High Frequency Communications – an Introductory Overview - Who, What, and Why?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cetiie B Tia Nature Red Acted
Probabilistic Methods for Systems Engineering with Application to Nanosatellite Laser Communications by Emily B. Clements Submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2018 Massachusetts Institute of Technology 2018. All rights reserved. Autholr Signature redacted (J Department of Aeronautics and Astronautics May 24,2018 Cetiie b tianature red acted Kerri L. Cahoy Associate Professor of Aeronautics and Astronautics red acted Thesis Supervisor Certified by ... Signatu re ........................ David 0. Caplan Senior Staff, MIT Lincoln Laboratory Certified by, S ignature redacted Jeffrey A. Mendenhall Lincoln Laboratory C ignature red acted Senior Staff, MIT Certified by. ................................... David W. Miller Jerome Hunsaker Professor of Aeronauticq and Astronautics Accepted by......... .................. Signature redacted MASSACHUSETTS INSTITUTE Hamsa Balakrishnan OF TECHNOLOGY Associate Professor of Aeronautics and Astronautics JUN 28 2018 Chair, Graduate Program Committee LIBRARIES ARCHIVES 2 Probabilistic Methods for Systems Engineering with Application to Nanosatellite Laser Communications by Emily B. Clements Submitted to the Department of Aeronautics and Astronautics on May 24, 2018, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract Risk-tolerant platforms such as nanosatellites may be able to accept moderate perfor- mance uncertainty -
High Frequency Communications – an Introductory Overview
High Frequency Communications – An Introductory Overview - Who, What, and Why? 13 August, 2012 Abstract: Over the past 60+ years the use and interest in the High Frequency (HF -> covers 1.8 – 30 MHz) band as a means to provide reliable global communications has come and gone based on the wide availability of the Internet, SATCOM communications, as well as various physical factors that impact HF propagation. As such, many people have forgotten that the HF band can be used to support point to point or even networked connectivity over 10’s to 1000’s of miles using a minimal set of infrastructure. This presentation provides a brief overview of HF, HF Communications, introduces its primary capabilities and potential applications, discusses tools which can be used to predict HF system performance, discusses key challenges when implementing HF systems, introduces Automatic Link Establishment (ALE) as a means of automating many HF systems, and lastly, where HF standards and capabilities are headed. Course Level: Entry Level with some medium complexity topics Agenda • HF Communications – Quick Summary • How does HF Propagation work? • HF - Who uses it? • HF Comms Standards – ALE and Others • HF Equipment - Who Makes it? • HF Comms System Design Considerations – General HF Radio System Block Diagram – HF Noise and Link Budgets – HF Propagation Prediction Tools – HF Antennas • Communications and Other Problems with HF Solutions • Summary and Conclusion • I‟d like to learn more = “Critical Point” 15-Aug-12 I Love HF, just about On the other hand… anybody can operate it! ? ? ? ? 15-Aug-12 HF Communications – Quick pretest • How does HF Communications work? a. -
Monitoring Times 2000 INDEX
Monitoring Times 1994 INDEX FEATURES: Air Show: Triumph to Tragedy Season Aug JUNE Duopolies and DXing Broadcast: Atlantic City Aero Monitoring May JULY TROPO Brings in TV & FM A Journey to Morocco May Dayton's Aviation Extravaganza DX Bolivia: Radio Under the Gun June June AUG Low Power TV Stations Broadcasting Battlefield, Colombia Flight Test Communications Jan SEP WOW, Omaha Dec Gathering Comm Intelligence OCT Winterizing Chile: Land of Crazy Geography June NOV Notch filters for good DX April Military Low Band Sep DEC Shopping for DX Receiver Deutsche Welle Aug Monitoring Space Shuttle Comms European DX Council Meeting Mar ANTENNA TOPICS Aug Monitoring the Prez July JAN The Earth’s Effects on First Year Radio Listener May Radio Shows its True Colors Aug Antenna Performance Flavoradio - good emergency radio Nov Scanning the Big Railroads April FEB The Half-Rhombic FM SubCarriers Sep Scanning Garden State Pkwy,NJ MAR Radio Noise—Debunking KNLS Celebrates 10 Years Dec Feb AntennaResonance and Making No Satellite or Cable Needed July Scanner Strategies Feb the Real McCoy Radio Canada International April Scanner Tips & Techniques Dec APRIL More Effects of the Earth on Radio Democracy Sep Spy Catchers: The FBI Jan Antenna Radio France Int'l/ALLISS Ant Topgun - Navy's Fighter School Performance Nov Mar MAY The T2FD Antenna Radio Gambia May Tuning In to a US Customs Chase JUNE Antenna Baluns Radio Nacional do Brasil Feb Nov JULY The VHF/UHF Beam Radio UNTAC - Cambodia Oct Video Scanning Aug Traveler's Beam Restructuring the VOA Sep Waiting -
Using High Frequency Propagation to Calculate Basic Maximum Usable Frequency
