Records, 1920S-1970S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Proceedings Op the Twenty-Third Annual Meeting Op the Geological Society Op America, Held at Pittsburgh, Pennsylvania, December 21, 28, and 29, 1910
BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERICA VOL. 22, PP. 1-84, PLS. 1-6 M/SRCH 31, 1911 PROCEEDINGS OP THE TWENTY-THIRD ANNUAL MEETING OP THE GEOLOGICAL SOCIETY OP AMERICA, HELD AT PITTSBURGH, PENNSYLVANIA, DECEMBER 21, 28, AND 29, 1910. Edmund Otis Hovey, Secretary CONTENTS Page Session of Tuesday, December 27............................................................................. 2 Election of Auditing Committee....................................................................... 2 Election of officers................................................................................................ 2 Election of Fellows................................................................................................ 3 Election of Correspondents................................................................................. 3 Memoir of J. C. Ii. Laflamme (with bibliography) ; by John M. Clarke. 4 Memoir of William Harmon Niles; by George H. Barton....................... 8 Memoir of David Pearce Penhallow (with bibliography) ; by Alfred E. Barlow..................................................................................................................... 15 Memoir of William George Tight (with bibliography) ; by J. A. Bownocker.............................................................................................................. 19 Memoir of Robert Parr Whitfield (with bibliography by L. Hussa- kof) ; by John M. Clarke............................................................................... 22 Memoir of Thomas -
Optical Timeline by Tony Oursler
Optical Timeline by Tony Oursler 1 Iris is thought to be derived from the RED Symyaz leads the fallen angels. Archimedes (c. 287212 b.c.) is said to Greek word for speaker or messenger. According to Enoch, they came to earth have used a large magnifying lens or Seth, the Egyptian god most associated of their own free will at Mount Hermon, burning-glass, which focused the suns Fifth century b.c. Chinese philosopher with evil, is depicted in many guises: descending like stars. This description rays, to set fire to Roman ships off Mo Ti, in the first description of the gives rise to the name Lucifer, “giver of Syracuse. camera obscura, refers to the pinhole as a black pig, a tall, double-headed figure light.” “collection place” and “locked treasure with a snout, and a serpent. Sometimes And now there is no longer any “I have seen Satan fall like lightning room.” he is black, a positive color for the difficulty in understanding the images in from heaven.” (Luke 10:1820) Egyptians, symbolic of the deep tones of mirrors and in all smooth and bright Platos Cave depicts the dilemma of fertile river deposits; at other times he is surfaces. The fires from within and from the uneducated in a graphic tableau of red, a negative color reflected by the without communicate about the smooth light and shadow. The shackled masses parched sands that encroach upon the surface, and from one image which is are kept in shadow, unable to move crops. Jeffrey Burton Russell suggests variously refracted. -
Glossary Glossary
Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts. -
Martian Crater Morphology
ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter. -
Hydrologic Soil Groups
AppendixExhibitAppendix A: Hydrologic AB Soil Synthetic Groups Hydrologic for theRainfall United SoilStates Distributions Groups and Rainfall Data Sources Soils are classified into hydrologic soil groups (HSG’s) Disturbed soil profiles to indicate the minimum rate of infiltration obtained for bareThe highest soil after peak prolonged discharges wetting. from Thesmall HSG watersheds’s, which arein the UnitedAs a result States of areurbanization, usually caused the soil by profileintense, may brief be rain- con- A,falls B, that C, and may D, occur are one as distinctelement eventsused in or determining as part of a longersiderably storm. These altered intense and the rainstorms listed group do not classification usually ex- may runofftended curve over anumbers large area (see and chapter intensities 2). For vary the greatly. conve- One commonno longer practice apply. inIn rainfall-runoffthese circumstances, analysis use is tothe develop follow- niencea synthetic of TR-55 rainfall users, distribution exhibit A-1 to uselists in the lieu HSG of actualclassifi- storming events. to determine This distribution HSG according includes to themaximum texture rainfall of the cationintensities of United for the States selected soils. design frequency arranged in a sequencenew surface that soil, is critical provided for thatproducing significant peak compaction runoff. has not occurred (Brakensiek and Rawls 1983). TheSynthetic infiltration raterainfall is the rate distributions at which water enters the soil at the soil surface. It is controlled by surface condi- HSG Soil textures tions.The length HSG ofalso the indicates most intense the transmission rainfall period rate contributing—the rate to the peak runoff rate is related to the time of concen- A Sand, loamy sand, or sandy loam attration which (T thec) for water the watershed.moves within In thea hydrograph soil. -
Obituary "C" Index
