Using Propagation to Calculate Basic

Israa Abdualqassim Mohammed Ali*

* University of Baghdad, College of Science, Baghdad, Iraq

Received: XX 20XX / Accepted: XX 20XX / Published online:

ABSTRACT A comparison between observed (obs.) digital ionospheric sounding data and predicted (pre.) using International Reference (IRI) model for (foF2) and Basic Maximum Usable Frequency (BMUF) of ionospheric F2-Layer has been made. A mid-latitude region selected for this research work by using data from station Wakkanai (45.38o N, 141.66o

E). This study included 12 monthly median data from year (2001, R12=111) selected for high

Sunspot number (SSN) and years for low SSN (2004, R12=44) and (2005, R12=29). Frequency parameters foF2 reveals that there is a good correlation between observed and predicted except for January of years 2001 and 2004, and BMUF revealed that there is a good correlation between observed and predicted for years of low SSN and all months except in month 1, 9 and 12 of year 2004, for year 2001 of high SSN there is a bad correlation. A correction factor as a function of time used from fitting technique to correct the predicted value with observed value of BMUF for year 2001.

Keywords: Ionosphere; foF2; M3000F2; BMUF

Author Correspondence, e-mail: [email protected]

1. INTRODUCTION The maximum usable frequency (MUF) is important ionospheric parameter for users because of its role in radio frequency management and for providing a good communication

1

link between two locations (Athieno et al., 2015; Suparta et al., 2018). MUF would be used to designate the highest signal frequency for high frequency (HF) communications that can be used for radio transmission between two points by reflection from the ionosphere at a given time under specific ionospheric conditions (Harris, 2005; Freeman, 2006; Mudzingwa et al., 2013) which fluctuate continuously because the ionosphere acts as a dispersive medium (Athieno et al., 2015). MUF is simply given by (Fotiadis et al., 2004; Oyekola, 2010; Malik et al., 2016):

MUF = foF2 M(3000)F2, where foF2 is the critical frequency of the F2 layer, i.e., the highest frequency that would be reflected by the ionosphere at vertical incidence (McNamara et al., 2007; Harish et al., 2009), and M (3000) F2 is the propagation factor of layer F2 in which represents the optimal frequency to broadcast a signal received at a distance of 3000 km (Kouris et al., 2000; Adeniyi et al., 2003; Oyekola et al., 2012; Nagar et al., 2015). The main drawback of the HF ionospheric communications is that the characteristics of the transmission medium strongly influenced by that is varying over time, such as the Sunspot Number (SSN). Ionospheric effects of space weather would give rise to sudden changes in the spatial structure and density of ionospheric regions. These variations then affect HF radiowave propagation by altering parameters such as the MUF over HF communications links (Hughes et al., 2002; Bahari et al., 2018). Since HF communications has wide range of application areas, the measurements with the real-time of HF propagation conditions is a key factor of space weather monitoring systems to get satisfactory performance. The aim of the present research work is to study a comparison between observed digital ionospheric sounding data and predicted using IRI model for (foF2) and (BMUF) of ionospheric F2-Layer of a mid-latitude region.

2. DATA SELECTION Ionosonde data station was used for comparison with IRI model, the station chosen was Wakkanai station (latitude 45.38oN, longitude 141.66oE) for calculating basic monthly

2

median MUF from observed data of the F2 layer critical frequency (f0F2) and M3000F2 for selected years (2001, 2004 and 2005). The degree of correlation between daily sunspot number and daily values of ionospheric paramters is not as high as in the case of the monthly median values taken from Sunspot Bulletin as mentioned by Kouris et al. (1998). Therefore, daily sunspot number is not a good indicator and monthly median sunspot data used instead of day-to-day predictions. Sunspot number (SSN) selected from Solar Influences Data analysis Center (SIDC). Table 1 reveals the average 12 month SSN for all years selected.

3. DATA ANALYSES To study the BMUF we need to calculate the critical frequency (predicted) foF2 and M3000F2 from the IRI model by using CCIR coefficient for years selected (2001) for high SSN and (2004, and 2005) for low SSN and compared with data observed. In figure 6 is a good correlation between observed BMUF and predicted for years (2004,2005) for SSN low but for years (2001) for high SSN, from figure 6 there is a bad correlation between observation and predicted BMUF, it can be corrected by fitting taken correction formula (eq. 1) for 24 hour.

