Graph and Reproduce This Manuscript from the Microfilm Master

Total Page:16

File Type:pdf, Size:1020Kb

Graph and Reproduce This Manuscript from the Microfilm Master Sexual selection and reproductive behavior in the Cortez damselfish (Stegastes rectifraenum). Item Type text; Dissertation-Reproduction (electronic) Authors Hoelzer, Guy Andrew. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 29/09/2021 21:53:50 Link to Item http://hdl.handle.net/10150/184781 INFORMATION TO USERS The most advanced technology has been used to photo­ graph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are re­ produced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. These are also available as one exposure on a standard 35mm slide or as a 17" x 23" black and white photographic print for an additional charge. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. U-M-I University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road, Ann Arbor, M148106·1346 USA 313/761·4700 800/521·0600 Order Number 9000'174 Sexual· selection and reproductive behavior in the Cortez damselfish (Stegastes recti/raenum) Hoelzer, Guy Andrew, Ph.D. The University of Arizona, 1989 U·M·I 300 N. Zeeb Rd. Ann Arbor, MI 48106 SEXUAL SELECTION AND REPRODUCTIVE BEHAVIOR IN THE CORTEZ DAMSELFISH (STEGASTES RECTIFRAENUM) by Guy Andrew Hoelzer A Dissertation Submitted to the Faculty of the DEPARTMENT OF ECOLOGY AND EVOLUTIONARY BIOLOGY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 1989 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Final Examination Committee, we certify that we have read the dissertation prepared by Guy Andrew Hoelzer ~~~~--~--------------------------------- entitled Sexual selection and reproductive behavior in the Cortez damselfish (Stegastes rectifraenum) and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of __~D_O_c_to_r __ o_f __ P_h_i_lo_s_o_P_h_y ______________________________ _ ~ Date ~'7 S/~slP-f Dr. Conrad Istock Date Date Date~~~/~? --/~--~,~----------- Date Final approval and acceptance of this dissertation is contingent upon the candidate's submission of the final copy of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement. Dissertation~ Director Date 3 STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University of Arizona Library to be made available to borrowers under rules of the Library. Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgement the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. 4 To MARY and ADAM With love, respect, and hope for the future 5 ACKNOWLEDGEMENTS This dissertation could not have been completed without the support and encouragement of my family, friends and colleagues. Special thanks go to those that served as members of my committee during my time at the University of Arizona: Donald A Thomson, Astrid Kodric-Brown, Robert L. Smith, Judith Bronstein, James H. Brown, and Conrad Istock. Their guidance and insightful comments greatly improved this work. Andrew Pomiankowski and Paul Weldon also provided very helpful comments on Chapter 2. I am also especially indebted to those that helped me to live and work in Mexico while I collected field data. Lloyd and Sonnie Findley generously provided a place to stay, and Phil Hastings allowed me to use his boat when I had no other way to get to my study sites. In addition to these individuals, I would like to thank the many people that became my good friends in San Carlos, Mexico for helping me to keep my sanity during the long periods away from my home and family. Phil Hastings, Shawn Nordell, Meriel Brooks, and Mike Brogan generously provided field assistance. I enjoyed many helpful and stimulating discussions with graduate students in the Department of Ecology and Evolutionary Biology, such as Phil Hastings, Chris Petersen, Mike Dungan, Alan Harvey, Meriel Brooks, Sarah Mesnick, Dave McDonald, Wayne Spencer, Todd Gayley, and Oren Hasson. Most importantly, I would like to thank my wife, Mary Hoelzer, for her patience and understanding. Mary helped me, more than any other factor, to keep my perspective when I would become too focused by the demands of graduate school. Parts of this research were supported by the Lerner-Gray Fund for Marine Research and the Society of Sigma Xi. Additional support was provided by the Department of Ecology and Evolutionary Biology and by Hiram Hoelzer and Janet Forbes. 6 TABLE OF CONTENTS Page LIST OF ILLUSTRATIONS............................................................ 8 LIST OF TABLES.............................................................................. 9 ABSTRACT.......................................................................................... 10 1. INTRODUCTORY SYNTHESIS.................................................. 13 2. THE GOOD PARENT PROCESS OF SEXUAL SELECTION........................................................ 24 The good parent process: theoretical considerations...... 26 A population genetic model................................................. 33 Computer simulations................................................ 37 Distinguishing between processes of epigamic evolution....................................................................... 42 The effect of female mate choice on the offspring........................................................... 43 Environmental sensitivity and termporal variance in the signaL.................................. 44 Courtship signals in polygynous species................. 45 Possible examples of good parent traits............................ 