Using High Frequency Propagation to Calculate Basic Maximum Usable Frequency Israa Abdualqassim Mohammed Ali* * University of Baghdad, College of Science, Baghdad, Iraq Received: XX 20XX / Accepted: XX 20XX / Published online: ABSTRACT A comparison between observed (obs.) digital ionospheric sounding data and predicted (pre.) using International Reference Ionosphere (IRI) model for critical frequency (foF2) and Basic Maximum Usable Frequency (BMUF) of ionospheric F2-Layer has been made. A mid-latitude region selected for this research work by using data from station Wakkanai (45.38o N, 141.66o E). This study included 12 monthly median data from year (2001, R12=111) selected for high Sunspot number (SSN) and years for low SSN (2004, R12=44) and (2005, R12=29). Frequency parameters foF2 reveals that there is a good correlation between observed and predicted except for January of years 2001 and 2004, and BMUF revealed that there is a good correlation between observed and predicted for years of low SSN and all months except in month 1, 9 and 12 of year 2004, for year 2001 of high SSN there is a bad correlation. A correction factor as a function of time used from fitting technique to correct the predicted value with observed value of BMUF for year 2001. Keywords: Ionosphere; foF2; M3000F2; BMUF Author Correspondence, e-mail: [email protected] 1. INTRODUCTION The maximum usable frequency (MUF) is important ionospheric parameter for radio users because of its role in radio frequency management and for providing a good communication 1 link between two locations (Athieno et al., 2015; Suparta et al., 2018). -
The Development of HF Broadcast Antennas
Development of HF Broadcast Antennas FEATURES FEATURES Development of HF Broadcast Antennas the 50% power loss, but made the Rhombic fre - Free Europe and Radio Liberty sites. quency-sensitive, consequently losing the wide- Rhombic antennas are no longer recommend - The Development of HF bandwidth feature. The available bandwidth ed for HF broadcasting as the main lobe is nar - depends on the length of the wire and, using dif - row in both horizontal and vertical planes which ferent lengths of transmission line, it is possible to can result in the required service area not being Broadcast Antennas access two or three different broadcast bands. reliably covered because of the variations in the A typical rhombic antenna design uses side ionosphere. There are also a large number of lengths of several wavelengths and is at a height side lobes of a size sufficient to cause interfer - Former BBC Senior Transmitter Engineer Dave Porter G4OYX continues the story of the of between 0.5-1.0 λ at the middle of the operat - ence to other broadcasters, and a significant pro - development of HF broadcast antennas from curtain arrays to Allis antennas ing frequency range. portion of the transmitter power is dissipated in the terminating resistance. THE CORNER QUADRANT ANTENNA Post War it was found that if the Rhombic Antenna was stripped down and, instead of the four elements, had just two end-fed half-wave dipoles placed at a right angle to each other (as shown in Fig. 1) the result was a simple cost- effective antenna which had properties similar to the re-entrant Rhombic but with a much smaller footprint. -
An Update on the CCSDS Optical Communications Working Group Interoperability Standards
An Update on the CCSDS Optical Communications Working Group Interoperability Standards Bernard L. Edwards Robert Daddato NASA Goddard Space Flight Center European Space Agency Greenbelt, MD 20771 USA Darmstadt, Germany Klaus-Juergen Schulz Randall Alliss European Space Agency Northrop Grumman Corporation Darmstadt, Germany McLean, VA 22102 USA Jon Hamkins Dirk Giggenbach NASA Jet Propulsion Laboratory DLR Pasadena, CA 91109 USA Oberpfaffenhofen, Germany Bryan Robinson Lena Braatz MIT Lincoln Laboratory Booz Allen Hamilton, Inc. Lexington, MA 02420 USA McLean, VA 22102 USA Abstract – International space agencies around the one space agency’s spacecraft could be served by world are working together in the Interagency another space agency’s ground antennas. Operation Advisory Group (IOAG) and the Consultative Committee for Space Data Systems The overall development of international space (CCSDS) to develop interoperability standards for optical communications. The standards support communication standards for cross support is optical communication systems for both Near Earth coordinated by the Interagency Operations and Deep Space robotic and human-rated spacecraft. Advisory Group (IOAG) [1]. The IOAG is an The standards generally address both free space links organization made up of international space between spacecraft and free space links between agencies that provides a forum for identifying spacecraft and ground. This paper will overview the common needs and coordinating space history and structure of the CCSDS Optical communications policy, high-level procedures, Communications Working Group and provide an technical interfaces, and other matters related to update on the set of optical communications interoperability and space communications. The standards being developed. The paper will address the ongoing work on High Photon Efficiency IOAG considers the future requirements and trends communications, High Data Rate communications, in spacecraft communications needs and assigns and Optical On/Off Keying communications. -