Obituary "C" Index Copyright © 2004 - 2021 GRHS DISCLAIMER: GRHS cannot guarantee that should you purchase a copy of what you would expect to be an obituary from its obituary collection that you will receive an obituary per se. The obituary collection consists of such items as a) personal cards of information shared with GRHS by researchers, b) www.findagrave.com extractions, c) funeral home cards, d) newspaper death notices, and e) obituaries extracted from newspapers and other publications as well as funeral home web sites. Some obituaries are translations of obituaries published in German publications, although generally GRHS has copies of the German versions. These German versions would have to be ordered separately for they are kept in a separate file in the GRHS library. The list of names and dates contained herein is an alphabetical listing [by surname and given name] of the obituaries held at the Society's headquarters for the letter combination indicated. Each name is followed by the birth date in the first column and death date in the second. Dates may be extrapolated or provided from another source. Important note about UMLAUTS: Surnames in this index have been entered by our volunteers exactly as they appear in each obituary but the use of characters with umlauts in obits has been found to be inconsistant. For example the surname Büchele may be entered as Buchele or Bahmüller as Bahmueller. This is important because surnames with umlauted characters are placed in alphabetic order after regular characters so if you are just scrolling down this sorted list you may find the surname you are looking for in an unexpected place (i.e. -
Expressions of Climate Perturbations in Western Ugandan Crater Table 3
EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Open Access Atmospheric Atmospheric Chemistry Chemistry and Physics and Physics Discussions Open Access Open Access Atmospheric Atmospheric Measurement Measurement Techniques Techniques Discussions Open Access Open Access Biogeosciences Biogeosciences Discussions Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Open Access Open Access Clim. Past Discuss., 9, 5183–5226, 2013 Climate www.clim-past-discuss.net/9/5183/2013/ Climate CPD doi:10.5194/cpd-9-5183-2013 of the Past of the Past © Author(s) 2013. CC Attribution 3.0 License. Discussions 9, 5183–5226, 2013 Open Access Open Access This discussion paper is/has been under review for the journal ClimateEarth of the System Past (CP). Earth System Expressions of Please refer to the corresponding final paper in CP if available. Dynamics Dynamics climate perturbations Discussions in western Ugandan Open Access ExpressionsGeoscientific of climate perturbationsGeoscientific inOpen Access crater Instrumentation Instrumentation K. Mills et al. western UgandanMethods and crater lake sedimentMethods and Data Systems Data Systems records during the last 1000 yr Discussions Open Access Open Access Title Page Geoscientific 1,2 1Geoscientific 1 3 4 K. Mills , D. B. Ryves , N. J. Anderson , C. L. BryantModel, and -
Case Fil Copy
NASA TECHNICAL NASA TM X-3511 MEMORANDUM CO >< CASE FIL COPY REPORTS OF PLANETARY GEOLOGY PROGRAM, 1976-1977 Compiled by Raymond Arvidson and Russell Wahmann Office of Space Science NASA Headquarters NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • MAY 1977 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. TMX3511 4. Title and Subtitle 5. Report Date May 1977 6. Performing Organization Code REPORTS OF PLANETARY GEOLOGY PROGRAM, 1976-1977 SL 7. Author(s) 8. Performing Organization Report No. Compiled by Raymond Arvidson and Russell Wahmann 10. Work Unit No. 9. Performing Organization Name and Address Office of Space Science 11. Contract or Grant No. Lunar and Planetary Programs Planetary Geology Program 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Technical Memorandum National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington, D.C. 20546 15. Supplementary Notes 16. Abstract A compilation of abstracts of reports which summarizes work conducted by Principal Investigators. Full reports of these abstracts were presented to the annual meeting of Planetary Geology Principal Investigators and their associates at Washington University, St. Louis, Missouri, May 23-26, 1977. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Planetary geology Solar system evolution Unclassified—Unlimited Planetary geological mapping Instrument development 19. Security Qassif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* Unclassified Unclassified 294 $9.25 * For sale by the National Technical Information Service, Springfield, Virginia 22161 FOREWORD This is a compilation of abstracts of reports from Principal Investigators of NASA's Office of Space Science, Division of Lunar and Planetary Programs Planetary Geology Program. -
Chapter 3: the Rise of the Antinuclear Power Movement: 1957 to 1989
Chapter 3 THE RISE OF THE ANTINUCLEAR POWER MOVEMENT 1957 TO 1989 In this chapter I trace the development and circulation of antinuclear struggles of the last 40 years. What we will see is a pattern of new sectors of the class (e.g., women, native Americans, and Labor) joining the movement over the course of that long cycle of struggles. Those new sectors would remain autonomous, which would clearly place the movement within the autonomist Marxist model. Furthermore, it is precisely the widening of the class composition that has made the antinuclear movement the most successful social movement of the 1970s and 1980s. Although that widening has been impressive, as we will see in chapter 5, it did not go far enough, leaving out certain sectors of the class. Since its beginnings in the 1950s, opposition to the civilian nuclear power program has gone through three distinct phases of one cycle of struggles.(1) Phase 1 —1957 to 1967— was a period marked by sporadic opposition to specific nuclear plants. Phase 2 —1968 to 1975— was a period marked by a concern for the environmental impact of nuclear power plants, which led to a critique of all aspects of nuclear power. Moreover, the legal and the political systems were widely used to achieve demands. And Phase 3 —1977 to the present— has been a period marked by the use of direct action and civil disobedience by protesters whose goals have been to shut down all nuclear power plants. 3.1 The First Phase of the Struggles: 1957 to 1967 Opposition to nuclear energy first emerged shortly after the atomic bomb was built. -