46 Courtship feeding in sea birds................................. 46 Courtship singing by male stonechats..................... 47 Discussion................................................................................. 48 3. MALE-MALE COMPETITION AND FEMALE CHOICE IN THE CORTEZ DAMSELFISH.................................. .. 52 Reproductive behaviour of the Cortez damselfish.......... 55 Methods........................................................................ 55 Results........................................................................... 57 Male removal experiment..................................................... 64 Methods ....................................................... ,... "............ 64 Results........................................................................... 65 7 TABLE OF CONTENTS--Continued Standardized nest experiment.............................................. 67 Methods........................................................................ 67 Results........................................................................... 69 Discussion................................................................................. 73 4. THE ECOLOGY AND EVOLUTION OF PARTIAL CLUTCH FILIAL CANNffiALISM IN THE CORTEZ DAMSELFISH.................................................... 80 The characterization of clutches.......................................... 84 Methods........................................................................ 84 Results.......................................................................... 86 Foraging on offspring............................................................. 88 Methods........................................................................ 88 Results.......................................................................... 90 The effects of filial cannibalism on behavior and reproductive success..................................................
Recommended publications
  • Quantifying Male Attractiveness Nationsbased on Values Andrewards
    Received 28October 2002 Accepted 13March 2003 Publishedonline 25 July 2003 Quantifyingmale attractivene ss JohnM. McNamara 1* ,AlasdairI. Houston 2,Miguel Marques dosSantos 1, Hanna Kokko3† and RobBrooks 4 1Departmentof Mathematics, University ofBristol, University Walk,Bristol BS8 1TW, UK 2Schoolof Biological Sciences, University ofBristol, Woodland Road, Bristol BS8 1GU, UK 3Division ofEnvironmentaland EvolutionaryBiology, Institute ofBiomedical and Life Sciences, University ofGlasgow, GlasgowG12 8QQ, UK 4Schoolof Biological Earth and EnvironmentalSciences, TheUniversity ofNew SouthWales, Sydney, NSW 2052,Australia Geneticmodels of sexual selectionare concernedwith adynamic processin which female preferenceand male trait values coevolve.We present a rigorous methodfor characterizing evolutionary endpointsof this processin phenotypic terms.In ourphenotypic characterization themate-choice strategy offemale popu- lation members determineshow attractive femalesshould find each male, anda population is evol- utionarily stable if population members are actually behaving in this way.This provides ajustificationof phenotypic explanations ofsexual selectionand the insights into sexual selectionthat they provide. Fur- thermore, thephenotypic approach also has enormousadvantages over ageneticapproach whencomput- ing evolutionarily stable mate-choicestrategies, especially whenstrategies are allowed tobecomplex time- dependentpreference rules. For simplicity andclarity ouranalysis dealswith haploid mate-choicegenetics anda male trait that is inherited
    [Show full text]
  • Evolution of Female Multiple Mating: a Quantitative Model of the “Sexually Selected Sperm” Hypothesis
    ORIGINAL ARTICLE doi:10.1111/evo.12550 Evolution of female multiple mating: A quantitative model of the “sexually selected sperm” hypothesis Greta Bocedi1,2 and Jane M. Reid1 1Institute of Biological and Environmental Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, United Kingdom 2E-mail: [email protected] Received June 5, 2014 Accepted October 1, 2014 Explaining the evolution and maintenance of polyandry remains a key challenge in evolutionary ecology. One appealing explana- tion is the sexually selected sperm (SSS) hypothesis, which proposes that polyandry evolves due to indirect selection stemming from positive genetic covariance with male fertilization efficiency, and hence with a male’s success in postcopulatory competition for paternity. However, the SSS hypothesis relies on verbal analogy with “sexy-son” models explaining coevolution of female preferences for male displays, and explicit models that validate the basic SSS principle are surprisingly lacking. We developed analogous genetically explicit individual-based models describing the SSS and “sexy-son” processes. We show that the analogy between the two is only partly valid, such that the genetic correlation arising between polyandry and fertilization efficiency is generally smaller than that arising between preference and display, resulting in less reliable coevolution. Importantly, indirect selection was too weak to cause polyandry to evolve in the presence of negative direct selection. Negatively biased mutations on fertilization efficiency did not generally rescue runaway evolution of polyandry unless realized fertilization was highly skewed toward a single male, and coevolution was even weaker given random mating order effects on fertilization. Our models suggest that the SSS process is, on its own, unlikely to generally explain the evolution of polyandry.
