Monitoring Times 1994 INDEX

Total Page:16

File Type:pdf, Size:1020Kb

Monitoring Times 1994 INDEX Monitoring Times 1994 INDEX FEATURES: Air Show: Triumph to Tragedy Season Aug JUNE Duopolies and DXing Broadcast: Atlantic City Aero Monitoring May JULY TROPO Brings in TV & FM A Journey to Morocco May Dayton's Aviation Extravaganza DX Bolivia: Radio Under the Gun June June AUG Low Power TV Stations Broadcasting Battlefield, Colombia Flight Test Communications Jan SEP WOW, Omaha Dec Gathering Comm Intelligence OCT Winterizing Chile: Land of Crazy Geography June NOV Notch filters for good DX April Military Low Band Sep DEC Shopping for DX Receiver Deutsche Welle Aug Monitoring Space Shuttle Comms European DX Council Meeting Mar ANTENNA TOPICS Aug Monitoring the Prez July JAN The Earth’s Effects on First Year Radio Listener May Radio Shows its True Colors Aug Antenna Performance Flavoradio - good emergency radio Nov Scanning the Big Railroads April FEB The Half-Rhombic FM SubCarriers Sep Scanning Garden State Pkwy,NJ MAR Radio Noise—Debunking KNLS Celebrates 10 Years Dec Feb AntennaResonance and Making No Satellite or Cable Needed July Scanner Strategies Feb the Real McCoy Radio Canada International April Scanner Tips & Techniques Dec APRIL More Effects of the Earth on Radio Democracy Sep Spy Catchers: The FBI Jan Antenna Radio France Int'l/ALLISS Ant Topgun - Navy's Fighter School Performance Nov Mar MAY The T2FD Antenna Radio Gambia May Tuning In to a US Customs Chase JUNE Antenna Baluns Radio Nacional do Brasil Feb Nov JULY The VHF/UHF Beam Radio UNTAC - Cambodia Oct Video Scanning Aug Traveler's Beam Restructuring the VOA Sep Waiting in Juneau Sep AUG The "Big J" HF Antenna Riding High with the Cowboys SEP How High and Why? Oct Technology and Technical: OCT Groundplane Antennas Shortwave Broadcasting in Haiti After the Shock July NOV Radio Direction Finding July Countdown to the Crash June DEC Antenna/Receiver Switching So You Got a New SW Receiver Life with Satellites Jan Jan Microwave Monitoring Feb BEGINNER’S CORNER The Dominican Republic Feb Microwave Monitoring—Build an JAN QSLing the Hard Ones U.S.-Cuba Broadcast War Oct March FEB Reading RTTY INMARSAT System MAR Getting Your Equipment Human Interest: LF - The Last Frontier Nov Repaired Aggressive MorotolaStance Nov Monitoring the Military's Satellite APRIL Beginner’s Books A Guiding Force: Harry Dannals Communications Aug MAY Mailbag March OptoScan 456 (Review) Oct JUNE Summer Shortwave A Real Old-Timer Remembers Radio in Cyberspace Nov Alternatives July Secret of Nimbus (satellite sleuth) JULY Local Notions An Old Pirate—Sarah—Blown Away April AUG Uncle Skip's Guide to Jan So You Got a New SW Receiver Monitoring CB - Radio for the People July Jan SEP Reporting signal quality D-Day:Day of Discovery Jun The Spectrum Analyzer May (SINPO) Fifth Anniversary MT Convention Zap Proof Your Radio Room June OCT Kit Building Dec NOV Protecting equipment from Kuwait: Mission Impossible Dec Utilities: theft LAPD: You Better Stay Home Feb Drugs, Spies, and Numbers Oct DEC Guide to Measurements Listening in the Dark May Scanner/SW Networking May Reading, 'Riting & Radio Sep BELOW 500 kHz Repercussions From Cal Quake AMERICAN BANDSCAN