Crime Scene Investigator PCR Basics™ Kit

Total Page:16

File Type:pdf, Size:1020Kb

Crime Scene Investigator PCR Basics™ Kit Biotechnology Explorer™ Crime Scene Investigator PCR Basics™ Kit Catalog #166-2600EDU explorer.bio-rad.com Note: Kit contains temperature-sensitive reagents. Open immediately upon arrival and store components at –20°C or at 4°C as indicated. Duplication of any part of this document is permitted for classroom use only. Please visit explorer.bio-rad.com to access our selection of language translations for Biotechnology Explorer kit curricula. For technical service, call your local Bio-Rad office or, in the U.S., call 1-800-424-6723 Crime Scene Investigator PCR Basics™ Kit This curriculum was developed in collaboration with Dr. Linda Strausbaugh, Director of the Center for Applied Genetics and Technology at the University of Connecticut-Storrs. This Crime Scene Investigator PCR Basics kit allows students to conduct state-of-the-art DNA pro- filing techniques and to develop an understanding of how these techniques are performed in real-world forensic science labs. Bio-Rad is grateful for Dr. Strausbaugh’s guidance and mentorship. How can DNA evidence solve crimes? DNA profiling is the use of molecular genetic methods to determine the exact genotype of a DNA sample to distinguish one human being from another. This powerful tool is now routinely used around the world for investigations of crime scenes, missing persons, mass disasters, human rights violations, and paternity testing. Crime scenes often contain biological evidence (such as blood, semen, hairs, saliva, bones, pieces of skin) from which DNA can be extracted. If the DNA profile obtained from evidence discovered at the scene of a crime matches the DNA profile of a suspect, the individual is included as a potentially guilty person; if the two DNA profiles do not match, the individual is excluded from the suspect pool. What kinds of human DNA sequences are used in crime scene investigations? There are ~3 billion bases in the human genetic blueprint – greater than 99.5% do not vary among human beings. However, a small percentage of the human DNA sequence (<0.5%) does differ, and these are the polymorphic ("many forms") sequences used in forensic applications. By universal agreement, the DNA sequences used for forensic typing are "anonymous"; that is, they are derived from regions of our chromosomes (also called loci) that do not control any known traits and have no known functions. The DNA sequences used in forensic DNA profiling are non-coding regions that contain segments of short tandem repeats or STRs. STRs are very short DNA sequences that are repeated in direct head-to-tail fashion. The example below (Figure 1) shows a locus known as TH01) actually used in forensic DNA profiling; the DNA sequence at this locus contains four repeats of [TCAT]. For the TH01 STR locus, there are many alternate polymorphic forms (alleles) that differ from each other by the number of [TCAT] repeats present in the sequence. Although more than 20 different alleles of TH01 have been discovered in people worldwide, each of us still has only two of these, one inherited from our mother and one inherited from our father. Suspect A’s DNA type for the TH01 locus is (5–3) Suspect B’s DNA type for TH01 locus is (6–10) C C C A A A 5* C C C A A A 6* C C C A A A 3* C C C A A A 10* * Number of [TCAT] repeats Fig. 1. Two sample genotypes at the TH01 locus. How are STR alleles detected? The key to DNA profiling is amplification of the copies present in the small amounts of evidentiary DNA by polymerase chain reaction (PCR). Using primers specific to the DNA sequences on either side of the STR, billions of copies of each of the two original TH01 alleles in any one person's DNA type are synthesized in the reaction. These copies contain the same number of STRs present in the original DNA copies and can be separated by size using agarose gel electrophoresis. By comparison with size standards that correspond to the known sizes of TH01 alleles, the sizes of the amplified copies can be determined. This kit allows students to simulate genotyping at a locus as commonly used in forensic typing. In real crime scene applications, DNA profiling is performed at a number of different loci to improve the power of discrimination of the testing. In simple terms, the power of discrimination is the ability of the typing to discriminate between different individuals. As an example, one locus may be able to tell the difference between one out of 1,000 people, whereas two loci can discriminate between one out of 10,000 people. The larger the number of loci typed, the more powerful the ability to discriminate. Following the DNA profiling at the simulated BXP007 locus in the Crime Scene Investigator PCR Basics kit, the teacher has the option of an additional lesson that simulates the use of the 13 core CODIS (Combined DNA Index System) loci used in actual casework. This simple exercise demonstrates the concept of increasing power of discrimination with increasing numbers of loci typed, and illustrates how even siblings can be identified by DNA profiling. Each student team will generate their own set of genotypes, collect and record data on a worksheet, and perform simple statistical calculations. Teaching Strategy – Guided Inquiry-Based Investigation The intent of this curriculum is to guide students through the thought process involved in a laboratory-based scientific investigation. Students will learn about PCR, gel electrophoresis, genotyping, and genotype matching while asking the question "How can a tiny amount of genetic material (DNA) be used to identify one person out of a billion?" In the context of a crime scene case study scenario, this