Numerical Simulations of the Genesis of Hurricane Diana (1984). Part I: Control Simulation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Presentation
10B.5 VORTICITY-BASED DETECTION OF TROPICAL CYCLOGENESIS Michelle M. Hite1*, Mark A. Bourassa1,2, Philip Cunningham2, James J. O’Brien1,2, and Paul D. Reasor2 1Center for Ocean-Atmospheric Prediction Studies, Florida State University, Tallahassee, Florida 2Department of Meteorology, Florida State University, Tallahassee, Florida 1. INTRODUCTION (2001) relied upon closed circulations apparent in the scatterometer data. Using a threshold of Tropical cyclogenesis (TCG), although an vorticity over a defined area, Sharp et al. (2002) already well researched area, remains a highly identified numerous tropical disturbances and debatable and unresolved topic. While assessed whether or not they were likely to considerable attention has been paid to tropical develop into tropical cyclones. Detection was cyclone formation, little attention has focused on based on surface structure, requiring sufficiently observational studies of the very early stages of strong vorticity averaged over a large surface TCG, otherwise referred to as the genesis stage. area. Unlike Sharp et al. (2002), Katsaros et al. In the past, the early stages of TCG were (2001) and Liu et al. (2001) concentrated on unverifiable in surface observations, due to the disturbances that would develop into classified paucity of meteorological data over the tropical tropical cyclones. They examined surface wind oceans. The advent of wide swath scatterometers patterns and looked for areas of closed circulation, helped alleviate this issue by affording the successfully detecting tropical disturbances before scientific community with widespread designation as depressions. These studies observational surface data across the tropical illustrated the usefulness of SeaWinds data basins. One such instrument is the SeaWinds towards tropical disturbance detection, with the scatterometer, aboard the QuikSCAT satellite, intent of improving operational activities. -
Investigation and Prediction of Hurricane Eyewall
INVESTIGATION AND PREDICTION OF HURRICANE EYEWALL REPLACEMENT CYCLES By Matthew Sitkowski A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Atmospheric and Oceanic Sciences) at the UNIVERSITY OF WISCONSIN-MADISON 2012 Date of final oral examination: 4/9/12 The dissertation is approved by the following members of the Final Oral Committee: James P. Kossin, Affiliate Professor, Atmospheric and Oceanic Sciences Daniel J. Vimont, Professor, Atmospheric and Oceanic Sciences Steven A. Ackerman, Professor, Atmospheric and Oceanic Sciences Jonathan E. Martin, Professor, Atmospheric and Oceanic Sciences Gregory J. Tripoli, Professor, Atmospheric and Oceanic Sciences i Abstract Flight-level aircraft data and microwave imagery are analyzed to investigate hurricane secondary eyewall formation and eyewall replacement cycles (ERCs). This work is motivated to provide forecasters with new guidance for predicting and better understanding the impacts of ERCs. A Bayesian probabilistic model that determines the likelihood of secondary eyewall formation and a subsequent ERC is developed. The model is based on environmental and geostationary satellite features. A climatology of secondary eyewall formation is developed; a 13% chance of secondary eyewall formation exists when a hurricane is located over water, and is also utilized by the model. The model has been installed at the National Hurricane Center and has skill in forecasting secondary eyewall formation out to 48 h. Aircraft reconnaissance data from 24 ERCs are examined to develop a climatology of flight-level structure and intensity changes associated with ERCs. Three phases are identified based on the behavior of the maximum intensity of the hurricane: intensification, weakening and reintensification. -
UNDERSTANDING the GENESIS of HURRICANE VINCE THROUGH the SURFACE PRESSURE TENDENCY EQUATION Kwan-Yin Kong City College of New York 1 1