JAN Document Your DX April JAN WWYZ-FM 92.5 Connecticut FEB Readers Letters FEB DXer Mika Palo, Helsinki, MAR Hunting for Lowfers Nostalgia: Finland APRIL IF Shift The Medium IS the Message: MAR Moody Broadcasting Network; MAY Below 100 kHz—the Feb Bose subbasement 1st DX Program “Wave” Radio JUNE Summertime APRIL WOJB-FM 89, Wisconsin Strategy,OMEGA update Scanning: MAY The Summer Sporadic-E JULY Tune Into NAVTEX AUG DXing Massassachusetts MAR World of Ham Radio CD Ready SEP Books, catalogs, equip ROM; SCANCAT Version 5.0; SEP Digital Logic Simplified OCT Direction Finding New SCANPRO Teaser OCT Status Indicator/Logic Probe NOV How Low Will It Go? -Rcvr APRIL Comparing Six Propagation NOV Low Pass Filter for CTCSS Specs; Navtex; Beyond Basics - Progs Detection Omega MAY Lowe’s Multiscan 1.81; RFI DEC Pulse Stretcher Circuit DEC Tips & Techniques; FAA help Beacon Specs JUNE SWBC Interval Signals v1.2; FEDERAL FILE HP Dash-board; World 29 v2.97 JAN The Best Equipment BOB’S TIP OF THE MONTH JULY Any Port in a Storm FEB Mobile Monitoring, FAA JAN Help for Electric Fence AUG BUSing Mice, PAKing Ratts & Frequencies Interference, COPYing CATS MAR Top 125 Military SW Freqs; Ducting Detecting SEP AEA PC Pakratt Dept of Justice Freqs FEB Yaesu FRG8800 Display OCT HOKA 30 APRIL Federal Monitoring in the 90’s; Correction NOV HOKA Code 3 and 30 vs DEA, FL Joint Task Force, FBI, MAR SW Antenna Base PK232 Border Patrol freqs APRIL Drake SW-8 Battery Fix; DEC SWL Manager, CD-ROMS MAY The Spectrum Analyzer; US ICOM R72 PLUS Postal Svce and Department of Clock Fix State Security freqs MAY Realistic® PRO-2030 Cell DEMAW’S WORKBENCH JUNE Monitoring a Presidential Visit; Restoration JAN Add a BFO to Your SW Radio Dept.of Labor Freqs; Mode JUNE Realistic® PRO-2032 FEB Inexpensive Ground-Plane Allocations Modifications Vertical JULY Changes at KKN stations; JULY Mobile Shortwave Antenna MAR How to Cut Antenna Material Body Bugs Noise Costs AUG Strange Sounds on the AUG Realistic PRO-2026 Memory APRIL Broadband Sloping-V Federal Channels; surveillance Backup Antenna kits; Center for Disease Control; SEP Ford Taurus Interference; MAY Effective Earth/Radio wildlife tracking Regency 4030 Lockup Grounds SEP National Park Service OCT AR 1500 Look-up Chart JUNE Components: How To Find OCT KKN Stations - Gone? (Miami NOV Cellular restoration on late- Them Complex) model BC855XLT JULY Microphone Impedance & NOV Strange Events in the Deserts DEC New PRO-51 Cellular Mod Amplification (Groom Lake); World Cup AUG Soldering Techniques Security; BLM-Boise Interagency CLOSING COMMENTS SEP Kit Building Fire Center; US Attny JAN FCC Punishes Ham (Chris OCT Dip Meters DEC Federal Trunking; Salt Lake Boyer) for Rescue Call NOV External Antenna Coupling City freqs; Fed Surveillance FEB Canadian Scanner Bans DEC Low Cost Power Supplies (bug) freqs Looms; US Rewrites the Communications Act DIGITAL DIGEST HIGH SEAS MAR In the Public Interest; PSA as JAN Decoding SITOR JAN Back to Basics "Broadcaster" APRIL FAX MAR Florida Licensees on 4125 APR April 26th: The Deadline is JULY Monitoring the French Military kHz Here OCT Decoding ACARS MAY Cruiseline News and freqs; MAY Restructuring the Spectrum Norfolk fax broadcast