From Wilderness to the Toxic Environment: Health in American Environmental Politics, 1945-Present
From Wilderness to the Toxic Environment: Health in American Environmental Politics, 1945-Present The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Thomson, Jennifer Christine. 2013. From Wilderness to the Toxic Environment: Health in American Environmental Politics, 1945- Present. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11125030 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA From Wilderness to the Toxic Environment: Health in American Environmental Politics, 1945-Present A dissertation presented by Jennifer Christine Thomson to The Department of the History of Science In partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of History of Science Harvard University Cambridge, Massachusetts May 2013 @ 2013 Jennifer Christine Thomson All rights reserved. Dissertation Advisor: Charles Rosenberg Jennifer Christine Thomson From Wilderness to the Toxic Environment: Health in American Environmental Politics, 1945-Present Abstract This dissertation joins the history of science and medicine with environmental history to explore the language of health in environmental politics. Today, in government policy briefs and mission statements of environmental non-profits, newspaper editorials and activist journals, claims about the health of the planet and its human and non-human inhabitants abound. Yet despite this rhetorical ubiquity, modern environmental politics are ideologically and organizationally fractured along the themes of whose health is at stake and how that health should be protected. -
Yellowstone Plume Trigger for Basin and Range Extension, and Coeval Emplacement of the Nevada–Columbia Basin Magmatic Belt
Geosphere, published online on 17 February 2015 as doi:10.1130/GES01051.1 Cenozoic Tectonics, Magmatism, and Stratigraphy of the Snake River Plain–Yellowstone Region and AdjacentYellowstone Areas plume themed trigger issuefor Basin and Range extension Yellowstone plume trigger for Basin and Range extension, and coeval emplacement of the Nevada–Columbia Basin magmatic belt Victor E. Camp1, Kenneth L. Pierce2, and Lisa A. Morgan3 1Department of Geological Sciences, San Diego State University, San Diego, California 92182, USA 2U.S. Geological Survey, Northern Rocky Mountain Science Center, 2327 University Way, Box 2, Bozeman, Montana 59715, USA 3U.S. Geological Survey, 973 Federal Center, Box 25046, Denver, Colorado 80225-0046, USA ABSTRACT and Range. It was not the sole cause of Basin Juan de Fuca–Farallon plates, tractional forces and Range extension, but rather the catalyst applied to the base of the lithosphere, buoyancy Widespread extension began across the for extension of the Nevadaplano, which was forces associated with lithospheric density varia- northern and central Basin and Range already on the verge of regional collapse. tions, and basal normal forces associated with Province at 17–16 Ma, contemporaneous mantle upwelling and/or gravitational insta- with magmatism along the Nevada–Colum- INTRODUCTION bilities. They concluded that boundary forces bia Basin magmatic belt, a linear zone of associated with plate interaction would produce dikes and volcanic centers that extends for The Basin and Range Province is one of the neither the magnitude nor the rates of extension >1000 km, from southern Nevada to the best exposed extensional areas in the world for observed in the northern and central Basin and Columbia Basin of eastern Washington. -
Complex Explosive Volcanic Activity on the Moon Within Oppenheimer Crater
Icarus 273 (2016) 296–314 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Complex explosive volcanic activity on the Moon within Oppenheimer crater ∗ Kristen A. Bennett a, ,BrionyH.N. Horgan b, Lisa R. Gaddis c, Benjamin T. Greenhagen d, Carlton C. Allen e,PaulO. Hayne f, James F. Bell III a, David A. Paige g a School of Earth and Space Exploration, Arizona State University. ISTB4 Room 795, 781 Terrace Mall, Tempe AZ 85287, United States b Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, United States c Astrogeology Science Center, U.S. Geological Survey, 2255 N. Gemini Drive, Flagstaff, AZ 86001, United States d Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd, Laurel, MD 20723, United States e NASA Johnson Space Center, Emeritus, 2101 NASA Road 1, Houston, TX 77058, United States f NASA Jet Propulsion Laboratory, 4800 Oak Grove Dr, Pasadena, CA 91109, United States g Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, 595 Charles E Young Dr E, Los Angeles, CA 90095, United States a r t i c l e i n f o a b s t r a c t Article history: Oppenheimer crater is a floor-fractured crater located within the South Pole–Aitken basin on the Moon, Received 27 July 2015 and exhibits more than a dozen localized pyroclastic deposits associated with the fractures. Localized Revised 10 December 2015 pyroclastic volcanism on the Moon is thought to form as a result of intermittently explosive Vulcanian Accepted 3 February 2016 eruptions under low effusion rates, in contrast to the higher-effusion rate, Hawaiian-style fire fountaining Available online 10 February 2016 inferred to form larger regional deposits.