for pelagic macrofauna and its predators: implications for the Antarctic pack-ice food web Hauke Flores FrozenDesertAlive &#0-*#-$1#'!#$-0.#*%'!+!0-$3,,"'21.0#"2-01S '+.*'!2'-,1$-02&#,20!2'!.!)V'!#$--"5# 0',2#" 7-,1#,--'#, T4TQ""# "*#!20-,'!4#01'-,4'* *#2S &22.S 555T03%T,* ' *'-2&##) !2*-%' #12,"#, #*#).3 03% "'11#022'#1 ',"#6 %&'(S[YZV[RVXVXVVUU[VT 1%23&4(%5"1&%"%617(%(6"( FrozenDesertAlive &#0-*#-$1#'!#$-0.#*%'!+!0-$3,,"'21.0#"2-01S '+.*'!2'-,1$-02&#,20!2'!.!)V'!#$--"5# 17"8&9:1%8 2#04#0)0'(%',%4,&#2"-!2-02',"# <'1)3,"##,(23305#2#,1!&..#, ,"#1'()13,'4#01'2#'260-,',%#, -.%#8%4,"# 1#!2-0>%,'$'!31Q"0T8T?5021Q ',&#2-.#, 02#4#0"#"'%#,-. 40'("%S+#'TRR[ -+SUTSW330 "--0 HaukeFlores %# -0#,-.SZ1#.2#+ #0S[YV 2#'0#+#0&4#, 0-+-2-0 S0-$T"0T<T2T<-*$$ 9-.0-+-2-0 SB0T2TT4,80,#)#0 '#--0"#*',%1!-++'11'# S0-$T"0T'0T:T2T<T"#'0 S0-$T"0T4T5T'2&+,, S0-$T"0T8TT>T5-*!)#02 %,+#+-07-$+7%0,"+-2&#0 %,6#"#,)#,,+#',#60-!+322#0 6'1#*8*-0#1 TV&#.TS[TSVTX2,TTRRZ Contents ",%*'1&13++07 Z B32!&13++07 SS 6#0+,13++07 SV 9&.2#0S 6#,#0*%,20-"3!2'-, S[ 9&.2#0T B'#2-$25-'!#$'1&1.#!'#1$0-+2&#&-32&&&#2*," U[ %1*,"1,""*#.&,2%1*,"1QChampsocephalusgunnari ,"Chaenocephalusaceratus',TRRSTRRU PolarBiology27(2004)119R129 9&.2#0U ",#0%7!-,2#,2-$,20!2'!+#1-.#*%'!$'1&#1S XS '+.*'!2'-,1$-02&#+0',#$--"5# PolarBiology29(2006)10451051 9&.2#0V B'120' 32'-,Q 3,",!#,"#!-*-%'!*0#*#4,!#-$ YU .#*%'!$'1&#1',2&#80#4&#Q&-32&#0,7!#, MarineEcologyProgressSeries367(2008)271282 9&.2#0W
    [Show full text]
  • Using Molecular Identification of Ichthyoplankton to Monitor
    Molecular Identification of Ichthyoplankton in Cabo Pulmo National Park 1 Using molecular identification of ichthyoplankton to monitor 2 spawning activity in a subtropical no-take Marine Reserve 3 4 5 6 Ana Luisa M. Ahern1, *, Ronald S. Burton1, Ricardo J. Saldierna-Martínez2, Andrew F. Johnson1, 7 Alice E. Harada1, Brad Erisman1,4, Octavio Aburto-Oropeza1, David I. Castro Arvizú3, Arturo R. 8 Sánchez-Uvera2, Jaime Gómez-Gutiérrez2 9 10 11 12 1Marine Biology Research Division, Scripps Institution of Oceanography, University of California 13 San Diego, La Jolla, California, USA 14 2Departamento de Plancton y Ecología Marina, Centro Interdisciplinario de Ciencias Marinas, 15 Instituto Politécnico Nacional, CP 23096, La Paz, Baja California Sur, Mexico 16 3Cabo Pulmo National Park, Baja California Sur, Mexico 17 4The University of Texas at Austin, Marine Science Institute, College of Natural Sciences, 18 Port Aransas, Texas, USA 19 20 21 22 23 24 25 *Corresponding author: [email protected] 1 Molecular Identification of Ichthyoplankton in Cabo Pulmo National Park 26 ABSTRACT: Ichthyoplankton studies can provide valuable information on the species richness 27 and spawning activity of fishes, complementing estimations done using trawls and diver surveys. 28 Zooplankton samples were collected weekly between January and December 2014 in Cabo 29 Pulmo National Park, Gulf of California, Mexico (n=48). Fish larvae and particularly eggs are 30 difficult to identify morphologically, therefore the DNA barcoding method was employed to 31 identify 4,388 specimens, resulting in 157 Operational Taxonomic Units (OTUs) corresponding 32 to species. Scarus sp., Halichoeres dispilus, Xyrichtys mundiceps, Euthynnus lineatus, 33 Ammodytoides gilli, Synodus lacertinus, Etrumeus acuminatus, Chanos chanos, Haemulon 34 flaviguttatum, and Vinciguerria lucetia were the most abundant and frequent species recorded.