activity could raise a host of questions such as "Why is this important?" The students' focus is not so much on the answer or result, but on how the result was obtained and substantiated by careful observation and analysis of their data. Students who engage in Biotechnology Explorer activities develop a positive sense of their ability to employ the scientific method to solve problems. Thought provoking questions embedded in the student manual are designed to maximize students' involvement in the laboratory. Student involvement in this process results in an increased understanding of the value of approaching a scientific challenge in an organized and logical fashion. This manual can be downloaded from the Biotechnology Explorer website. Visit us on the web at explorer.bio-rad.com, or call us in the US at 1-800-4BIORAD (1-800-424-6723). We continually strive to evolve and improve our curricula and products. We welcome your suggestions and ideas! Biotechnology Explorer Program Life Science Group Bio-Rad Laboratories Hercules, CA 94547 explorer.bio-rad.com Create context. Reinforce learning. Stay current. New scientific discoveries and technologies create more content for you to teach, but not more time. Biotechnology Explorer kits help you teach more effectively by integrating multiple core content subjects into a single lab. Connect concepts with techniques and put • Use of PCR and gel electrophoresis them into context with for DNA profiling • Use of experimental controls real-world scenarios. • Interpretation of experimental results • Use of forensic evidence in the courts Environmental Scientific and Health Inquiry Science • Population genetics • Genetic screening • Genetic databases Crime Scene • Role, place, limits of science and technology Investigator Chemistry • Privacy of information issues PCR Basics of Life Kit • DNA replication and the polymerase chain reaction (PCR) • Chemical properties of biological • Eukaryotic cell structure Cell and and organization molecules • Tissue types and biological Molecular Genetics • DNA structure and function sampling Biology • Chemistry of electrophoresis • Genetic diversity and individual identification • Mendelian genetics • Allele frequencies in Evolution • Polymorphic loci and multiple alleles populations • Genetics of noncoding DNA • Statistics, probabilities, and • Short tandem repeats (STRs) the power of discrimination • Genetic identity • Structure and function of the human genome Table of Contents Page Kit Summary ....................................................................................................................1 Kit Inventory Checklist ......................................................................................................2 Curriculum Fit ..................................................................................................................4 Background for Instructors................................................................................................6 Instructor's Advance Preparation ....................................................................................13 Lesson 1: Set Up PCR Reactions ............................................................................15 Lesson 2: Electrophoresis of PCR Products ............................................................17 Lesson 3: Drying Gels and Analysis of Results ........................................................21 Tips and Frequently Asked Questions ............................................................................23 Quick Guide ..................................................................................................................27 Student Manual ..............................................................................................................30 Lesson 1: PCR Amplification....................................................................................35 Lesson 2: Electrophoresis
Recommended publications
  • Forensic Implications of Biting Behavior: a Conceptually Underdeveloped Area of Investigation
    David A. Webb,1 B.Sc., M.Sc.; David Sweet,2 D.M.D., Ph.D.; Dayle L. Hinman,3 B.S.; and Iain A. Pretty,4 B.D.S.(Hons), M.Sc. Forensic Implications of Biting Behavior: A Conceptually Underdeveloped Area of Investigation REFERENCE: Webb DA, Sweet D, Hinman DL, Pretty IA. a more thorough understanding of why individuals bite in the com- Forensic implications of biting behavior: a conceptually underde- mission of their crimes. veloped area of investigation. J Forensic Sci 2002;47(1):103–106. The call for a greater understanding of biting behavior arose pri- marily from a perceived need to help clarify and inform legal pro- ABSTRACT: Within the context of a criminal investigation the ceedings in cases that linked biting behavior to suspects in criminal human bitemark traditionally provides the forensic dentist with both physical and biological evidence. In recent years, however, exam- trials. ples exist where in addition to discussing physical and biological A review of the current status of bitemarks in the U.S. legal sys- evidence, expert witnesses have also testified in court regarding the tem revealed cases in which the behavioral aspects of a bitemark behavioral aspects of biting behavior. Interested in this additional were introduced as evidence. The premise that if an individual has source of evidence, the authors reviewed the research literature bitten before they are more likely to bite again has been offered into from which biting behavior could be explained. The review found a hiatus of empirical knowledge in this respect, with only two papers evidence by prosecutors and tenaciously objected to by defense at- seemingly related to the topic.