SDSU Template, Version 11.1
AN HF MULTITONE MODEM _______________ A Thesis Presented to the Faculty of San Diego State University _______________ In Partial Fulfillment of the Requirements for the Degree Master of Science in Electrical Engineering _______________ by Louis A. Rey Summer 2017 iii Copyright © 2017 by Louis A. Rey All Rights Reserved iv DEDICATION This thesis is dedicated to my wife, two daughters and all who have loved and supported me throughout this journey. v ABSTRACT OF THE THESIS An HF Multitone Modem by Louis A. Rey Master of Science in Electrical Engineering San Diego State University, 2017 In today’s world, we can find signals being transmitted on every portion of the frequency spectrum from a few Hertz up to several Giga Hertz. Frequencies of upwards of 60GHz are common today. Although it is now common to operate in ever higher frequencies, High Frequency (HF) frequencies (3 to 30 MHz) enjoyed huge popularity during the advent of early long-range communication work. Before satellites were invented, it was the only means of transmitting information at long distances wirelessly. Initial work in the defense industry gave fruit to Multitone modems which were then superseded by single tone modems for both data and voice communications at 2400bps, 9600bps and 19400bps. With the growing popularity of digital signal processing and software radio, these modems are now easily implemented. This thesis revisits Multitone modems, also known as parallel tone modems, which use 16 and 39 tones for data and voice respectively. A comparison with modern communication systems will be explored. A description of the Modem sections will be created using MATLAB. -
Observations of F-Region Critical Frequency Variation Over Batu Pahat, Malaysia, During Low Solar Activity
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UTHM Institutional Repository OBSERVATIONS OF F-REGION CRITICAL FREQUENCY VARIATION OVER BATU PAHAT, MALAYSIA, DURING LOW SOLAR ACTIVITY SABIRIN BIN ABDULLAH A thesis submitted in fulfilment of the requirement for the award of the Doctor of Philosophy (Electrical) Faculty of Electrical and Electronic Engineering Universiti Tun Hussein Onn Malaysia JUNE 2011 ABSTRACT Wireless radio in the HF band still uses the ionospheric layer as the main medium for communication. Critical frequencies are important parameters of the ionosphere. Due to the activities of the sun, the critical frequency varies diurnally, following the pattern of day and night. The critical frequency for the Parit Raja station is determined using an ionosonde at latitude 1° 52' N and longitude 103° 48' E which is close to the geomagnetic equator at geographic latitude 5° N. This work analyses the dependence of the critical frequency during the solar minimum of Solar Cycle 23. The median critical frequency value is used to develop a model using regression and polynomial approaches because it is more accurate than using average values. From the observations, the critical frequency observed in 2005 is the highest, corresponding to a higher sunspot number of between 11 and 192. In contrast, the critical frequency is lower in 2007 due to the decrease in the sunspot number of between 11 to 63. The general trend of the daily critical frequency is 6.8 MHz to 12.0 MHz from 00:00 to 17:30 UTC and decreasing to 7.0 MHz from 18:00 to 23:00 UTC. -
FM 24-18. Tactical Single-Channel Radio Communications
FM 24-18 TABLE OF CONTENTS RDL Document Homepage Information HEADQUARTERS DEPARTMENT OF THE ARMY WASHINGTON, D.C. 30 SEPTEMBER 1987 FM 24-18 TACTICAL SINGLE- CHANNEL RADIO COMMUNICATIONS TECHNIQUES TABLE OF CONTENTS I. PREFACE II. CHAPTER 1 INTRODUCTION TO SINGLE-CHANNEL RADIO COMMUNICATIONS III. CHAPTER 2 RADIO PRINCIPLES Section I. Theory and Propagation Section II. Types of Modulation and Methods of Transmission IV. CHAPTER 3 ANTENNAS http://www.adtdl.army.mil/cgi-bin/atdl.dll/fm/24-18/fm24-18.htm (1 of 3) [1/11/2002 1:54:49 PM] FM 24-18 TABLE OF CONTENTS Section I. Requirement and Function Section II. Characteristics Section III. Types of Antennas Section IV. Field Repair and Expedients V. CHAPTER 4 PRACTICAL CONSIDERATIONS IN OPERATING SINGLE-CHANNEL RADIOS Section I. Siting Considerations Section II. Transmitter Characteristics and Operator's Skills Section III. Transmission Paths Section IV. Receiver Characteristics and Operator's Skills VI. CHAPTER 5 RADIO OPERATING TECHNIQUES Section I. General Operating Instructions and SOI Section II. Radiotelegraph Procedures Section III. Radiotelephone and Radio Teletypewriter Procedures VII. CHAPTER 6 ELECTRONIC WARFARE VIII. CHAPTER 7 RADIO OPERATIONS UNDER UNUSUAL CONDITIONS Section I. Operations in Arcticlike Areas Section II. Operations in Jungle Areas Section III. Operations in Desert Areas Section IV. Operations in Mountainous Areas Section V. Operations in Special Environments IX. CHAPTER 8 SPECIAL OPERATIONS AND INTEROPERABILITY TECHNIQUES Section I. Retransmission and Remote Control Operations Section II. Secure Operations Section III. Equipment Compatibility and Netting Procedures X. APPENDIX A POWER SOURCES http://www.adtdl.army.mil/cgi-bin/atdl.dll/fm/24-18/fm24-18.htm (2 of 3) [1/11/2002 1:54:49 PM] FM 24-18 TABLE OF CONTENTS XI. -