Table 2 represents the fitting coefficients a0, a1, and a2. Tables 3 and 4 reveal the absolute error between observation and prediction values before and after correction respectively for 24 hours and 12 months for year 2001.

(1)

(2)

4. RESULTS AND DISCUSSION

Figures (1 and 2) represent the observed and predicted monthly median foF2 with local time for three years 2001, 2004, and 2005 respectively, in which it reveal that the critical frequency have a high value in the day and low in the night. In winter season foF2 values higher than summer season for high and low SSN this is anomaly in mid-latitude region. Figures (3, 4, and 5) represent comparison between observed and predicted monthly median

3

foF2 with local time for three years 2001, 2004, and 2005 respectively. From these figures there is a good correlation between observed and predicted value for all 12 months and year chosen. Figures (6, 7, and 8) represent comparison between observed and predicted BMUF for years (2001, 2004, and 2005) respectively. From figures it reveal that there is a good correlation between observed and predicted value for all 12 months when SSN low, but there is a bad correlation between observed and predicted value for all 12 months for year 2001 high SSN. Figure (9) represent the corrected predicted value for year 2001, which is revealed that there is a good correlation between observed and predicted BMUF all 12 month and for 24 hours of the day and night.

5. SUMMARY

Space weather effects can seriously impact HF communications by changing the ionospheric environment through which the radio waves propagate. Ionospheric data from the ionosonde stations such as Wakkanai station can be used to monitor this environment by observing Mid- latitude propagation conditions. From drawing foF2 and BMUF with local time for years (2001,2004, and 2005) it concluded that the observed and predicted monthly median foF2 and BMUF with local time in the day is high than night. Frequency parameters foF2 reveals that there is a good correlation between observed and predicted. BMUF reveal that there is a good correlation between observed and predicted for years of low SSN and all months except in month 1, 9 and 12 of year 2004, for year 2001 of high SSN there is a bad correlation. The predicted value of BMUF for year 2001 can be corrected using correction equation as shown in this study.

6. ACKNOWLEDGEMENTS The data are provided from WDC for Ionosphere, Tokyo, National Institute of Information and Communications Technology.

7. REFERENCES Adeniyi, J., Bilitza, D., Radicella, S., & Willoughby, A. (2003). Equatorial F2-peak

4

parameters in the IRI model. Advances in Space Research, 31(3), 507-512. Athieno, R., Jayachandran, P., Themens, D., & Danskin, D. (2015). Comparison of observed and predicted MUF (3000) F2 in the polar cap region. Radio Science, 50(6), 509-517. Bahari, S. A., & Abdullah, M. (2018). A Brief Review: Response of the Ionosphere to Solar Activity Over Malaysia Space Science and Communication for Sustainability (pp. 47-56): Springer. Fotiadis, D., Baziakos, G., & Kouris, S. (2004). On the global behaviour of the day-to-day MUF variation. Advances in Space Research, 33(6), 893-901. Freeman, R. L. (2006). Radio system design for telecommunication (Vol. 98): John Wiley & Sons. Harish, A. R., & Sachidananda, M. (2009). Antennas and wave propagation. New Delhi: Oxford Univ. Press. Harris. (2005). RadioCommunicationsIntheDigitalAge. USA: Harris Corporation. Hughes, J., Bristow, W., Greenwald, R., & Barnes, R. (2002). Determining characteristics of HF communications links using SuperDARN. Paper presented at the Annales Geophysicae. Kouris, S., Fotiadis, D., & Hanbaba, R. (2000). On the day-to-day variation of the MUF over Europe. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science, 25(4), 319-325. Malik, R., Abdullah, M., Abdullah, S., & Homam, M. (2016). Comparison of maximum usable frequency (MUF) variability over Peninsular Malaysia with IRI model during the rise of 24. Journal of Atmospheric and Solar-Terrestrial Physics, 138, 87-92. McNamara, L. F., Decker, D. T., Welsh, J. A., & Cole, D. G. (2007). Validation of the Utah State University Global Assimilation of Ionospheric Measurements (GAIM) model predictions of the maximum usable frequency for a 3000 km circuit. Radio Science, 42(3). Mudzingwa, C., Nechibvute, A., & Chawanda, A. (2013). Maximum useable frequency prediction using vertical incidence data. Nagar, A., Mishra, S., & Vijay, S. (2015). Correlation of foF2 and M (3000) F2 over low latitude stations during low solar activity period. 94.20. Bb; 94.20. dj; 96.60. Q-. Oyekola, O. (2010). Variation in the ionospheric propagating factor M (3000) F2 at Ouagadougou, Burkina Faso. Advances in Space Research, 46(1), 74-80.

