I S S N 2 3 4 7 - 1921 Volume 13 Number 4 Journal of Advance in Mathematics The Angle Trisection Solution (A Compass-Straightedge (Ruler) Construction) Kimuya .M. Alex1, Josephine Mutembei2 1Meru University of Science and Technology, Kenya, Department of Physical Sciences, Faculty of Physics 2Meru University of Science and Technology, Kenya, Department of Mathematics 1Cell; +254 704600418 2Cell; +254 721567967
[email protected] [email protected] ABSTRACT This paper is devoted to exposition of a provable classical solution for the ancient Greek’s classical geometric problem of angle trisection [3]. (Pierre Laurent Wantzel, 1837), presented an algebraic proof based on ideas from Galois theory showing that, the angle trisection solution correspond to an implicit solution of the cubic equation; , which he stated as geometrically irreducible [23]. The primary objective of this novel work is to show the possibility to solve the ages old problem of trisecting an arbitrary angle using the traditional Greek’s tools of geometry (classical compass and straightedge), and refute the presented proof of angle trisection impossibility statement. The exposed proof of the solution is theorem , which is based on the classical rules of Euclidean geometry, contrary to the Archim edes proposition of using a marked straightedge construction [4], [11]. Key Words Angle trisection; An arbitrary angle; A particular angle; Compass; Ruler (Straightedge); Classical geometry; GeoGebra Software; Plane geometry; Subset; Superset; Singular angle Notations Notation for an angle Denotes a straight line segment and a length Two Dimensions Three Dimensions Four significant figures Denotes a member or an element of a particular set Subset Not a member or an element of a particular set divides Cosine of angle decimal places Academic Discipline And Sub-Disciplines Mathematics (Geometry) 1.0 INTRODUCTION Compass and straightedge problems have always been the favorite subject o f classical geometry.