Graduate Prospectus2014 Institute of Space Technology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Part 1 Digital Forensics Module Jaap Van Ginkel Silvio Oertli
Part 1 Digital Forensics Module Jaap van Ginkel Silvio Oertli July 2016 Agenda • Part 1: Introduction – Definitions / Processes • Part 2: Theory in Practice – From planning to presentation • Part 3: Live Forensics – How to acquire a memory image – Investigate the image • Part 4: Advanced Topics – Tools – Where to go from here – And more 2 Disclaimer§ • A one or two-day course on forensics will not make you a forensics expert. – Professionals spend most of their working time performing forensic analysis and thus become an expert. • All we can offer is to shed some light on a quickly developing and broad field and a chance to look at some tools. • We will mostly cover Open Source Forensic Tools. 3 Introduction Forensics in History 4 Forensics – History 2000 BC 1200 BC 5 Introduction Definitions / Processes 6 Forensics – The Field digital forensics Computer Forensics Disk Forensics Mobil Forensics Memory Forensics Datenbase Forensics Live Forensics Network Forensics 7 Forensics - Definition • Digital Forensics [1]: – Digital forensics (sometimes known as digital forensic science) is a branch of forensic science encompassing the recovery and investigation of material found in digital devices, often in relation to computer crime. • Computer Forensics [2]: – Computer forensics (sometimes known as computer forensic science) is a branch of digital forensic science pertaining to legal evidence found in computers and digital storage media. The goal of computer forensics is to examine digital media in a forensically sound manner with the aim of identifying, preserving, recovering, analyzing and presenting facts and opinions about the information. 8 Forensics - Definitions • Network Forensics [3]: – Network forensics is a sub-branch of digital forensics relating to the monitoring and analysis of computer network traffic for the purposes of information gathering, legal evidence, or intrusion detection.[1] Unlike other areas of digital forensics, network investigations deal with volatile and dynamic information. -
Forensic Implications of Biting Behavior: a Conceptually Underdeveloped Area of Investigation
David A. Webb,1 B.Sc., M.Sc.; David Sweet,2 D.M.D., Ph.D.; Dayle L. Hinman,3 B.S.; and Iain A. Pretty,4 B.D.S.(Hons), M.Sc. Forensic Implications of Biting Behavior: A Conceptually Underdeveloped Area of Investigation REFERENCE: Webb DA, Sweet D, Hinman DL, Pretty IA. a more thorough understanding of why individuals bite in the com- Forensic implications of biting behavior: a conceptually underde- mission of their crimes. veloped area of investigation. J Forensic Sci 2002;47(1):103–106. The call for a greater understanding of biting behavior arose pri- marily from a perceived need to help clarify and inform legal pro- ABSTRACT: Within the context of a criminal investigation the ceedings in cases that linked biting behavior to suspects in criminal human bitemark traditionally provides the forensic dentist with both physical and biological evidence. In recent years, however, exam- trials. ples exist where in addition to discussing physical and biological A review of the current status of bitemarks in the U.S. legal sys- evidence, expert witnesses have also testified in court regarding the tem revealed cases in which the behavioral aspects of a bitemark behavioral aspects of biting behavior. Interested in this additional were introduced as evidence. The premise that if an individual has source of evidence, the authors reviewed the research literature bitten before they are more likely to bite again has been offered into from which biting behavior could be explained. The review found a hiatus of empirical knowledge in this respect, with only two papers evidence by prosecutors and tenaciously objected to by defense at- seemingly related to the topic. -
Guidelines on Mobile Device Forensics