5

Oyekola, O., & Fagundes, P. (2012). Equatorial F 2-layer variations: Comparison between F 2 peak parameters at Ouagadougou with the IRI-2007 model. Earth, planets and space, 64(6), 553. Suparta, W., Abdullah, M., & Ismail, M. (2018). Space Science and Communication for Sustainability: Springer.

Table 1. The value of R12 for years 2001, 2004, and 2005

Month\Year 2001 2004 2005 1 95.6 37.3 31.3 2 80.6 45.8 29.2 3 113.5 49.1 24.5 4 107.7 39.3 24.2 5 96.6 41.5 42.7 6 134 43.2 39.3 7 81.8 50.1 40.1 8 106.4 40.9 36.4 9 150.7 27.7 21.9 10 125.5 48 8.7 11 106.5 43.5 18 12 132.2 17.9 41.1 Ave. 111 44 29

Table 2. Coefficients ao, a1, and a2 of corrected predict BMUF for year 2001.

Month\ Coff. ao a1 a2 1 -0.006 0.144 0.875 2 -0.003 0.097 1.185

3 -2E-05 0.012 1.822 4 -0.000 0.000 1.789 5 0.000 - 0.031 1.642

6 0.000 - 0.017 1.600 7 0.001 - 0.046 1.812 8 0.000 - 0.032 1.873

9 -0.001 0.029 1.834 10 -0.003 0.084 1.310 11 -0.005 0.141 1.056

12 -0.008 0.230 0.817

6

Table 3. The absolute error between observed and predicted BMUF for year (2001)

H\M 1 2 3 4 5 6 7 8 9 10 11 12 0 0.8 2.5 7.3 7.9 6.4 6.9 7.0 7.1 7.7 4.2 2.6 2.3 1 0.7 2.5 7.2 8.3 7.8 7.2 7.3 8.0 7.4 4.3 2.8 2.2 2 1.0 2.9 7.2 8.0 7.5 7.3 8.3 8.5 7.9 4.9 2.8 1.8 3 1.6 3.3 6.6 7.5 7.8 7.1 8.3 8.0 8.0 4.5 2.8 2.3 4 1.6 3.6 6.3 6.2 6.7 8.0 8.5 7.4 7.5 3.9 2.5 2.7 5 1.9 3.9 6.0 7.8 7.2 8.3 7.7 7.6 8.5 4.8 3.9 3.2 6 1.9 4.2 12.6 10.5 5.7 8.2 7.8 8.4 14.5 10.3 5.2 2.2 7 6.7 12.2 17.2 10.7 4.2 7.4 6.8 8.9 15.6 16.1 15.5 9.5 8 14.2 15.9 17.7 11.5 4.1 5.9 7.8 6.7 15.2 19.7 21.0 19.6 9 15.9 15.8 17.0 12.1 4.7 4.2 5.7 6.8 15.0 17.1 22.0 26.8 10 16.2 16.5 18.7 13.4 4.6 5.0 5.5 6.7 14.3 17.1 20.8 28.5 11 13.7 14.6 15.4 13.4 4.5 5.4 4.2 7.0 14.0 16.2 18.6 22.9 12 11.8 13.6 17.4 12.3 6.4 4.7 5.5 9.5 13.7 15.3 16.0 18.7 13 12.3 12.7 15.1 11.2 8.8 7.4 6.5 9.6 11.7 14.3 15.0 19.8 14 13.0 13.7 15.4 12.9 8.3 8.4 6.6 8.9 13.1 15.5 19.1 20.2 15 14.1 15.6 15.2 12.1 7.4 6.8 6.8 8.8 13.0 15.6 19.1 19.6 16 12.0 13.9 16.2 12.5 6.3 6.4 5.2 8.2 12.3 14.7 16.9 18.7 17 7.1 12.2 16.8 11.9 6.1 6.1 5.7 7.1 12.4 13.9 13.1 17.7 18 6.4 9.7 15.3 11.4 6.2 5.4 5.8 5.7 11.6 11.5 12.1 13.7 19 4.3 9.0 12.3 8.9 6.4 5.3 5.5 6.6 9.1 11.2 9.7 9.6 20 1.5 6.1 11.9 6.3 5.5 5.0 4.6 6.0 9.2 8.8 6.7 6.0 21 0.7 4.2 11.0 6.5 4.6 4.3 5.4 6.1 8.2 6.5 5.2 5.0 22 1.6 6.0 11.3 7.1 4.6 5.8 5.9 5.5 7.7 4.8 4.3 5.3 23 0.9 4.3 9.8 8.5 5.3 6.7 7.1 5.9 7.8 4.2 3.2 2.4 Ave. 6.7 9.1 12.8 10.0 6.1 6.4 6.5 7.5 11.1 10.8 10.9 11.7