freqs JUNE Computer BBSs: The New CB EXPERIMENTER’S WORKSHOP JULY Weather Facsimile JULY Objective Review or Self- JAN Build a Solid-State Audio Broadcasts Promotion? Recorder SEP Time Stations and Navigation AUG MT Convention: 5 Year and Playback Circuit NOV Missing at Sea (Caribbean Milestone FEB Hot Glue Tips and Pin-Line search) SEP Scanner Restrictions Get Sockets Worse MAR DC Power Supplies for MAGNE TESTS OCT What Can I Legally Listen To? Experimenters and Hobbyists Caveat: Reprints of Magne Test reviews NOV Signaling Our Punches in APRIL RF Voltage Probe; Fast are not available. Haiti Charge Nicd and NiMH Batteries JAN Sangean ATS 202 DEC MT/Grove Staff Holiday MAY R-7100 Speedup, Homebrew FEB Realistic® DX-375 Greetings Signal Generator Yaesu FRG100 Improvements and JUNE Heavy Duty Regulated Power optional keypad COMPUTERS & RADIO Supply for CB & Ham Radio MAR Grundig Yacht Boy 500 JAN FAXCAP JULY How to Prepare & Install MAY External Antenna for SW FEB Database Programs on a Modification Circuits Listening; Another Keypad for Budget AUG Things to Come & How to Get the Yaesu FRG-100 JUNE Sony ICF-SW100 Pocket Cars; Pirate Pages Returns; OCT Solar Outages Radio What We Are Hearing NOV The 500 Channel Myth JULY MFJ-8100 Shortwave Radio; SEP La Voz del CID; Stern DEC Audio Broadcasting by Better, Cheaper Keypad for Jamming; Haiti Clandestine; Satellite Yaesu FRG-100 Errata; KIWI address AUG Drake SW8 Portatop Receiver OCT RFPI Chases Pirates off SCANNER EQUIPMENT SEP Sony SW7600G; W-J Update 7385; KIWI Still Active; Radio JAN Realistic® PRO-2030 and OCT ComFocus SoftWave receive Tornado PRO-2032 NOV Bolong HS-490 NOV PR Anti-Castro Clan Busted; FEB Tips for Your New Scanner DEC JPS Digital Signal Processors New FFC Chief; Radio MAR Realistic® PRO-2027 w/cell Democracy; Taiwan Pirates; mod inst ON THE HAM BANDS French Pirates; QSL APRIL AOR AR1500 Handheld JAN Audio Aids Controversy Scanner FEB What Frequencies Can Hams DEC Pirates Scatter; Finland Busts; MAY Realistic® PRO-51 Use? Radio Democracy JUNE AOR AR3000A Scanner MAR Something Different From JULY Realistic PRO-23 Handheld Different Locations PLANE TALK Scanner APRIL More Fun Radio Activities FEB ARINC AUG DSP: The Wave of the MAY The W8JK Antenna APRIL Accessorize Your Aero Future? JUNE Building Your Own Rig; Monitoring SEP AOR AR8000 Buckmaster Hamcall CD JUNE How to Get More Out of OCT Realistic® PRO-2035 JULY Good Reading Listening to HF Aero Comms NOV Digitech Loop Recorder AUG Building Your First Station AUG Getting to Know Denver Int'l DEC Austin Ferret VHF/UHF SEP Log-EQF Software OCT Central East Pacific Freqs Antenna OCT Organizers; 160 Meters DEC "Lofty" Lingo (VFR/IFR); (antenna) Radar Separation; Minn/St. Paul SCANNING REPORT NOV Six Meters; Ramsey FX-50 freqs; company freqs JAN Preventative Maintenance for 6m kit Your Shack DEC Christmas Books and PROGRAM SPOTLIGHT FEB Protecting Your Privacy Bargains MAR Travel and Tourism MAR Scanning the Forbidden JUNE Tuning in on World Business Freqs—Phones OUTER LIMITS SEP Science and Technology APRIL Scanning with CTCSS JAN Clandestine Information DEC And Now the News MAY Homemade Scanning Sources, Ernest Zundel and Antennas Voice of Freedom, Bay Area RADIO REFLECTIONS