    [Show full text]
  • Ornamentation, Behavior, and Maternal Effects in the Female Northern Cardinal
    The University of Southern Mississippi The Aquila Digital Community Master's Theses Summer 8-2011 Ornamentation, Behavior, and Maternal Effects in the Female Northern Cardinal Caitlin Winters University of Southern Mississippi Follow this and additional works at: https://aquila.usm.edu/masters_theses Part of the Biology Commons, and the Ornithology Commons Recommended Citation Winters, Caitlin, "Ornamentation, Behavior, and Maternal Effects in the Female Northern Cardinal" (2011). Master's Theses. 240. https://aquila.usm.edu/masters_theses/240 This Masters Thesis is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Master's Theses by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. The University of Southern Mississippi ORNAMENTATION, BEHAVIOR, AND MATERNAL EFFECTS IN THE FEMALE NORTHERN CARDINAL by Caitlin Winters A Thesis Submitted to the Graduate School of The University of Southern Mississippi in Partial Fulfillment of the Requirements for the Degree of Master of Science Approved: _Jodie M. Jawor_____________________ Director _Frank R. Moore_____________________ _Robert H. Diehl_____________________ _Susan A. Siltanen____________________ Dean of the Graduate School August 2011 ABSTRACT ORNAMENTATION, BEHAVIOR, AND MATERNAL EFFECTS IN THE FEMALE NORTHERN CARDINAL by Caitlin Winters August 2011 This study seeks to understand the relationship between ornamentation, maternal effects, and behavior in the female Northern Cardinal (Cardinalis cardinalis). Female birds possess ornaments that indicate a number of important known aspects of quality and are usually costly to maintain. However, the extent to which female specific traits, such as maternal effects, are indicated is less clear. It is predicted by the Good Parent Hypothesis that this information should be displayed through intraspecific signal communication.
    [Show full text]
  • The Evolution of Sexual Dimorphism: Understanding Mechanisms of Sexual Shape Differences
    Chapter 1 The Evolution of Sexual Dimorphism: Understanding Mechanisms of Sexual Shape Differences Chelsea M. Berns Additional information is available at the end of the chapter http://dx.doi.org/10.5772/55154 1. Introduction Understanding the origin of biodiversity has been a major focus in evolutionary and ecological biology for well over a century and several patterns and mechanisms have been proposed to explain this diversity. Particularly intriguing is the pattern of sexual dimorphism, in which males and females of the same species differ in some trait. Sexual dimorphism (SD) is a pattern that is seen throughout the animal kingdom and is exhibited in a myriad of ways. For example, differences between the sexes in coloration are common in many organisms [1] ranging from poeciliid fishes [2] to dragon flies [3] to eclectus parrots (see Figure 1). A B Figure 1. A) Male Eclectus (© Stijn De Win/Birding2asia) B) Female Eclectus (© James Eaton/Birdtour Asia) © 2013 Berns, licensee InTech. This is an open access chapter distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 2 Sexual Dimorphism Sexual dimorphism is also exhibited in ornamentation, such as the horns of dung beetles [4], the antlers of cervids [5], and the tail of peacocks [6]. Many species also exhibit sexual differences in foraging behavior such as the Russian agamid lizard [7], and parental behavior and territoriality can be dimorphic in species such as hummingbirds [8, 9].