7

Table 4. The absolute error between observed and predicted corrected BMUF for year (2001)

H\M 1 2 3 4 5 6 7 8 9 10 11 12 0 1.98 0.70 0.62 0.25 2.03 1.64 2.98 2.52 0.95 0.66 2.04 3.81 1 0.56 0.18 0.75 0.72 0.74 0.56 1.24 0.18 0.89 0.02 0.85 1.85 2 0.26 0.36 0.45 0.59 1.34 0.29 1.06 1.75 0.27 0.07 0.17 0.19 3 0.66 0.58 0.89 0.12 2.13 0.69 1.98 1.71 0.09 0.81 1.21 1.29 4 1.57 0.91 1.29 1.40 0.92 1.83 2.40 0.93 0.28 1.90 2.38 2.02 5 2.01 0.98 1.53 0.68 0.81 1.92 1.00 0.29 0.17 1.65 1.67 2.35 6 2.87 1.53 4.47 0.33 1.55 1.06 0.33 0.36 4.31 2.18 2.08 5.24 7 0.17 4.08 6.50 1.10 3.58 0.36 1.23 1.18 2.47 4.75 4.62 1.73 8 5.29 4.60 3.36 0.79 3.64 1.81 0.22 4.13 0.25 4.74 5.87 3.97 9 4.38 2.25 0.25 0.00 2.53 3.29 1.99 3.76 1.14 0.31 3.71 7.78 10 2.24 1.91 1.00 1.31 2.12 2.11 1.74 2.91 1.32 1.36 0.14 5.84 11 2.03 1.15 3.58 1.20 1.80 1.20 2.51 1.56 0.65 2.84 4.32 3.57 12 4.38 3.57 3.11 0.51 0.57 1.35 0.48 1.83 0.03 3.50 7.58 9.12 13 2.66 4.47 5.61 0.21 3.49 1.88 1.00 2.51 1.51 3.34 6.58 6.00 14 0.09 1.99 3.94 1.26 3.08 3.04 1.39 2.14 0.05 0.64 0.12 2.51 15 2.91 1.45 2.65 0.25 1.90 1.33 1.64 2.07 0.00 0.02 1.79 0.61 16 2.65 0.73 0.99 0.85 0.44 0.86 0.10 1.49 0.56 0.44 1.39 2.03 17 0.35 0.42 0.62 0.79 0.13 0.48 0.50 0.23 0.43 0.43 0.97 5.81 18 0.54 0.05 1.05 0.25 0.12 0.54 0.40 1.38 0.96 0.75 3.15 5.27 19 0.45 1.12 0.04 2.26 0.19 0.86 0.33 0.61 2.68 2.65 2.17 1.85 20 2.16 0.42 0.57 4.05 0.77 1.19 1.49 1.19 1.14 1.36 0.37 1.85 21 1.75 1.26 0.47 2.18 1.48 1.53 0.66 0.54 0.41 0.19 0.97 2.03 22 0.37 1.40 1.22 0.08 1.12 0.43 0.23 0.44 0.42 1.04 0.87 0.56 23 0.75 0.32 0.46 2.44 0.17 1.83 1.96 0.81 1.64 0.64 1.30 2.72 Ave. 1.80 1.52 1.89 0.98 1.53 1.34 1.20 1.52 0.94 1.51 2.35 3.33