NIST Special Publication 800-101 Revision 1 Guidelines on Mobile Device Forensics Rick Ayers Sam Brothers Wayne Jansen http://dx.doi.org/10.6028/NIST.SP.800-101r1 NIST Special Publication 800-101 Revision 1 Guidelines on Mobile Device Forensics Rick Ayers Software and Systems Division Information Technology Laboratory Sam Brothers U.S. Customs and Border Protection Department of Homeland Security Springfield, VA Wayne Jansen Booz-Allen-Hamilton McLean, VA http://dx.doi.org/10.6028/NIST.SP. 800-101r1 May 2014 U.S. Department of Commerce Penny Pritzker, Secretary National Institute of Standards and Technology Patrick D. Gallagher, Under Secretary of Commerce for Standards and Technology and Director Authority This publication has been developed by NIST in accordance with its statutory responsibilities under the Federal Information Security Management Act of 2002 (FISMA), 44 U.S.C. § 3541 et seq., Public Law (P.L.) 107-347. NIST is responsible for developing information security standards and guidelines, including minimum requirements for Federal information systems, but such standards and guidelines shall not apply to national security systems without the express approval of appropriate Federal officials exercising policy authority over such systems. This guideline is consistent with the requirements of the Office of Management and Budget (OMB) Circular A-130, Section 8b(3), Securing Agency Information Systems, as analyzed in Circular A- 130, Appendix IV: Analysis of Key Sections. Supplemental information is provided in Circular A- 130, Appendix III, Security of Federal Automated Information Resources. Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and binding on Federal agencies by the Secretary of Commerce under statutory authority. -
Guidelines on Mobile Device Forensics
NIST Special Publication 800-101 Revision 1 Guidelines on Mobile Device Forensics Rick Ayers Sam Brothers Wayne Jansen http://dx.doi.org/10.6028/NIST.SP.800-101r1 NIST Special Publication 800-101 Revision 1 Guidelines on Mobile Device Forensics Rick Ayers Software and Systems Division Information Technology Laboratory Sam Brothers U.S. Customs and Border Protection Department of Homeland Security Springfield, VA Wayne Jansen Booz Allen Hamilton McLean, VA http://dx.doi.org/10.6028/NIST.SP. 800-101r1 May 2014 U.S. Department of Commerce Penny Pritzker, Secretary National Institute of Standards and Technology Patrick D. Gallagher, Under Secretary of Commerce for Standards and Technology and Director Authority This publication has been developed by NIST in accordance with its statutory responsibilities under the Federal Information Security Management Act of 2002 (FISMA), 44 U.S.C. § 3541 et seq., Public Law (P.L.) 107-347. NIST is responsible for developing information security standards and guidelines, including minimum requirements for Federal information systems, but such standards and guidelines shall not apply to national security systems without the express approval of appropriate Federal officials exercising policy authority over such systems. This guideline is consistent with the requirements of the Office of Management and Budget (OMB) Circular A-130, Section 8b(3), Securing Agency Information Systems, as analyzed in Circular A- 130, Appendix IV: Analysis of Key Sections. Supplemental information is provided in Circular A- 130, Appendix III, Security of Federal Automated Information Resources. Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and binding on Federal agencies by the Secretary of Commerce under statutory authority. -
Digital Forensics Based Analysis of Mobile Phones
Journal of Android and IOS Applications and Testing Volume 4 Issue 3 Digital Forensics Based Analysis of Mobile Phones Pooja V Chavan PG Student, Department of Computer Engineering, K. J. Somaiya College of Engineering, Mumbai, Maharashtra, India Email: [email protected] DOI: Abstract Now-a-day’s ratio of mobile phone is increasing day by day. Digital forensics methodology is use to recover and investigate data that found in a digital devices. Mobile phone usage is more that’s why not only judicial events occurred but also mobile forensics and subdivision of digital forensics are emerged. Some hardware and software are used for mobile phone investigations. Keywords: Digital forensics, digital devices, mobile phone INTRODUCTION because electronic device have a variety of Forensic science’s subdivision is a digital