    [Show full text]
  • Good Resources – Direct Benefits Good Genes – Indirect Benefits  “Sexy Son” Hypothesis (Fisher)  “Handicap Hypothesis” (Zahavi) Good Genes for Sons, Daughters
    Why are females choosy? Good resources – direct benefits Good genes – indirect benefits “Sexy son” hypothesis (Fisher) “Handicap hypothesis” (Zahavi) Good genes for sons, daughters Good resources courtship feeding parental care, protection fanning eggs good nesting site, territory Good resources Nuptial gifts and copulation time Nuptial gifts Scorpion fly 1 Resources from males can tip the scales of relative investment Mormon cricket males give over 25% body weight in their spermatophore “Ultimate” nuptial gift Why does a spider female kill and eat her mate? Why does a praying mantis eat her mate’s head? Survival is just one strategy to transmit genes. When she eats him, she makes more eggs bearing his genes. His future reproductive chances are low “Sexy son” hypothesis Fisher 1930 – A strictly genetic theory Females with preexisting sensory bias Males w/ this trait are selected, females with the preference are selected Trait might provide nothing beyond mating success The parents Trait A Preference A Trait A Their offspring Preference A 2 “Sexy son” hypothesis Stalk-eyed flies (also stickleback ex. in text) 2 genetic strains were developed: males with short vs. long eye stalks. Selection on males. Females of either strain preferred males from their own strain. Stalk-eyed fly “Sexy son” hypothesis This hypothesis predicts a ‘runaway’ effect When does it stop? Handicap hypothesis Display can be indicator of health (choice based on ‘honest signal’ that is hard to fake) (Zahavi 1975) 3 Handicap hypothesis External features, behavior can indicate general health Comb and tail length changes with infection Guppy females choose males who closely inspect predators Handicap hypothesis Peacock chick growth and survival is linked to ‘eyespot’ size.
    [Show full text]
  • Sexual Selection
    SEXUAL SELECTION What I have called Sexual Selection…depends not on a struggle for existence in relation to other organic beings or to external conditions, but on a struggle between individuals of one sex, generally the males for the possession of the other sex… When the males and females…have the same general habits but differ in structure, colour, or ornament, such differences have been mainly caused by sexual selection. Darwin, The Origin Of Species SEXUAL SELECTION . A special form of selection that accounts for many elaborated traits and behaviors in organisms. Arises from differences in the ability to find and mate with members of the opposite sex. Only occurs when access to one or the other sex is limiting, i. e., when there is competition for mates or offspring. 1 Sexual selection is non-random variance in reproductive success. Two forms of sexual selection: . Intrasexual selection: direct competition for mates between members of the same sex, usually male-male competition. Intersexual selection: differences in attractiveness to the opposite sex, usually non-random mate choice by females. The form of Sexual Selection is directly related to the relative investment in offspring production. The sex that invests more in offspring production has fewer reproductive opportunities. As a result they, . Should be more discriminating (choosier). Become a limiting resource for the opposite sex. ANISOGAMY- Differential investment in reproduction FEMALES: Sex that produces few, well-provisioned gametes (eggs) MALES: Sex that produces many, “cheap” gametes (sperm) 2 Limitations on reproductive success differ for the sexes • Females are limited by fecundity • Males are limited by the number of mates they can obtain Elephant Seals .