8

Monthly median foF2 with LT (2001) Wakkanai

) 16

14 Jan MHz

Feb (

2 12 Mar Apr 10 May Jun 8 Jul Aug 6 Sep Oct 4 Nov 2 Dec

Monthly medianfoF 0 0 5 10 15 20 25 Local time (hour)

Monthly median foF2 with LT (2004) Wakkanai

) 10 9

Jan MHz Feb ( 8 2 7 Mar Apr 6 May Jun 5 Jul 4 Aug Sep 3 Oct 2 Nov Dec 1 Monthly medianfoF 0 0 5 10 15 20 25

Local time (hour)

Monthly median foF2 (2005) Wakkanai

) 9 8

Jan MHz Feb ( 7

2 Mar 6 Apr May 5 Jun Jul 4 Aug 3 Sep Oct 2 Nov Dec 1

Monthly medianfoF 0 0 5 10 15 20 25 Local time (hour)

Figure 1. Observed Monthly median foF2 with local time for three years 2001, 2004, and 2005.

9

Monthly median foF2 with LT (2001) Wakkanai

) 14

12 Jan MHz

Feb (

2 10 Mar Apr May 8 Jun Jul 6 Aug Sep 4 Oct Nov 2 Dec Monthly medianfoF 0 0 5 10 15 20 25 Local time (hour)

Monthly median foF2 with LT (2004) Wakkanai

) 9 8

Jan MHz Feb ( 7

2 Mar 6 Apr May 5 Jun Jul 4 Aug 3 Sep Oct 2 Nov Dec 1

Monthly medianfoF 0 0 5 10 15 20 25 Local time (hour)

Monthly median foF2 with LT (2005) Wakkanai

) 8

7 Jan MHz

Feb (

2 6 Mar 5 Apr May Jun 4 Jul Aug 3 Sep Oct 2 Nov 1 Dec Monthly medianfoF 0 0 5 10 15 20 25

Local time (hour)

Figure 2. Predicted Monthly median foF2 with LT for years 2001, 2004, and 2005.

10

foF2 with LT (Jan\2001) Wakkanai foF2 with LT (Feb\2001) Wakkanai 25 12 10

20 ) ) 8 15

obs. obs.

MHz

MHz ( pre. ( 6

2 pre.

10 2 foF foF 4 5 2 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time (hour)

foF2 with LT (Mar\2001) Wakkanai foF2 with LT (Apr\2001) Wakkanai 14 12

12 10

10 ) ) 8

8 obs. obs. MHz

MHz (

pre. ( 6 pre. 2

6 2 foF foF 4 4 2 2 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time (hour)

foF2 with LT (May\2001) Wakkanai foF2 with LT (Jun/2001) Wakkanai 9 9 8 8

7 7 ) ) 6 6

5 obs. 5 obs. MHz

MHz (

( pre. pre. 2

2 4 4 foF foF 3 3 2 2 1 1 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time (hour)

foF2 with LT (Jul\2001) Wakkanai foF2 with LT (Aug\2001) Wakkanai 9 9 8 8 7 7

6) ) 6 5 obs.

MHz 5 obs.

MHz (

pre. ( 42 pre.

2 4 foF

3 foF 3 2 2 1 1 0 0 5 10 15 20 25 0 0 5 10 15 20 25 Local time (hour) Local time (hour)

foF2 with LT (Sep\2001) Wakkanai foF2 with LT (Oct\2001) Wakkanai 12 14 10 12

10 ) 8 )

obs. 8 obs.

MHz

MHz ( 6 (

pre. pre. 2

2 6 foF 4 foF 4 2 2 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time (hour)

foF2 with LT (Nov\2001) Wakkanai foF2 with LT (Dec\2001) Wakkanai 16 16 14 14

12 12 )

) 10 10 obs.

MHz obs. MHz

( 8

pre. ( 8 2 pre.

2 6

foF 6 foF 4 4 2 2 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time (hour)

Figure 3. Observed and predicted foF2 with LT for year 2001.