A History of Vertical-Incidence Ionsphere Sounding at the National
TECH, aoaot Mii22 PB 151387 ^0.28 ^5oulder laboratories A HISTORY OF VERTICAL - INCIDENCE IONOSPHERE SOUNDING AT THE NATIONAL BUREAU OF STANDARDS BY SANFORD C. GLADDEN U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS IE NATIONAL BUREAU OF STANDARDS Functions and Activities The Functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards: the determination of physical constants and properties of materials: the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; in- vention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover. Publications The results of the Bureau's work take the form of either actual equipment and devices or pub- lished papers. These papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. -
Effects of Earth's Magnetic Field Variation on High Frequency Wave
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2019-27 Manuscript under review for journal Ann. Geophys. Discussion started: 27 February 2019 c Author(s) 2019. CC BY 4.0 License. Effects of Earth’s magnetic field variation on high frequency wave propagation in the ionosphere Mariano Fagre1,2, Bruno S. Zossi3,4, Erdal Yiğit5, Hagay Amit6, and Ana G. Elias3,4 1Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Argentina. 5 2Laboratorio de Telecomunicaciones, Departamento de Electricidad, Electrónica y Computación, Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucuman, Argentina. 3Laboratorio de Física de la Atmosfera, Departamento de Física, Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucuman, Argentina. 4INFINOA (CONICET-UNT), Tucuman, Argentina. 10 5Space Weather Laboratory, Department of Physics and Astronomy, George Mason University, USA. 6CNRS, Université de Nantes, Nantes Atlantiques Universités, Laboratoire de Planétologie et de Géodynamique, Nantes, France. Correspondence to: Mariano Fagre ([email protected]) Abstract. The ionosphere is an anisotropic, dispersive medium for the propagation of radio frequency electromagnetic waves 15 due to the presence of the Earth’s intrinsic magnetic field and free charges. The detailed physics of electromagnetic wave propagation through a plasma is more complex when it is embedded in a magnetic field. In particular, the ground range of waves reflecting in the ionosphere presents detectable magnetic field effects. Earth’s magnetic field varies greatly, with the most drastic scenario being a polarity reversal. Here the spatial variability of the ground range is analyzed using numerical ray tracing under possible reversal scenarios. Pattern changes of the “spitze”, a cusp in the ray path closely related to the 20 geomagnetic field, are also assessed. -
HF Users Guide
HF-SSB COMMUNICATIONS: THE POWER TO LOCK IN THE WORLD. Globally, HF-SSB has literally changed the world. For a minimal investment, it has allowed millions of people - often in amazingly remote settings, often in emergency conditions - to reliably bounce clear voice and data signals across a state, across a continent, over an ocean, or around the world. Without satellites, relay stations, cellular nets, stadium sized antennas or huge user fees. Just some fine equipment, a smart operator and nature's own ionosphere make this possible. For nearly 25 years, the perfection of HF SSB has been the focus and the life of our company. Our efforts have not gone unnoticed. Today, SGC is a prominent choice of leading corporations, governments, relief agencies, paramilitary organizations, mariners, aviators, explorers, and scientists - all over the world. They trust our engineering and they value our experience. A vital part of our company's strategy centers around new product development, with an emphasis on providing quality equipment which remains rugged, reliable and competitively priced. We are focused on providing customer service of the highest standard. Our commitment is to product training and comprehensive after sales support. Today, SGC is recognized as a world class designer and manufacturer of HF SSB communications products. At SGC we build communications power tools. Next generation HF-SSB radios, antennas, amplifiers and coupler systems that squeeze more range and clarity out of every watt of HF SSB communications power, are the technology and innovations that have helped SGC emerge as a cutting edge player in the expanding world of HF-SSB.