9B.4 UNDERSTANDING THE GENESIS OF HURRICANE VINCE THROUGH THE SURFACE PRESSURE TENDENCY EQUATION Kwan-yin Kong City College of New York 1 1. INTRODUCTION 20°W Hurricane Vince was one of the many extraordinary hurricanes that formed in the record-breaking 2005 Atlantic hurricane season. Unlike Katrina, Rita, and Wilma, Vince was remarkable not because of intensity, nor the destruction it inflicted, but because of its defiance to our current understandings of hurricane formation. Vince formed in early October of 2005 in the far North Atlantic Ocean and acquired characteristics of a hurricane southeast of the Azores, an area previously unknown to hurricane formation. Figure 1 shows a visible image taken at 14:10 UTC on 9 October 2005 when Vince was near its peak intensity. There is little doubt that a hurricane with an eye surrounded by convection is located near 34°N, 19°W. A buoy located under the northern eyewall of the hurricane indicated a sea-surface temperature (SST) of 22.9°C, far below what is considered to be the 30°N minimum value of 26°C for hurricane formation (see insert of Fig. 3f). In March of 2004, a first-documented hurricane in the South Atlantic Ocean also formed over SST below this Figure 1 Color visible image taken at 14:10 UTC 9 October 2005 by Aqua. 26°C threshold off the coast of Brazil. In addition, cyclones in the Mediterranean and polar lows in sub-arctic seas had been synoptic flow serves to “steer” the forward motion of observed to acquire hurricane characteristics. -
Florida Hurricanes and Tropical Storms
FLORIDA HURRICANES AND TROPICAL STORMS 1871-1995: An Historical Survey Fred Doehring, Iver W. Duedall, and John M. Williams '+wcCopy~~ I~BN 0-912747-08-0 Florida SeaGrant College is supported by award of the Office of Sea Grant, NationalOceanic and Atmospheric Administration, U.S. Department of Commerce,grant number NA 36RG-0070, under provisions of the NationalSea Grant College and Programs Act of 1966. This information is published by the Sea Grant Extension Program which functionsas a coinponentof the Florida Cooperative Extension Service, John T. Woeste, Dean, in conducting Cooperative Extensionwork in Agriculture, Home Economics, and Marine Sciences,State of Florida, U.S. Departmentof Agriculture, U.S. Departmentof Commerce, and Boards of County Commissioners, cooperating.Printed and distributed in furtherance af the Actsof Congressof May 8 andJune 14, 1914.The Florida Sea Grant Collegeis an Equal Opportunity-AffirmativeAction employer authorizedto provide research, educational information and other servicesonly to individuals and institutions that function without regardto race,color, sex, age,handicap or nationalorigin. Coverphoto: Hank Brandli & Rob Downey LOANCOPY ONLY Florida Hurricanes and Tropical Storms 1871-1995: An Historical survey Fred Doehring, Iver W. Duedall, and John M. Williams Division of Marine and Environmental Systems, Florida Institute of Technology Melbourne, FL 32901 Technical Paper - 71 June 1994 $5.00 Copies may be obtained from: Florida Sea Grant College Program University of Florida Building 803 P.O. Box 110409 Gainesville, FL 32611-0409 904-392-2801 II Our friend andcolleague, Fred Doehringpictured below, died on January 5, 1993, before this manuscript was completed. Until his death, Fred had spent the last 18 months painstakingly researchingdata for this book. -
HUGH EDWARD WILLOUGHBY Professional Biography Department of Earth and Environment 7009 SW 66Ave
HUGH EDWARD WILLOUGHBY Professional Biography Department of Earth and Environment 7009 SW 66Ave. Florida International University Miami, FL 33143 MMC/AHC5-363 (305) 665–4080 Miami, FL 33199 [email protected] (305) 348-0243 EDUCATION: Ph.D., 1977. Atmospheric Science. University of Miami, Miami, Florida. M.S., 1969. Meteorology. United States Naval Postgraduate School, Monterey, California. B.S. (Distinction), 1967. Geophysics–Geochemistry. University of Arizona, Tucson, Arizona. CURRENT POSITION: Distinguished Research Professor, Department of Earth and Environment, Florida International University, January 2006-present. Teaches Meteorology and in the newly established Academic Track in Atmospheric Sciences within FIU’s Geosciences Major. Conducts individual research on hurricane motion, structure, intensity, and effects. EXPERIENCE: Professor and Senior Scientist, International Hurricane Research Center, Florida International University, December 2002-November 2005. Formulated research programs to study and mitigate hurricane impacts and carried out individual research on hurricane