Recommended publications
  • Cetiie B Tia Nature Red Acted
    Probabilistic Methods for Systems Engineering with Application to Nanosatellite Laser Communications by Emily B. Clements Submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2018 Massachusetts Institute of Technology 2018. All rights reserved. Autholr Signature redacted (J Department of Aeronautics and Astronautics May 24,2018 Cetiie b tianature red acted Kerri L. Cahoy Associate Professor of Aeronautics and Astronautics red acted Thesis Supervisor Certified by ... Signatu re ........................ David 0. Caplan Senior Staff, MIT Lincoln Laboratory Certified by, S ignature redacted Jeffrey A. Mendenhall Lincoln Laboratory C ignature red acted Senior Staff, MIT Certified by. ................................... David W. Miller Jerome Hunsaker Professor of Aeronauticq and Astronautics Accepted by......... .................. Signature redacted MASSACHUSETTS INSTITUTE Hamsa Balakrishnan OF TECHNOLOGY Associate Professor of Aeronautics and Astronautics JUN 28 2018 Chair, Graduate Program Committee LIBRARIES ARCHIVES 2 Probabilistic Methods for Systems Engineering with Application to Nanosatellite Laser Communications by Emily B. Clements Submitted to the Department of Aeronautics and Astronautics on May 24, 2018, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract Risk-tolerant platforms such as nanosatellites may be able to accept moderate perfor- mance uncertainty
    [Show full text]
  • High Frequency Communications – an Introductory Overview
    High Frequency Communications – An Introductory Overview - Who, What, and Why? 13 August, 2012 Abstract: Over the past 60+ years the use and interest in the High Frequency (HF -> covers 1.8 – 30 MHz) band as a means to provide reliable global communications has come and gone based on the wide availability of the Internet, SATCOM communications, as well as various physical factors that impact HF propagation. As such, many people have forgotten that the HF band can be used to support point to point or even networked connectivity over 10’s to 1000’s of miles using a minimal set of infrastructure. This presentation provides a brief overview of HF, HF Communications, introduces its primary capabilities and potential applications, discusses tools which can be used to predict HF system performance, discusses key challenges when implementing HF systems, introduces Automatic Link Establishment (ALE) as a means of automating many HF systems, and lastly, where HF standards and capabilities are headed. Course Level: Entry Level with some medium complexity topics Agenda • HF Communications – Quick Summary • How does HF Propagation work? • HF - Who uses it? • HF Comms Standards – ALE and Others • HF Equipment - Who Makes it? • HF Comms System Design Considerations – General HF Radio System Block Diagram – HF Noise and Link Budgets – HF Propagation Prediction Tools – HF Antennas • Communications and Other Problems with HF Solutions • Summary and Conclusion • I‟d like to learn more = “Critical Point” 15-Aug-12 I Love HF, just about On the other hand… anybody can operate it! ? ? ? ? 15-Aug-12 HF Communications – Quick pretest • How does HF Communications work? a.