    [Show full text]
  • Sexual Dimorphism Sexual Selection
    Sexual dimorphism Sexual selection Is sexual selection different from natural selection? Darwin saw them as distinct - only sexual selection could produce traits that compromise survival The basic principle – selection favors whatever gets more genes into the next generation In sexual selection, fitness is measured relative to members of the same sex Two kinds of sexual selection Intrasexual selection – mating success determined by within-sex interactions e.g., male-male combat Intersexual selection – mating success determined by between-sex interactions e.g., female choice of males (also referred to as epigamic selection) Mating systems Mating systems influence sexual selection Strength of sexual selection Variance in mating success All males have Some males = 0 mates Most males = 0 mates same mating Some males = 1 mate One male = 8 mates success = 1 mate Some males = 2 mates Monogamy Moderate Polygyny Strong Polygyny The peacock’s tail Extravagant male ornaments The peacock’s tail greatly impairs his mobility…how could such a trait evolve? Why a theory of sexual selection? Darwin needed a theory to explain the many extravagant traits that seem to reduce survival e.g. the peacock’s tail His rationale, that conspicuous male displays persist and grow ever more conspicuous because females prefer them, never fully explained the benefit of choosing the brightest or loudest. Darwin "Thus a struggle produced by sexual selection in males exists not because of the struggle for existence, but because it give the males that possess it an advantage
    [Show full text]
  • Female Mate Selection in Terms of Monetary Resources and Number of Children
    Modern Psychological Studies Volume 19 Number 1 Article 6 2013 What a girl wants: female mate selection in terms of monetary resources and number of children Stefanit Tucker Yale University Follow this and additional works at: https://scholar.utc.edu/mps Part of the Psychology Commons Recommended Citation Tucker, Stefanit (2013) "What a girl wants: female mate selection in terms of monetary resources and number of children," Modern Psychological Studies: Vol. 19 : No. 1 , Article 6. Available at: https://scholar.utc.edu/mps/vol19/iss1/6 This articles is brought to you for free and open access by the Journals, Magazines, and Newsletters at UTC Scholar. It has been accepted for inclusion in Modern Psychological Studies by an authorized editor of UTC Scholar. For more information, please contact [email protected]. MPS I Female Mate Selection I Tucker I Pg. 31-38 What a Girl Wants: Female Mate Selection in Terms of Monetary Resources and Number of Children Sefanit Tucker Yale University Abstract Several evolutionary theories provide the framework for assessing modern mate selection. Previous research in female mate selection has left a gap in whether and how number of children a male has can impact the perception of monetary resources he possesses and subsequently his desirability as a mate. The present investigation thus set out to examine resource-related differences among males with average ($50,001-75,000) and above average incomes (>$150,000) by analyzing data available through the online dating website, match.com. Furthermore, the geographic locations of New York, New York and Louisville, Kentucky were used to both refine results but also maintain genera lizability of findings.
    [Show full text]
  • Sexual Selection
    Sexual selection Introduction, key concepts, examples. - Pioneer ideas: Darwin, Bateman, Trivers - Male-male competition: processes and intrasexually-selected traits - Mate choice: processes and intersexually-selected traits - Polyandry, monandry, sex-role reversion... : evolutionary origin of the diversity of mating systems - Coexistence of alternative strategies ENS – Master 1 – Ecologie Evolutive Novembre 2014 David Laloi ([email protected]) Darwin’s hypothesis Natural selection (in its basic form ) does not explain appropriately the evolution of many traits, dimorphic sexual ornaments in particular: other selective pressures? 1859 The origin of species by 1871 The descent of man and means of natural selection selection in relation to sex Darwin’s hypothesis Natural selection (in its basic form ) does not explain appropriately the evolution of many traits, dimorphic sexual ornaments in particular: other selective pressures? Sexual selection Selection that results from differences in reproductive success due to competition for mate acquisition. In other words, some traits do not depend on a ‘struggle for life’ but on a ‘struggle for mating’. Darwin’s hypothesis Two main forms of sexual selection: Males compete with each other to accede to females Intrasexual selection Females are choosy in which males to mate with Intersexual selection Sexual selection: asymmetrical processes… Why males and females differ in trying to acquire mate? - All individuals can obtain more offspring when mating with more mates. - All individuals can obtain better offspring when mating with better mate. But… - gametes: large, non motile, swollen with reserves, High investment in each small number. - gametes: small, motile, with very few reserves, Low investment in each very large number. Bateman’s principle Sperm are cheaper and more numerous than eggs, thus: - a single male can easily fertilize all a female's eggs; she will not produce more offspring by mating with more than one male, - a male is capable of fathering more offspring if he mates with several females.