motion, structure, intensity and effects. Director, NOAA’s Hurricane Research Division, 1995– 2002. Responsible for scientific, programmatic, and administrative direction of HRD, 30 people, 14 PhDs, annual budget $4-5M. HRD’s mission was improvement of both basic physical understanding and operational forecasting of tropical cyclones and of tropical weather in general. A key aspect of this mission was an annual program of research flights into severe tropical weather. Research Meteorologist, HRD, 1975–1995. Designed and executed observational studies of hurricanes using instrumented research aircraft, formulated theoretical and numerical models of tropical cyclone motion and development, and reported the results of these investigations in the refereed literature and at national and international meetings. Made more than 400 research and reconnaissance flights into the eyes of typhoons and hurricanes. -
MASARYK UNIVERSITY BRNO Diploma Thesis
MASARYK UNIVERSITY BRNO FACULTY OF EDUCATION Diploma thesis Brno 2018 Supervisor: Author: doc. Mgr. Martin Adam, Ph.D. Bc. Lukáš Opavský MASARYK UNIVERSITY BRNO FACULTY OF EDUCATION DEPARTMENT OF ENGLISH LANGUAGE AND LITERATURE Presentation Sentences in Wikipedia: FSP Analysis Diploma thesis Brno 2018 Supervisor: Author: doc. Mgr. Martin Adam, Ph.D. Bc. Lukáš Opavský Declaration I declare that I have worked on this thesis independently, using only the primary and secondary sources listed in the bibliography. I agree with the placing of this thesis in the library of the Faculty of Education at the Masaryk University and with the access for academic purposes. Brno, 30th March 2018 …………………………………………. Bc. Lukáš Opavský Acknowledgements I would like to thank my supervisor, doc. Mgr. Martin Adam, Ph.D. for his kind help and constant guidance throughout my work. Bc. Lukáš Opavský OPAVSKÝ, Lukáš. Presentation Sentences in Wikipedia: FSP Analysis; Diploma Thesis. Brno: Masaryk University, Faculty of Education, English Language and Literature Department, 2018. XX p. Supervisor: doc. Mgr. Martin Adam, Ph.D. Annotation The purpose of this thesis is an analysis of a corpus comprising of opening sentences of articles collected from the online encyclopaedia Wikipedia. Four different quality categories from Wikipedia were chosen, from the total amount of eight, to ensure gathering of a representative sample, for each category there are fifty sentences, the total amount of the sentences altogether is, therefore, two hundred. The sentences will be analysed according to the Firabsian theory of functional sentence perspective in order to discriminate differences both between the quality categories and also within the categories. -
Mesoscale Observations of the Genesis of Hurricane Dolly (1996)
SEPTEMBER 2005 R E A S O R E T A L . 3151 Mesoscale Observations of the Genesis of Hurricane Dolly (1996) PAUL D. REASOR AND MICHAEL T. MONTGOMERY Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado LANCE F. BOSART Department of Earth and Atmospheric Sciences, The University at Albany, State University of New York, Albany, New York (Manuscript received 17 August 2004, in final form 23 February 2005) ABSTRACT Recent numerical studies of tropical cyclone genesis suggest a new paradigm for how the surface vortex is established based on a highly nonaxisymmetric mechanism involving the interaction of low-level cyclonic circulations generated by deep cumulonimbus convection. A reexamination of mesoscale observations during the genesis of Hurricane Guillermo (1991) confirms the presence of multiple cyclonic circulations. More recently, airborne Doppler radar wind observations during the genesis of Atlantic Hurricane Dolly (1996) also reveal multiple lower-to-middle-tropospheric mesoscale cyclonic circulations during sequential 15–20-min compositing periods. A particularly well-organized, but initially weak (mean tangential wind of7msϪ1), low-level cyclonic vortex embedded within the pre-Dolly tropical disturbance is observed coincident with deep, vertically penetrating cumulonimbus convection. The earliest observations of this vortex show the peak circulation near 2-km height with a mean diameter of 30–40 km. The circulation undergoes a slight intensification over a 2-h period, with the maximum tangential winds ultimately peaking below 1-km height. Approximately 18 h after these observations Dolly is classified as a hurricane by the National Hurricane Center. A synthesis of observations during the early development of Dolly supports a stochastic view of tropical cyclone genesis in which multiple lower-to-middle-tropospheric mesoscale cyclonic circulations are involved in building the surface cyclonic circulation. -