    [Show full text]
  • Monitoring Times 2000 INDEX
    Monitoring Times 1994 INDEX FEATURES: Air Show: Triumph to Tragedy Season Aug JUNE Duopolies and DXing Broadcast: Atlantic City Aero Monitoring May JULY TROPO Brings in TV & FM A Journey to Morocco May Dayton's Aviation Extravaganza DX Bolivia: Radio Under the Gun June June AUG Low Power TV Stations Broadcasting Battlefield, Colombia Flight Test Communications Jan SEP WOW, Omaha Dec Gathering Comm Intelligence OCT Winterizing Chile: Land of Crazy Geography June NOV Notch filters for good DX April Military Low Band Sep DEC Shopping for DX Receiver Deutsche Welle Aug Monitoring Space Shuttle Comms European DX Council Meeting Mar ANTENNA TOPICS Aug Monitoring the Prez July JAN The Earth’s Effects on First Year Radio Listener May Radio Shows its True Colors Aug Antenna Performance Flavoradio - good emergency radio Nov Scanning the Big Railroads April FEB The Half-Rhombic FM SubCarriers Sep Scanning Garden State Pkwy,NJ MAR Radio Noise—Debunking KNLS Celebrates 10 Years Dec Feb AntennaResonance and Making No Satellite or Cable Needed July Scanner Strategies Feb the Real McCoy Radio Canada International April Scanner Tips & Techniques Dec APRIL More Effects of the Earth on Radio Democracy Sep Spy Catchers: The FBI Jan Antenna Radio France Int'l/ALLISS Ant Topgun - Navy's Fighter School Performance Nov Mar MAY The T2FD Antenna Radio Gambia May Tuning In to a US Customs Chase JUNE Antenna Baluns Radio Nacional do Brasil Feb Nov JULY The VHF/UHF Beam Radio UNTAC - Cambodia Oct Video Scanning Aug Traveler's Beam Restructuring the VOA Sep Waiting
    [Show full text]
  • The Development of HF Broadcast Antennas
    Development of HF Broadcast Antennas FEATURES FEATURES Development of HF Broadcast Antennas the 50% power loss, but made the Rhombic fre - Free Europe and Radio Liberty sites. quency-sensitive, consequently losing the wide- Rhombic antennas are no longer recommend - The Development of HF bandwidth feature. The available bandwidth ed for HF broadcasting as the main lobe is nar - depends on the length of the wire and, using dif - row in both horizontal and vertical planes which ferent lengths of transmission line, it is possible to can result in the required service area not being Broadcast Antennas access two or three different broadcast bands. reliably covered because of the variations in the A typical rhombic antenna design uses side ionosphere. There are also a large number of lengths of several wavelengths and is at a height side lobes of a size sufficient to cause interfer - Former BBC Senior Transmitter Engineer Dave Porter G4OYX continues the story of the of between 0.5-1.0 λ at the middle of the operat - ence to other broadcasters, and a significant pro - development of HF broadcast antennas from curtain arrays to Allis antennas ing frequency range. portion of the transmitter power is dissipated in the terminating resistance. THE CORNER QUADRANT ANTENNA Post War it was found that if the Rhombic Antenna was stripped down and, instead of the four elements, had just two end-fed half-wave dipoles placed at a right angle to each other (as shown in Fig. 1) the result was a simple cost- effective antenna which had properties similar to the re-entrant Rhombic but with a much smaller footprint.
    [Show full text]
  • An Update on the CCSDS Optical Communications Working Group Interoperability Standards
    An Update on the CCSDS Optical Communications Working Group Interoperability Standards Bernard L. Edwards Robert Daddato NASA Goddard Space Flight Center European Space Agency Greenbelt, MD 20771 USA Darmstadt, Germany Klaus-Juergen Schulz Randall Alliss European Space Agency Northrop Grumman Corporation Darmstadt, Germany McLean, VA 22102 USA Jon Hamkins Dirk Giggenbach NASA Jet Propulsion Laboratory DLR Pasadena, CA 91109 USA Oberpfaffenhofen, Germany Bryan Robinson Lena Braatz MIT Lincoln Laboratory Booz Allen Hamilton, Inc. Lexington, MA 02420 USA McLean, VA 22102 USA Abstract – International space agencies around the one space agency’s spacecraft could be served by world are working together in the Interagency another space agency’s ground antennas. Operation Advisory Group (IOAG) and the Consultative Committee for Space Data Systems The overall development of international space (CCSDS) to develop interoperability standards for optical communications. The standards support communication standards for cross support is optical communication systems for both Near Earth coordinated by the Interagency Operations and Deep Space robotic and human-rated spacecraft. Advisory Group (IOAG) [1]. The IOAG is an The standards generally address both free space links organization made up of international space between spacecraft and free space links between agencies that provides a forum for identifying spacecraft and ground. This paper will overview the common needs and coordinating space history and structure of the CCSDS Optical communications policy, high-level procedures, Communications Working Group and provide an technical interfaces, and other matters related to update on the set of optical communications interoperability and space communications. The standards being developed. The paper will address the ongoing work on High Photon Efficiency IOAG considers the future requirements and trends communications, High Data Rate communications, in spacecraft communications needs and assigns and Optical On/Off Keying communications.