    [Show full text]
  • A Review of Lanternfishes (Families: Myctophidae and Neoscopelidae)
    Zoological Studies 40(2): 103-126 (2001) A Review of Lanternfishes (Families: Myctophidae and Neoscopelidae) and Their Distributions around Taiwan and the Tungsha Islands with Notes on Seventeen New Records John Ta-Ming Wang* and Che-Tsung Chen Graduate School of Fisheries Science, National Taiwan Ocean University, Keelung, Taiwan 202, R.O.C. Fax: 886-2-28106688. E-mail: [email protected] (Accepted December 20, 2000) John Ta-Ming Wang and Che-Tsung Chen (2001) A review of lanternfishes (Families: Myctophidae and Neoscopelidae) and their distributions around Taiwan and the Tungsha Islands with notes on seventeen new records. Zoological Studies 40(2): 103-126. Lanternfishes collected during 9 cruises from 1991 to 1997 were studied. The area sampled lies between 19°N and 25°N and 114°E and 123°E. The specimens collected in this area comprise 40 species belong to 16 genera, among which 17 species are first records. These first record species include Benthosema fibulatum, Bolinichthys supralateralis, Electrona risso, Hygophum proximum, H. reinhardtii, Lampadena anomala, Lobianchia gemellarii, Lampanyctus niger, L. turneri, L. tenuiformis, Myctophum asperum, M. aurolaternatum, M. nitidulum, M. spinosum, Notolychnus valdiviae, Notoscopelus caudispinosus, and N. resplendens. Among these, six species, Bolinichthys supralateralis, Electrona risso, Lampanyctus turneri, Lampadena anomala, Notolychnus valdiviae, and Notoscopelus caudispinosus, are first records for the South China Sea, and the species, Lampadena anomala is a new record for Asian oceans (Table 1). Four species (Triphoturus microchir, Diaphus diadematus, D. latus, and D. taaningi) were controversial in previous reports, so they are discussed in this study. Geographic distributions and localities of catches of all lanternfish species are shown on the maps (Figs.
    [Show full text]
  • Ketibunder Ecological2008.Pdf
    Disclaimer note This information should be considered accurate as of the date prepared, namely 2007. You acknowledge that this information may change over time and you should not assume that this information is accurate at a later date. WWF-Pakistan and the Royal Netherlands Embassy accept no responsibility for any errors, deviations and omissions in information compiled by independent consultants in this report. Please send comments regarding any errors, inconsistencies, unacknowledged use of source material or any other issue regarding this ecological baseline report as it will help to curate this database. Comments can be submitted to [email protected] Detailed Ecological Assessment Report 2008 – Keti Bunder Table of contents i List of tables vi List of figures viii List of maps and images x List of Acronyms xi List of resource people/consultants xiii Acknowledgement xiv Executive summary xv Chapter 1 Introduction…………………..………………………………… 1 1.1 Introduction to Keti Bunder….……………………………… 2 1.1.1 State of natural resources…………………………………….. 4 1.1.2 Livelihood and social aspects…………………………………. 5 1.2 Rationale and Objectives…………………………………… 6 1.2.1 Large Mammals Survey……………………………………….. 6 1.2.1.1 Rationale………………………………………………………… 6 1.2.1.2 Objectives of the study………………………………………… 7 1.2.2 Small mammal survey…………………………………………. 7 1.2.2.1 Rationale………………………………………………………… 7 1.2.2.2 Objectives of the study………………………………………... 9 1.2.3 Reptiles and amphibians survey……………………………… 10 1.2.3.1 Rationale………………………………………………………… 10 1.2.3.2 Objectives of the study………………………………………... 10 1.2.4 Birds survey…………………………………………………….. 11 1.2.4.1 Rationale………………………………………………………… 11 1.2.4.2 Objectives of the study………………………………………… 11 1.2.5 Marine Fisheries…………………………………………..
    [Show full text]
  • Peces Óseos Marinos (Pisces: Osteichthyes)
    Bibliografía sobre Biodiversidad Acuática de Chile (Pisces: Os P eces ÓseosMarinos t eich th y es) Bibliografía sobre Biodiversidad Acuática de Chile Palma, S., P. Báez & G. Pequeño (eds.). 2010 Comité Oceanográfico Nacional, Valparaíso, pp. 315-395 Peces Óseos Marinos (Pisces: Osteichthyes) Germán Pequeño1, Sylvia Sáez1 & Gloria Pizarro2 1Instituto de Zoología “Ernst F. Kilian”, Universidad Austral de Chile. Casilla 567, Valdivia, E-mail: [email protected] 2Librería Punto 4, Valdivia. RESUMEN Se presentan 1.772 referencias sobre taxonomía, sistemática y distribución geográfica de los peces óseos marinos y que siendo marinos penetran en estuarios de Chile. Se consideran peces de la costa de Chile en el continente sudamericano y también de las islas oceánicas chilenas. Palabras clave: peces, bibliografía, biodiversidad, Pacífico suroriental, Chile. ABSTRACT One thousand seven hundred and seventy-two references on taxonomy, systematics and geographical distribution of marine bony fishes and those that being marine enter in estuaries of Chile are presented. The species considered are those from the Chilean continental coast and those from the Chilean oceanic islands. Key words: fishes, bibliography, biodiversity, southeastern, Chile. INTRODUCCIÓN marinos, incursionan en estuarios, consi-derando la costa de Chile que integra el continente sudamericano Actualmente, se podría decir que las especies y aquella de las islas oceánicas. Puede observarse conocidas de peces óseos de aguas marinas chilenas que se trata de un listado bastante restringido, pero alcanzan un número cercano a las 1.050. Se supone que servirá al lector, en los aspectos científicos que dada la falta de exploración, especialmente en el básicos señalados. dominio marino, ese número debería aumentar.
    [Show full text]