September Weather History for the 1St - 30Th
SEPTEMBER WEATHER HISTORY FOR THE 1ST - 30TH AccuWeather Site Address- http://forums.accuweather.com/index.php?showtopic=7074 West Henrico Co. - Glen Allen VA. Site Address- (Ref. AccWeather Weather History) -------------------------------------------------------------------------------------------------------- -------------------------------------------------------------------------------------------------------- AccuWeather.com Forums _ Your Weather Stories / Historical Storms _ Today in Weather History Posted by: BriSr Sep 1 2008, 11:37 AM September 1 MN History 1807 Earliest known comprehensive Minnesota weather record began near Pembina. The temperature at midday was 86 degrees and a "strong wind until sunset." 1894 The Great Hinckley Fire. Drought conditions started a massive fire that began near Mille Lacs and spread to the east. The firestorm destroyed Hinckley and Sandstone and burned a forest area the size of the Twin City Metropolitan Area. Smoke from the fires brought shipping on Lake Superior to a standstill. 1926 This was perhaps the most intense brief thunderstorm ever in downtown Minneapolis. 1.02 inches of rain fell in six minutes, starting at 2:59pm in the afternoon according to the Minneapolis Weather Bureau. The deluge, accompanied with winds of 42mph, caused visibility to be reduced to a few feet at times and stopped all streetcar and automobile traffic. At second and sixth street in downtown Minneapolis rushing water tore a manhole cover off and a geyser of water spouted 20 feet in the air. Hundreds of wooden paving blocks were uprooted and floated onto neighboring lawns much to the delight of barefooted children seen scampering among the blocks after the rain ended. U.S. History # 1897 - Hailstone drifts six feet deep were reported in Washington County, IA. -
Florida Hurricanes and Tropical Storms, 1871-1993: an Historical Survey, the Only Books Or Reports Exclu- Sively on Florida Hurricanes Were R.W
3. 2b -.I 3 Contents List of Tables, Figures, and Plates, ix Foreword, xi Preface, xiii Chapter 1. Introduction, 1 Chapter 2. Historical Discussion of Florida Hurricanes, 5 1871-1900, 6 1901-1930, 9 1931-1960, 16 1961-1990, 24 Chapter 3. Four Years and Billions of Dollars Later, 36 1991, 36 1992, 37 1993, 42 1994, 43 Chapter 4. Allison to Roxanne, 47 1995, 47 Chapter 5. Hurricane Season of 1996, 54 Appendix 1. Hurricane Preparedness, 56 Appendix 2. Glossary, 61 References, 63 Tables and Figures, 67 Plates, 129 Index of Named Hurricanes, 143 Subject Index, 144 About the Authors, 147 Tables, Figures, and Plates Tables, 67 1. Saffir/Simpson Scale, 67 2. Hurricane Classification Prior to 1972, 68 3. Number of Hurricanes, Tropical Storms, and Combined Total Storms by 10-Year Increments, 69 4. Florida Hurricanes, 1871-1996, 70 Figures, 84 l A-I. Great Miami Hurricane 2A-B. Great Lake Okeechobee Hurricane 3A-C.Great Labor Day Hurricane 4A-C. Hurricane Donna 5. Hurricane Cleo 6A-B. Hurricane Betsy 7A-C. Hurricane David 8. Hurricane Elena 9A-C. Hurricane Juan IOA-B. Hurricane Kate 1 l A-J. Hurricane Andrew 12A-C. Hurricane Albert0 13. Hurricane Beryl 14A-D. Hurricane Gordon 15A-C. Hurricane Allison 16A-F. Hurricane Erin 17A-B. Hurricane Jerry 18A-G. Hurricane Opal I9A. 1995 Hurricane Season 19B. Five 1995 Storms 20. Hurricane Josephine , Plates, X29 1. 1871-1880 2. 1881-1890 Foreword 3. 1891-1900 4. 1901-1910 5. 1911-1920 6. 1921-1930 7. 1931-1940 These days, nothing can escape the watchful, high-tech eyes of the National 8. -
Climate Overview of Wilmington, NC