    [Show full text]
  • Family Tree Dna Complaints
    Family Tree Dna Complaints If palladous or synchronal Zeus usually atrophies his Shane wadsets haggishly or beggar appealingly and soberly, how Peronist is Kaiser? Mongrel and auriferous Bradford circlings so paradigmatically that Clifford expatiates his dischargers. Ropier Carter injects very indigestibly while Reed remains skilful and topfull. Family finder results will receive an answer Of torch the DNA testing companies FamilyTreeDNA does not score has strong marks from its users In summer both 23andMe and AncestryDNA score. Sent off as a tree complaints about the aclu attorney vera eidelman wrote his preteen days you hand parts to handle a tree complaints and quickly build for a different charts and translation and. Family Tree DNA Reviews Legit or Scam Reviewopedia. Want to family tree dna family tree complaints. Everything about new england or genetic information contained some reason or personal data may share dna family complaints is the results. Family Tree DNA 53 Reviews Laboratory Testing 1445 N. It yourself help to verify your family modest and excellent helpful clues to inform. A genealogical relationship is integrity that appears on black family together It's documented by how memory and traditional genealogical research. These complaints are dna family complaints. The private history website Ancestrycom is selling a new DNA testing service called AncestryDNA But the DNA and genetic data that Ancestrycom collects may be. Available upon request to family tree dna complaints about family complaints and. In the authors may be as dna family tree complaints and visualise the mixing over the match explanation of your genealogy testing not want organized into the raw data that is less.
    [Show full text]
  • The Polymerase Chain Reaction (PCR): the Second Generation of DNA Analysis Methods Takes the Stand, 9 Santa Clara High Tech
    Santa Clara High Technology Law Journal Volume 9 | Issue 1 Article 8 January 1993 The olP ymerase Chain Reaction (PCR): The Second Generation of DNA Analysis Methods Takes the Stand Kamrin T. MacKnight Follow this and additional works at: http://digitalcommons.law.scu.edu/chtlj Part of the Law Commons Recommended Citation Kamrin T. MacKnight, The Polymerase Chain Reaction (PCR): The Second Generation of DNA Analysis Methods Takes the Stand, 9 Santa Clara High Tech. L.J. 287 (1993). Available at: http://digitalcommons.law.scu.edu/chtlj/vol9/iss1/8 This Comment is brought to you for free and open access by the Journals at Santa Clara Law Digital Commons. It has been accepted for inclusion in Santa Clara High Technology Law Journal by an authorized administrator of Santa Clara Law Digital Commons. For more information, please contact [email protected]. THE POLYMERASE CHAIN REACTION (PCR): THE SECOND GENERATION OF DNA ANALYSIS METHODS TAKES THE STAND Kamrin T. MacKnightt TABLE OF CONTENTS INTRODUCTION ........................................... 288 BASIC GENETICS AND DNA REPLICATION ................. 289 FORENSIC DNA ANALYSIS ................................ 292 Direct Sequencing ....................................... 293 Restriction FragmentLength Polymorphism (RFLP) ...... 294 Introduction .......................................... 294 Technology ........................................... 296 Polymerase Chain Reaction (PCR) ....................... 300 H istory ............................................... 300 Technology ..........................................