different operating system, technology, forensic, is a one type of process. The storage structure, Features. First identify main objective of this process to find the crime after that digital forensic work evidence in digital devices [1]. Digital on four important steps (Figure 1): forensics are used for the analysis of data, such as audio, video, pictures, etc. After • Collection: The collected of evidence the analysis of electronic devices data that like fingerprints, broken fingernails help for legal process. The usage of blood and body fluids. advanced technology is increasing rapidly. • Examination: The examination of Electronic device have a variety of product process is depending on evidence. like tablet, flash memory, memory card, • Analysis: The crime scenes obtain SD card, etc. When forensic analysis is different digital evidence, analysis is performed at that time data should be done on storage evidence this secure. -
On Summability Domains
Proc. Camb. Phil. Soc. (1973), 73, 327 327 PCPS 73-37 Printed in Great Britain On summability domains BY N. J. KALTON Department of Mathematics, University College of Swansea, Singleton Park, Swansea SA2 8PP (Received 12 June 1971) 1. Introduction. We denote by w the space of all complex sequences with the topology given by the semi-norms n where 8 (x) = xn. An FK-space, E, is a subspace of o) on which there exists a complete metrizable locally convex topology T, such that the inclusion (E, T) G O) is con- tinuous; if T is given by a single norm then E is a BK-space. Let A = (a^ii = 1,2, ...;j = 1,2,...) be an infinite matrix; then if a;, yew are such that 00 we write • y = Ax. If E is a sequence space (i.e. a subspace of w) then the summability domain EA is defined to be the set of all a; e o> such that Ax (exists and) belongs to E. If E is an FK- space, with a fundamental sequence of semi-norms (pn), then EA is an FK-space with the topology given^by the semi-norms x ->• q^x) = sup k x-+pn(Ax) (»=1,2,...). We shall denote by 0 the space of all sequences eventually equal to zero. For we write if ^ is an FK-space containing <f> we say that (i) E is a BS-space if (Pnx; n = 1,2,...) is bounded for each xeE, (ii) E is an AK-space if Pnx -> x for each a; G^/. -
A Riesz Decomposition Theorem on Harmonic Spaces Without Positive Potentials
Hiroshima Math. J. 38 (2008), 37–50 A Riesz decomposition theorem on harmonic spaces without positive potentials Ibtesam Bajunaid, Joel M. Cohen, Flavia Colonna and David Singman (Received October 17, 2006) (Revised May 24, 2007) Abstract. In this paper, we give a new definition of the flux of a superharmonic function defined outside a compact set in a Brelot space without positive potentials. We also give a new notion of potential in a BS space (that is, a harmonic space without positive potentials containing the constants) which leads to a Riesz decomposition theorem for the class of superharmonic functions that have a harmonic minorant outside a compact set. Furthermore, we give a characterization of the local axiom of proportionality in terms of a global condition on the space. 1. Introduction The Riesz decomposition theorem for positive superharmonic functions states that any positive superharmonic function on a region of hyperbolic type in C can be expressed uniquely as the sum of a nonnegative potential and a harmonic function. This result is of no interest when the region is parabolic because there are no nonconstant positive superharmonic functions. By a Riesz decomposition theorem for a class of superharmonic functions we mean a unique representation of each member of this class as a global harmonic function plus a member of the class of a special type. For a harmonic space with a Green function, this special class is the class of nonnegative potentials. In this case the most natural class to consider is the admissible superharmonic functions, which are the superharmonic functions that have a harmonic minorant outside a compact set. -
Current and Future Trends in Mobile Device Forensics: a Survey