National Weather Climate Overview of Wilmington, NC Service Wilmington, NC Temperatures weather.gov/ilm All-time Heat Records 104° on June 27, 1952 103° on June 30, 2012 103° on August 1, 1999 Hottest Month (avg temp) 84.7° in July 2012 Hottest Year (avg temp) Daily record highs 66.5° in 1990 Average highs/lows Avg Number of Days per Year Daily record lows ≥ 80°: 156 ≥ 90°: 46 ≥ 100°: 1 National Weather Service Weather National TEMP DATA Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec ANNUAL All-time Cold Records Highest Ever 82 85 94 95 101 104 103 103 100 98 87 82 104 0° on December 25, 1989 Average High 56.4 59.9 66.4 74.2 80.7 86.9 89.7 88.1 83.7 75.7 68.0 59.3 74.1 Average Temp 46.0 48.9 55.1 62.9 70.4 77.8 81.1 79.7 74.6 65.2 56.7 48.6 63.9 5° on January 21, 1985 Average Low 35.6 37.9 43.8 51.6 60.0 68.7 72.6 71.3 65.6 54.6 45.4 37.8 53.7 5° on February 14, 1899 Lowest Ever 5 5 9 28 35 48 54 55 42 27 16 0 0 Coldest Month (avg temp) Wilmington has a humid subtropical climate with hot summers and cool winters. Summertime heat 35.7° in January 1977 can become excessive, especially when high humidity accompanies hot temperatures. During the Coldest Year (avg temp) spring and summer months, seabreezes originating from the ocean to the east and south bring 61.0° in 1981 cooler air onshore during most afternoons. -
Peakhurricaneseasonarrivesonn.C. Coast
PeakHurricane Season Arrives On N.C. The 1989 Coast hurricane season, which June 1 he and ends began storms," advised. "They destroy more property and ful hurricane exercise in June have us the tools of all Nov. 30, has entered its peak months of threaten the lives of more than given hurricane-related deaths are caused by drown¬ and people any other we need to protect our coastal residents and visitors," seas rise of August, September October, according to Joe storm." noted. ing. Devastating ahead the storms and can Myers, director of the N.C. Division of Myers push the water level to over 25 feet in some areas. Emergency Hurricanes can cause extensive in coastal The a flooding greatest single loss of life from hurricane in This enormous wall of water. Management. areas and inland areas as well. Even a hurri¬ called a "storm North . though Carolina history occurred during the "Racer's surge" crashes against die land in a and cane weakens in force as they move inland, the storm Storm" in Octobcr 1837. An estimated 90 rapid unpre¬ "Historically, the most severe hurricancs occur can six to 12 inches early people dictable manner. The surge acts as a huge bulldozer produce of damaging rains. In died when the steamboat "Home" encountered the can fruiti the iniuuic of August through the miuriic of i969, Hurricane Camiile killed and destroy everything in its path. The stronger said. He more people in storm of! the coast and was destroyed. the the the will October," Myers added that Hurricane Virginia from flooding than died in Louisiana where Hurricane Hazel hurricane, higher surge be. -
The Multiple Vortex Nature of Tropical Cyclogenesis
THE MULTIPLE VORTEX NATURE OF TROPICAL CYCLOGENESIS A Thesis by JASON ALLEN SIPPEL Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2004 Major Subject: Atmospheric Sciences THE MULTIPLE VORTEX NATURE OF TROPICAL CYCLOGENESIS A Thesis by JASON ALLEN SIPPEL Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved as to style and content by: __________________________ Richard Orville (Head of Department) __________________________ __________________________ John Nielsen-Gammon Craig Epifanio (Chair of Committee) (Member) __________________________ __________________________ Fuqing Zhang Hongxing Liu (Member) (Member) December 2004 Major Subject: Atmospheric Sciences iii ABSTRACT The Multiple Vortex Nature of Tropical Cyclogenesis. (December 2004) Jason Allen Sippel, B.S., Texas A&M University Chair of Advisory Committee: Dr. John Nielsen-Gammon This thesis contains an observational analysis of the genesis of Tropical Storm Allison (2001). Using a paradigm of tropical cyclone formation as the superposition of potential vorticity (PV) anomalies, the importance of different scales of PV merger to various aspects of Allison’s formation is discussed. While only the case of Allison is discussed in great detail, other studies have also documented PV superposition on various scales, and superposition could be important for most tropical cyclones. Preceding Allison’s genesis, PV superposition on the large scale destabilized the atmosphere and increased low-level cyclonic vorticity. This presented a more favorable environment for the formation of MCV-type PV anomalies and smaller, surface-based, meso-β-scale vortices.