    [Show full text]
  • Codis Dna Database
    INDIANAPOLIS-MARION COUNTY FORENSIC SERVICES AGENCY Doctor Dennis J. Nicholas Institute of Forensic Science 40 SOUTH ALABAMA STREET INDIANAPOLIS, INDIANA 46204 PHONE (317) 327-3670 FAX (317) 327-3607 Michael Medler Laboratory Director Evidence Submission Guideline #7 CODIS DNA DATABASE The Combined DNA Index System (CODIS) is a computer database of DNA profiles used to solve crimes across the United States. In Indiana, DNA profiles obtained from the following categories can be entered into CODIS by the Indianapolis Marion County Forensic Services Agency: crime scene evidence, missing persons and unidentified human remains. The purpose of the database is to generate investigative leads. Not all cases are considered CODIS eligible. CODIS is maintained at the national level by the Federal Bureau of Investigation which has requirements to determine the eligibility of a DNA profile for CODIS entry. A continued “life of crime” or the high incidence of recidivism in criminals is the concept upon which the DNA database program is based. If a convicted offender’s profile matches crime scene evidence, this can identify a potential suspect(s). The database can also link multiple unsolved crimes to identify serial offenses and connect agencies who can then work together in the investigation. Finally, CODIS can be used to identify human remains by matching them to missing persons or to their biological relatives. To maximize the value of this program, biological evidence from unsolved crimes and missing persons cases must be analyzed and the DNA profile developed is entered into CODIS. I. NO SUSPECT/UNSOLVED CASES A. All unsolved cases with potential probative DNA qualifying case evidence, including those with no suspects, should be submitted to the Indianapolis-Marion County Forensic Services Agency (IMCFSA) for analysis.
    [Show full text]
  • The Police National DNA Database: Balancing Crime Detection, Human Rights and Privacy
    The Police National DNA Database: Balancing Crime Detection, Human Rights and Privacy A Report by GeneWatch UK The Police National DNA Database: Balancing Crime Detection, Human Rights and Privacy. A Report for GeneWatch UK by Kristina Staley January 2005 The Mill House, Manchester Road, Tideswell, Buxton Derbyshire, SK17 8LN, UK GeneWatch Phone: 01287 871898 Fax: 01298 872531 E-mail: [email protected] UK Website: www.genewatch.org Acknowledgements GeneWatch would like to thank Jan van Aken, Sarah Sexton and Paul Johnson for their helpful comments on a draft of this report. Kristina Staley would also like to thank Val Sales for her help in preparing the report. The content of the final report remains the responsibility of GeneWatch UK. Cover photograph DNA genetic fingerprinting on fingerprint blue backdrop. © Adam Hart-Davis, http://www.adam-hart-davis.org/ GeneWatch UK 2 January 2005 Contents 1 Executive summary ................................................................................................................5 2 Introduction...........................................................................................................................10 3 What is the National DNA Database?..................................................................................11 3.1 Using DNA to identify individuals...................................................................................11 3.2 How the police use DNA................................................................................................12 3.3 Concerns
    [Show full text]
  • National DNA Databases 2011
    NATIONAL FORENSIC DNA DATABASES COUNCIL FOR RESPONSIBLE GENETICS ANDREW D. THIBEDEAU, J.D. SENIOR FELLOW National DNA Databases 2011 National Forensic DNA Databases Table of Contents Executive Summary .................................................................................................................. - 5 - Summary Table ..................................................................................................................... - 5 - Laws on Point ...................................................................................................................... - 10 - Entry Criteria ...................................................................................................................... - 13 - Introduction & Trends ........................................................................................................... - 15 - National Status Reports Part I - Operational DNA Databases ........................................... - 19 - Australia............................................................................................................................... - 20 - Austria .................................................................................................................................. - 24 - Bahrain................................................................................................................................. - 27 - Belarus ................................................................................................................................. -
    [Show full text]
  • Determining the Identifiability of DNA Database Entries
    Student Paper Finalist In Proceedings of the American Medical Informatics Association Annual Symposium. pp 547-551. Nov 2000. Determining the Identifiability of DNA Database Entries Bradley Malin 1 and Latanya Sweeney 2 1Department of Biological Sciences 2School of Computer Science and Heinz School of Public Policy Carnegie Mellon University Pittsburgh, Pennsylvania CleanGene is a software program that helps determine The rise in genetic data and resulting the identifiability of sequenced DNA, independent of databases have a variety of uses in genetic and any explicit demographics or identifiers maintained molecular biology research, including the ability to with the DNA. The program computes the likelihood determine hotspots of mutation in genes and familial that the release of DNA database entries could be studies. Despite the considerable amount of basic and related to specific individuals that are the subjects of clinical research that may benefit from the availability the data. The engine within CleanGene relies on of such data, care must be taken when such data are publicly available health care data and on knowledge population based. The issue of genetic privacy is of of particular diseases to help relate identified utmost concern and must be addressed in terms of what individuals to DNA entries. Over 20 diseases, ranging information can be leaked before population based over ataxias, blood diseases, and sex-linked mutations DNA data is shared. are accounted for, with 98-100% of individuals found identifiable. We assume the genetic material is BACKGROUND released in a linear sequencing format from an individual’s genome. CleanGene and its related To facilitate radical increases in human experiments are useful tools for any institution seeking genetic research information and expedite scientific to provide anonymous genetic material for research discovery, the National Center for Biotechnology purposes.