Current and Future Trends in Mobile Device Forensics: A Survey KONSTANTIA BARMPATSALOU, TIAGO CRUZ, EDMUNDO MONTEIRO, and PAULO SIMOES, Centre for Informatics and Systems of the University of Coimbra, Department of Informatics (CISUC/DEI), University of Coimbra, Portugal Contemporary mobile devices are the result of an evolution process, during which computational and networking capabilities have been continuously pushed to keep pace with the constantly growing workload requirements. This has allowed devices such as smartphones, tablets and Personal Digital Assistants (PDAs) to perform increasingly complex tasks, up to the point of efficiently replacing traditional options such as desktop computers and notebooks. However, due to their portability and size, these devices are more prone to theft, to become compromised or to be exploited for attacks and other malicious activity. The need for investigation of the aforementioned incidents resulted in the creation of the Mobile Forensics (MF) discipline. MF, a sub-domain of Digital Forensics (DF), is specialized in extracting and processing evidence from mobile devices in such a way that attacking entities and actions are identified and traced. Beyond its primary research interest on evidence acquisition from mobile devices, MF has recently expanded its scope to encompass the organized and advanced evidence representation and analysis of future malicious entity behavior. Nonetheless, data acquisition still remains its main focus. While the field is under continuous research activity, new concepts such as the involvement of Cloud Computing in the MF ecosystem and the evolution of enterprise mobile solutions – particularly Mobile Device Management (MDM) and Bring Your Own Device (BYOD) – bring new opportunities and issues to the discipline. -
A User-Oriented Network Forensic Analyser: the Design of a High- Level Protocol Analyser
Edith Cowan University Research Online Australian Digital Forensics Conference Conferences, Symposia and Campus Events 2014 A user-oriented network forensic analyser: The design of a high- level protocol analyser D Joy Plymouth University F Li Plymouth University N L. Clarke Edith Cowan University S M. Furnell Edith Cowan University Follow this and additional works at: https://ro.ecu.edu.au/adf Part of the Computer Engineering Commons, and the Information Security Commons DOI: 10.4225/75/57b3e511fb87f 12th Australian Digital Forensics Conference. Held on the 1-3 December, 2014 at Edith Cowan University, Joondalup Campus, Perth, Western Australia. This Conference Proceeding is posted at Research Online. https://ro.ecu.edu.au/adf/135 A USER-ORIENTED NETWORK FORENSIC ANALYSER: THE DESIGN OF A HIGH-LEVEL PROTOCOL ANALYSER D. Joy1, F. Li1, N.L. Clarke1,2 and S.M. Furnell1,2 1Centre for Security, Communications and Network Research (CSCAN) Plymouth University, Plymouth, United Kingdom 2Security Research Institute, Edith Cowan University, Western Australia [email protected] Abstract Network forensics is becoming an increasingly important tool in the investigation of cyber and computer- assisted crimes. Unfortunately, whilst much effort has been undertaken in developing computer forensic file system analysers (e.g. Encase and FTK), such focus has not been given to Network Forensic Analysis Tools (NFATs). The single biggest barrier to effective NFATs is the handling of large volumes of low-level traffic and being able to exact and interpret forensic artefacts and their context – for example, being able extract and render application-level objects (such as emails, web pages and documents) from the low-level TCP/IP traffic but also understand how these applications/artefacts are being used. -
About the AAFS
American Academy of Forensic Sciences 410 North 21st Street Colorado Springs, Colorado 80904 Phone: (719) 636-1100 Email: [email protected] Website: www.aafs.org @ AAFS Publication 20-2 Copyright © 2020 American Academy of Forensic Sciences Printed in the United States of America Publication Printers, Inc., Denver, CO Typography by Kathy Howard Cover Art by My Creative Condition, Colorado Springs, CO WELCOME LETTER Dear Attendees, It is my high honor and distinct privilege to welcome you to the 72nd AAFS Annual Scientific Meeting in Anaheim, California. I would like to thank the AAFS staff, the many volunteers, and everyone else who have worked together to create an