    [Show full text]
  • High Frequency Communications – an Introductory Overview - Who, What, and Why?
    High Frequency Communications – An Introductory Overview - Who, What, and Why? 12 April, 2012 Abstract: Over the past 60+ years the use and interest in the High Frequency (HF -> covers 1.8 – 30 MHz) band as a means to provide reliable global communications has come and gone based on the wide availability of the Internet, SATCOM communications, as well as various physical factors that impact HF propagation. As such, many people have forgotten that the HF band can be used to support point to point or even networked connectivity over 10’s to 1000’s of miles using a minimal set of infrastructure. This presentation provides a brief overview of HF, HF Communications, introduces its primary capabilities and potential applications, discusses tools which can be used to predict HF system performance, discusses key challenges when implementing HF systems, introduces Automatic Link Establishment (ALE) as a means of automating many HF systems, and lastly, where HF standards and capabilities are headed. Course Level: Entry Level with some medium complexity topics Agenda • HF Communications – Quick Summary • How does HF Propagation work? • HF - Who uses it? • HF Comms Standards – ALE and Others • HF Equipment - Who Makes it? • HF Comms System Design Considerations – General HF Radio System Block Diagram – HF Noise and Link Budgets – HF Propagation Prediction Tools – HF Antennas • Communications and Other Problems with HF Solutions • Summary and Conclusion • I‟d like to learn more = “Critical Point” 13-Apr-12 I Love HF, just about On the other hand… anybody can operate it! ? ? ? ? 13-Apr-12 HF Communications – Quick pretest • How does HF Communications work? a.
    [Show full text]
  • Signal Issue 27
    Signal Issue 27 Tricks of the Trade Dave Porter G4OYX Last time in ToTT, we had arrived at the point in the development of broadcast HF arrays where the HRRS 4/4/1 reigned supreme. This status was no doubt due to its versatility having slew, reversal and the ability to use half the array, reducing the aperture but spreading a signal over a wider part of the globe. Limitations Operationally switching the single band By the early 1960s, the limitations of the single band arrays HRRS 4/4/1 array were becoming apparent as the BBC Before about 1970, it was an all-manual operation to developed a dual-band array where two adjacent bands effect slews, reversals and ‘A’-condition switching on the could be accommodated, typified by 41 and 49 m, often arrays. Technical Assistants were rostered for turns on used for transmissions to East European countries during the senders, the control room and the antennas. the Cold War. This arrangement saved real estate and permitted greater flexibility in transmission planning as well as for operational staff on the sites if arrays were damaged in severe weather. VMARS Member Dave Gallop G3LXQ was a member of the BBC Transmitter Scheduling Unit at Bush House and involved with the use of these older designs. Below is a commentary that neatly describes the theory at the time and relates to a later improvement in the feed system. G3LXQ writes, “I was never fully convinced by the traditional feed system for HRRS 4/4/1 arrays. Vertical power sharing between the dipoles did not follow the theory for much of the intended frequency range, particularly when the BBC liked using band-edge frequencies (out-of-band frequencies).