    [Show full text]
  • National DNA Databases—Practice and Practicability. a Forum for Discussion
    International Congress Series 1261 (2004) 1–8 www.ics-elsevier.com National DNA databases—practice and practicability. A forum for discussion Peter D. Martin* Ex-Metropolitan Police Laboratory, London, La Borderie, 87440 Saint Mathieu, France Abstract. The success of the established National DNA databases (NDNAD) in linking crimes and nominating possible suspects has prompted many countries to enact legislation for the introduction of their own databases. While the technology used in the production of the DNA profiles remains consistent (there is a core set of STR loci common to all laboratories), there is considerable variation in the regulations which cover the entry of personal profiles. Five invited speakers presented the current situation with NDNADs in Europe and North America. The presentations included: (1) the various categories of crime for which a profile can be entered onto a database; (2) the numbers of profiles held on the databases; (3) whether the DNA samples can be retained for future analysis; (4) the successes of the various databases; (5) the interaction between the operators of the databases and other elements of the criminal justice systems. There were also discussions of the possible future technological developments that may affect the databases and a cautionary note on the quality measures necessary to ensure accuracy of analysis and database management and the potential for the misuse of the data retained. D 2003 Elsevier B.V. All rights reserved. Keywords: National DNA database; DNA profile; STR multiplexes 1. Introduction DNA databases for criminal offenders and unsolved crimes have now become established in many countries as an everyday tool for use in the investigation of crime.
    [Show full text]
  • 23Policemenandme: Analyzing the Constitutional Implications of Police Use of Commercial Dna Databases
    23POLICEMENANDME: ANALYZING THE CONSTITUTIONAL IMPLICATIONS OF POLICE USE OF COMMERCIAL DNA DATABASES Evan Frohman∗ INTRODUCTION In 1984, the English scientist Alec Jeffery discovered the variable DNA markers that exist within every person.1 Within a year, the English police became the first law enforcement agency to use DNA’s identification capabilities to successfully catch a criminal. 2 The technique crossed the pond to the United States and was soon followed by the creation of a national DNA profile database in 1990.3 At first, the database was just for sex offenders. Then it was for all felons, then convicted criminals, and now even arrestees. 4 Additionally, some local DNA databases, which lack the regulations and restrictions that federal law imposes on the national database, include witnesses, victims, family members of victims, and helpful citizens who responded to DNA dragnets.5 This power creep has continued as law enforcement agencies expand the DNA identification technique’s reach ever further with the implementation of familial searches, which capture individuals 6 with genetic relation to a DNA profile in the database. ∗ J.D. 2020, University of Pennsylvania Carey Law School; B.A. Political Science, Legal Studies, Economics, 2016, Northwestern University. Special thanks to Professor David Rudovsky, Dr. Stella Tsirka, Dr. Michael Frohman, (soon to be Dr.) Maddie O’Brien, and the University of Pennsylvania Journal of Constitutional Law for their support and wisdom. Sorry Mom, this is the closest I’m getting to science. 1 The History of Genetic Fingerprinting, U. OF LEICESTER, https://www2.le.ac.uk/departments/ genetics/jeffreys/history-gf (last visited Mar.