    [Show full text]
  • Response to Eberhard and Cordero, and Co´ Rdoba-Aguilar and Contreras-Gardun˜ O: Sexual Conflict and Female Choice
    440 Update TRENDS in Ecology and Evolution Vol.18 No.9 September 2003 important issue both theoretically and experimentally References [5], researchers ignore how female reproductive traits 1 Holland, B. and Rice, W.R. (1997) Chase-away sexual selection: intervene during fertilization. Once this is clarified, we antagonistic seduction versus resistance. Evolution 52, 1–7 2 Parker, G.A. (1979) Sexual selection and sexual conflict. In Sexual can then ascribe female traits as ‘resistant’ or Selection and Reproductive Competition in Insects (Blum, M.S. and ‘selective’. The second is to study the genetics of the Blum, N.A., eds), pp. 123–166, Academic Press female preference and associated male traits [5].A 3 Chapman, T. et al. (2003) Sexual conflict. Trends Ecol. Evol. 18, 41–47 genetic correlation is expected between both traits only 4 Cordero, C. and Eberhard, W.G. (2003) Female choice of sexually if traditional female choice is occurring. The third and antagonistic male adaptations: a critical review of some current research. J. Evol. Biol. 16, 1–6 final approach is to track the rates of origin of female 5 Simmons, L.W. (2001) Sperm Competition and its Evolutionary and male traits on phylogenies once resistance or Consequences in the Insects, Princeton University Press selectivity has been determined. This will explain the 6 Edvardsson, M. and Arnqvist, G. (2000) Copulatory courtship and prevalence of either process. cryptic female choice in the red flour beetles Tribolium castaneaum. Studies of fruit flies and water striders have Proc. R. Soc. Lond. Ser. B 267, 559–563 7 Elgar, M.A.
    [Show full text]
  • Sexual Selection Spot the Male
    Sexual Selection 1 Spot the male !! Spot the male vs. female 2 1! Sexual dimorphism Very common in animals !! What is it? !! Differences in characteristics between males and females of a species Sexual dimorphism Very common in animals !! What is it? !! Differences in characteristics between males and females of a species 2! Sexual dimorphism Very common in animals !! What is it? !! Differences in characteristics between males and females of a species Sexual dimorphism Very common in animals !! Darwin noted, when males and females differ, males have !! Brighter feathers or plumage !! Larger weapons (e.g. antlers) !! A greater tendency to vocalize !! Larger muscles !! Greater aggressive tendencies !! A higher intensity in seeking mating opportunities !! Two questions ! 3! Sexual dimorphism Very common in animals !! How does sexual dimorphism arise? !! Ornaments, behaviors, plumage, etc. require energy and reduce survival !! Why is the larger, or more colorful, or more ornamented sex usually the male? The Fundamental Asymmetry of Sex !! Different levels of investment for males and females – Generalizations !! Males !! Sperm is cheap to produce !! Male investment in each mating is small !! Male reproductive success determined by # of matings (i.e. access to females) !! There is great variability in male mating success 4! The Fundamental Asymmetry of Sex !! Different levels of investment for males and females - Generalizations !! Males The Fundamental Asymmetry of Sex !! Different levels of investment for males and females - Generalizations !! Males 5! The Fundamental Asymmetry of Sex !! Different levels of investment for males and females - Generalizations !! Females !! Eggs relatively expensive to produce !! Investment in each mating is large !! Especially where female parental care is important and asymmetrical (e.g.
    [Show full text]
  • Good Genes Or Sexy Sons? Testing the Benefits of Female
    GOOD GENES OR SEXY SONS? TESTING THE BENEFITS OF FEMALE MATE CHOICE IN THE PAiNTED TURTLE, CHRYSEMYS PICTA A Thesis Presented to The Faculty of Graduate Studies Of The University of Guelph In partid fulfiiiment of requiremtns for the degree of Master of Science August, 2000 National Library Bibiiithèque nafinale 1*1 .Cam, du Canada Acquisiîions and Acquisitions et Bibliographie Services sefvices bibliographiques 345 Wellinglon Street m. rue welrigton Ottawa ON K1A ON4 CNmwaON KlAM CaMda Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence dowing the exclusive permettant à la National Library of Canada to Bbiiotheque nationale du Canada de reproduce, loan, distniute or seil reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/6llm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or othewise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. GOOD GENES OR SEXY SONS? TESTING THE BENEFITS OF FEMALE MATE CHOiCE IN THE PAINTED TURTLE, CHRYSEMYS PICTA Seanna J. McTaggart Advisor: University of Guelph, 2000 Professor R.J. Brooks The "good-genes" and the "sexy-sonJ1hypotheses explain the evolution of Eemale preferences in species where femaies do not receive direct benefits from mating.
    [Show full text]