    [Show full text]
  • Monitoring Times 2000 INDEX
    Monitoring Times 1994 INDEX FEATURES: Air Show: Triumph to Tragedy Season Aug JUNE Duopolies and DXing Broadcast: Atlantic City Aero Monitoring May JULY TROPO Brings in TV & FM A Journey to Morocco May Dayton's Aviation Extravaganza DX Bolivia: Radio Under the Gun June June AUG Low Power TV Stations Broadcasting Battlefield, Colombia Flight Test Communications Jan SEP WOW, Omaha Dec Gathering Comm Intelligence OCT Winterizing Chile: Land of Crazy Geography June NOV Notch filters for good DX April Military Low Band Sep DEC Shopping for DX Receiver Deutsche Welle Aug Monitoring Space Shuttle Comms European DX Council Meeting Mar ANTENNA TOPICS Aug Monitoring the Prez July JAN The Earth’s Effects on First Year Radio Listener May Radio Shows its True Colors Aug Antenna Performance Flavoradio - good emergency radio Nov Scanning the Big Railroads April FEB The Half-Rhombic FM SubCarriers Sep Scanning Garden State Pkwy,NJ MAR Radio Noise—Debunking KNLS Celebrates 10 Years Dec Feb AntennaResonance and Making No Satellite or Cable Needed July Scanner Strategies Feb the Real McCoy Radio Canada International April Scanner Tips & Techniques Dec APRIL More Effects of the Earth on Radio Democracy Sep Spy Catchers: The FBI Jan Antenna Radio France Int'l/ALLISS Ant Topgun - Navy's Fighter School Performance Nov Mar MAY The T2FD Antenna Radio Gambia May Tuning In to a US Customs Chase JUNE Antenna Baluns Radio Nacional do Brasil Feb Nov JULY The VHF/UHF Beam Radio UNTAC - Cambodia Oct Video Scanning Aug Traveler's Beam Restructuring the VOA Sep Waiting
    [Show full text]
  • Trends in Satellite Communications and the Role of Optical Free-Space Communications
    Trends in satellite communications and the role of optical free-space communications Morio Toyoshima Institute of Communications and Radio-Frequency Engineering, Vienna University of Technology Gusshausstrasse 25/389, A-1040 Wien , Austria [email protected] National Institute of Information and Communications Technology 4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan [email protected] The communication needs of Earth observation satellites is steadily increasing. Within a few years, the data rate of such satellites will exceed 1 Gbps, the angular resolution of sensors will be less than 1 µrad, and the memory size of onboard data recorders will be beyond 1 Tbytes. Compared to radio frequency links, optical communications in space offer various advantages such as smaller and lighter equipment, higher data rates, limited risk of interference with other communications systems, and the effective use of frequency resources. This paper describes and compares the major features of radio and optical frequency communications systems in space and predicts the needs of future satellite communications. OCIS codes: 010.0010, 010.1330, 010.3310, 060.4510, 350.6090. 1. Introduction Images sent from the National Aeronautics and Space Administration’s (NASA) rover Opportunity indicate the former existence of a salty sea on Mars, which is essential information when investigating the origin of the planet [1]. Today, images like those from Opportunity, as well as other types of data, are routinely conveyed in real time to points all over the world. Radio frequencies (RF) are usually used for such long-distance links in space. However, the recent progress in optics and laser technologies, especially in fiber optics, is ushering in an era of inter-orbit communications using laser beams.
    [Show full text]
  • Reflective Array Antenna - Wikipedia, the Free Encyclopedia
    Reflective array antenna - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Reflective_array_antenna From Wikipedia, the free encyclopedia In telecommunication and radar, a reflective array antenna is a class of directive antennas in which multiple driven elements are mounted in front of a flat surface designed to reflect the radio waves in a desired direction. They are often used in the VHF frequency band, and these versions often resemble a highway billboard, so they are sometimes called "billboard antennas". The curtain array is a larger version used by shortwave radio stations. Reflective array antennas usually have a number of identical driven elements, fed in phase, in front of a flat, electrically large reflecting surface to produce a unidirectional beam, increasing antenna gain and reducing radiation in unwanted directions. The individual elements are most commonly half wave dipoles, although they sometimes contain parasitic elements as well as driven elements. The reflector may be a metal sheet or more commonly a wire screen. A metal screen reflects radio waves as well as a solid metal sheet as long as the holes in Reflective array 'billboard' antenna of the screen are smaller than about one-tenth of a wavelength, so screens are often the AN-270 radar, an early radar used to reduce weight and wind loads on the antenna. They usually consist of a system used in 1941 at Pearl Harbor. It grill of parallel wires or rods, oriented parallel to the axis of the dipole elements. consists of 32 horizontal half wave The driven elements are fed by a network of transmission lines, which divide the dipoles mounted in front of a 55 ft.