    [Show full text]
  • THE DUTCH FOCUS on DNA in the CRIMINAL JUSTICE SYSTEM: NET-WIDENING of JUDICIAL DATA John A
    THE DUTCH FOCUS ON DNA IN THE CRIMINAL JUSTICE SYSTEM: NET-WIDENING OF JUDICIAL DATA John A. E. Vervaele, F.C.W. de Graaf et N. Tielemans ERES | « Revue internationale de droit pénal » 2012/3 Vol. 83 | pages 459 à 480 Document téléchargé depuis www.cairn.info - University of Utrecht 131.211.104.202 03/05/2019 17h11. © ERES ISSN 0223-5404 ISBN 9782749236353 Article disponible en ligne à l'adresse : -------------------------------------------------------------------------------------------------------------------- https://www.cairn.info/revue-internationale-de-droit-penal-2012-3-page-459.htm -------------------------------------------------------------------------------------------------------------------- Distribution électronique Cairn.info pour ERES. © ERES. Tous droits réservés pour tous pays. La reproduction ou représentation de cet article, notamment par photocopie, n'est autorisée que dans les limites des conditions générales d'utilisation du site ou, le cas échéant, des conditions générales de la licence souscrite par votre établissement. Toute autre reproduction ou représentation, en tout ou partie, sous quelque forme et de quelque manière que ce soit, est interdite sauf accord préalable et écrit de l'éditeur, en dehors des cas prévus par la législation en vigueur en France. Il est précisé que son stockage dans une base de données est également interdit. Document téléchargé depuis www.cairn.info - University of Utrecht 131.211.104.202 03/05/2019 17h11. © ERES Powered by TCPDF (www.tcpdf.org) 101-200.qxp:RIDP vierge par 100 qxp 21/05/13 19:18 Page113 THE DUTCH FOCUS ON DNA IN THE CRIMINAL JUSTICE SYSTEM: NET-WIDENING OF JUDICIAL DATA! J.A.E. VERVAELE, F.C.W. DE GRAAF & N. TIELEMANS! Document téléchargé depuis www.cairn.info - University of Utrecht 131.211.104.202 03/05/2019 17h11.
    [Show full text]
  • A Comparative Audit of Legislative Frameworks Within the European
    A comparative audit of legislative frameworks within the European Union for the collection, retention and use of forensic DNA profiles Kristiina Reed Denise Syndercombe Court Kristiina Reed Dr. Denise Syndercombe-Court King’s College London 150 Stamford Street London, SE1 9nH, UK [email protected] [email protected] © Copyright remains with the authors The work leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 285487 (EUROFORGEN- NoE). London, UK, August 2014 (updated in June 2016) 1 Table of Contents Introduction ................................................................................................................................................ 5 Austria ........................................................................................................................................... 6 Belgium .......................................................................................................................................... 8 Bulgaria........................................................................................................................................ 11 Croatia ......................................................................................................................................... 13 Cyprus .......................................................................................................................................... 15 Czech Republic ...........................................................................................................................
    [Show full text]
  • Graduate Prospectus2014 Institute of Space Technology
    Graduate Prospectus2014 Institute of Space Technology we HELP YOU ACHIEVE YOUR AMBITIONS P R O S P E C T U S 2 141 INSTITUTE OF SPACE TECHNOLOGY w w w . i s t . e d u . p k To foster intellectual and economic vitality through teaching, research and outreach in the field of Space Science & Technology with a view to improve quality of life. www.ist.edu.pk 2 141 P R O S P E C T U S INSTITUTE OF SPACE TECHNOLOGY CONTENTS Welcome 03 Location 04 Introduction 08 The Institute 09 Facilities 11 Extra Curricular Activities 11 Academic Programs 15 Department of Aeronautics and Astronautics 20 Local MS Programs 22 Linked Programs with Beihang University 31 Linked Programs with Northwestern Polytechnic University 49 Department of Electrical Engineering 51 Local MS Programs 53 Linked Programs with University of Surrey 55 Department of Materials Science & Engineering 72 Department of Mechanical Engineering 81 Department of Remote Sensing & Geo-information Science 100 w w w . i s t . e d u . p k Department of Space Science 106 ORIC 123 Admissions 125 Fee Structure 127 Academic Regulations 130 Faculty 133 Administration 143 Location Map 145 1 20 P R O S P E C T U S 2 141 INSTITUTE OF SPACE TECHNOLOGY w w w . i s t . e d u . p k 2 141 P R O S P E C T U S INSTITUTE OF SPACE TECHNOLOGY Welcome Message Vice Chancellor The Institute of Space Technology welcomes all the students who aspire to enhance their knowledge and specialize in cutting edge technologies.
    [Show full text]