excellent program for this meeting with the theme Crossing Borders. You will have many opportunities to meet your colleagues and discuss new challenges in the field. There are many workshops and special sessions that will be presented. The Interdisciplinary and Plenary Sessions will provide different views in forensic science—past, present, and future. The Young Forensic Scientists Forum will celebrate its 25th Anniversary and is conducting a workshop related to the meeting theme. More than 1,000 presentations are scheduled that will provide you with more insight into the developments in forensic science. The exhibit hall, always interesting to explore, is where you will see the latest forensic science equipment, technology, and literature. The theme Crossing Borders was chosen by me and my colleagues at the Netherlands Forensic Institute (NFI). We see many definitions of crossing borders in forensic science today. For the 2020 meeting, six words starting with the letters “IN” are included in the theme. -
Purpose of Computer and Network Forensics
Purpose of Computer and Network Forensics Table of Contents Purpose of Computer and Network Forensics ................................................................................ 2 What Is Digital Forensics? ............................................................................................................... 3 Need for Digital Forensics -1 ........................................................................................................... 4 Need for Digital Forensics -2 ........................................................................................................... 6 Purpose of Digital Forensics ............................................................................................................ 8 Notices .......................................................................................................................................... 12 Page 1 of 12 Purpose of Computer and Network Forensics Purpose of Computer and Network Forensics 4 **004 Okay. So we'll start out with the purpose of computer and network forensics. Page 2 of 12 What Is Digital Forensics? What Is Digital Forensics? As defined in NIST Guide to Integrating Forensic Techniques into Incident Response: “Application of science to the identification, collection, examination, and analysis of data while preserving the integrity of the information and maintaining a strict chain of custody for the data” Also known as or called computer forensics and network forensics, and includes mobile device forensics All better called one term: Digital -
Page 1 of 15 Page 1 of 15 Netsol Technologies Limited E-Credit of 25
Page 1 of 15 Page 1 of 15 NetSol Technologies Limited E-Credit of 25% Final Cash Dividend (D-6) For the Year Ended 30-06-2018 S.No(s) Warrant # CNIC/NICOP Shareholder Name Participant Id CDC Account Folio Number Bank Name Bank Branch Address International Bank Account Number Net Dividend Amount Address Dividend Status Reason Financial Year Date Of Issue Dividend Pay Date IBAN 1 60000001 35201-4723624-7 SALIM ULLAH GHAURI 1 ASKARI BANK LIMITED ASKARI BANK LIMITED BLOCK-Z, PHASE-III, COMMERCIAL, LAHORE. PK60ASCM0000270100011249 1,143,250.00 U-178, DHA, LAHORE, CANTT. Paid 2017-18 09/11/2018 09/11/2018 With IBAN 2 60000002 n/a NETSOL TECHNOLOGIES INC. 5 84,508,496.00 24025 PARK SORRENTO, SUITE 220 CALABASAS CA, 91302 U.S.A. Paid 2017-18 09/11/2018 09/11/2018 Without IBAN 3 60000003 42301-3653026-7 MR. IRFAN MUSTAFA 7 214,978.50 233- WIL SHINE BULEVARD, SUITE NO.930, SANTA MONIKA, CALIFORNIA 90401. Withheld Without IBAN 2017-18 09/11/2018 Without IBAN 4 60000004 352015-245672-5 NAEEM ULLAH GHAURI 10 MEEZAN BANK LIMITED MEEZAN BANK LIMITED Zahoor Elahi Road Branch, Lahore PK54MEZN0002540101452586 100.00 1 TOWN MEADOW, BRENTFORD, MIDDLESEX TW8 OBQ. ENGLAND. Paid 2017-18 09/11/2018 09/11/2018 With IBAN 5 60000005 35201-1630360-5 NAJEEB ULLAH GHAURI 11 ASKARI BANK LIMITED ASKARI BANK LIMITED BLOCK-Z, PHASE-III, COMMERCIAL, LAHORE PK28ASCM0000270100061780 498,312.00 H NO. 178-U, PHASE -2, DEFENCE HOUSING AUTHORITY, LAHORE CANTT, DISTRICT LAHORE. Paid 2017-18 09/11/2018 09/11/2018 With IBAN 6 60000006 35201-5861333-9 MR.