    [Show full text]
  • BC-DX 67 02 Jan 1994 ______
    BC-DX 67 02 Jan 1994 ___________________________________________________________________ BULGARIA Voice of America SW relay Plovdiv-BUL in English to WeAF replaced 13675 by 13690 kHz at 1800-1900 UTC, 500 kW, 215 degrees. (ARDXC via GH - WWCR) CLANDESTINE RADIO STATIONS/ALGERIA Thanks to a tip of Christian Ratzer-AUT, Radio Nacional de la Republica Democratica de Sahara observed out-of-band channel 11320 kHz for relaying its medium wave programme of 1355 kHz, located in the ALG/MRC border region near Tindouf-ALG, approx. 0600-0800 and 1800-0058 UTC. Schedule on MW 1355 kHz has been rather varying 2037-2203 UTC, except on Thurs night extended to 1900-2303 UTC. All broadcast in Maghreb-Arabic and Spanish, ending with long National Anthem. Popular "Clandestine Stations List" by Finn Krone-DSWCI list this station on SW 11520 kHz, first observed on short wave in March 1993. Medium wave outlet appeared on Aug 21, 1979. Station announcing Amateur Radio (!) Worldwide Locator IL 56 in Western Sahara Territory. Address: Directeur d'Information, Polisario Front, Boite Postale 10, El-Mouradia, Alger, Algeria, - - or Embajada de la Republica Arabe Saragui Democratica, Caracas, Venezuela. (CR, WB, FK) CZECH REPUBLIC In order to save money and energy, "Radiozurnal" Czech Radio Prague's first programme domestic service relay ceased using longwave Uherske Hradiste Topolna 270 kHz, 1500 kW, 0230-2300 UTC (but observed here Jan 1st to 3rd again!), and SW Litomysl Oborova 5930 kHz, 100 kW, 0500-2220 UTC. Will go off the air Jan 1st, 1994. First programme will remain in service on the air via MW 1071 & 1233 kHz.
    [Show full text]
  • Signal Issue 28 Build-Up on All Surfaces
    Issue 28 Signal Tricks of the Trade Dave Gallop G3LXQ A ‘Winter's tale’ about a few days at Daventry and consideration of some of the related factors to be considered in designing and maintaining short-wave curtain arrays. Figure 1. A bleak outlook through freezing fog at Woofferton. January 1979. Photograph by courtesy of Jeff Cant I'm dreaming of a white Christmas whom were involved with the development of the new dual-band arrays. It was a very friendly and entertaining The severity of this last Winter has drawn comparison group who made the author feel quite welcome, with with the one 50 years ago. The snowfall started in warm protective clothing and dry over-boots as well as earnest on Christmas Eve 1962, it was a White Ken's dry waggish humour. All in all, the camaraderie did Christmas and the snow persisted for weeks during which help to get the work done and, in fact, it could have been travel was considerably disrupted. Figures 1 and 2 give the words of a soothsayer, what had been told was an impression of the bleak landscape of freezing fog and correct because the author did become quite attached to snowdrifts surrounding an HF transmitting station in aerials. severe winters. The author had joined the BBC in 1962 and, like many other ‘new-boys’, his first posting was to Daventry transmitting station. Being a trainee, he had the Christmas holiday period off as leave and would be returning to a spell of day shifts and any other relief cover duties as they arose.
    [Show full text]