11

foF2 with LT (Jan\2004) Wakkanai foF2 with LT (Feb\2004) Wakkanai 10 10 9 9 8 8 7

) 7 ) 6 6

obs. obs. MHz MHz

( 5 pre. ( 5

2 pre.

4 2 4 foF 3 foF 3 2 2 1 1 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time (hour) foF2 with LT (Mar\2004) Wakkanai foF2 with LT (Apr\2004) Wakkanai 9 9 8 8

7 7 ) 6 ) 6

5 obs. 5 obs.

MHz

MHz (

pre. ( pre. 2

4 2 4 foF 3 foF 3 2 2 1 1 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time (hour)

foF2 with LT (May\2004) Wakkanai foF2 with LT (Jun/2004) Wakkanai 8 8 7 7

6 6 ) ) 5 5

obs. obs.

MHz MHz (

( 4 pre. 4 pre. 2 2

3 3

foF foF 2 2 1 1 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time (hour)

foF2 with LT (Jul\2004) Wakkanai foF2 with LT (Jul\2004) Wakkanai 8 8 7 7

6 6 )

) 5 5 obs.

obs. MHz MHz

4( 4( pre.

pre. 2 2 3

3 foF foF 2 2 1 1 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time (hour)

foF2 with LT (Sep\2004) Wakkanai foF2 with LT (Oct\2004) Wakkanai 8 10 7 9 6 8

7

) ) 5 6

obs. obs.

MHz

MHz ( 4 (

pre. 5 pre.

2 2

3 4 foF foF 3 2 2 1 1 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time (hour) foF2 with LT (Nov\2004) Wakkanai foF2 with LT (Dec\2004) Wakkanai 10 8 9 7 8

7 6 ) 6 ) 5 obs.

MHz obs. MHz

( 5

pre. 2 ( 4 pre. 4 2 foF 3 3 foF 2 2 1 1 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time (hour)

Figure 4. Observed and predicted foF2 with LT for year 2004.

12

foF2 with LT (Jan\2005) Wakkanai foF2 with LT (Feb\2005) Wakkanai 9 9 8 8

7 7 ) 6 ) 6

5 obs. 5 obs.

MHz

MHz ( pre. (

2 pre.

4 2 4 foF 3 foF 3 2 2 1 1 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time (hour) foF2 with LT (Mar\2005) Wakkanai foF2 with LT (Apr\2005) Wakkanai 9 8 8 7

7 6 ) 6 ) 5

5 obs. obs.

MHz

MHz (

pre. ( 4 pre. 2 4 2

3 foF 3 foF 2 2 1 1 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time (hour)

foF2 with LT (May\2005) Wakkanai foF2 with LT (Jun/2005) Wakkanai 8 8 7 7

6 6 ) ) 5 5

obs. obs. MHz

MHz (

( 4 pre. 4 pre.

2 2

3 3 foF foF 2 2 1 1 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time (hour) foF2 with LT (Jul\2005) Wakkanai foF2 with LT (Aug\2005) Wakkanai 7 7 6 6

5 5

) )

4 obs. 4

MHz obs.

MHz (

pre. ( 2 pre. 3 2 3

foF foF 2 2 1 1 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time (hour)

foF2 with LT (Sep\2005) Wakkanai foF2 with LT (Oct\2005) Wakkanai 7 9 6 8 7

5 ) ) 6 4 5 obs.

obs. MHz

MHz ( ( pre. pre. 2

2 3 4 foF foF 3 2 2 1 1 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time (hour)

foF2 with LT (Nov\2005) Wakkanai foF2 with LT (Dec\2005) Wakkanai 8 8 7 7

6 6 ) 5 ) 5 obs.

MHz obs. MHz

( 4

pre. ( 4 2 pre. 3 2 foF 3 foF 2 2 1 1 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time (hour) Figure 5. observed and predicted foF2 with LT for year 2005.

13

MUF with LT (Jan\2001) Wakkanai MUF with LT (Feb\2001) Wakkanai 40 40 35 35 30 30 25 25 obs. obs. 20 pre. 20 pre.

15 15 MUF MUF (MHz) MUF (MHz) 10 10 5 5 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time (hour)

MUF with LT (Mar\2001) Wakkanai MUF with LT (Apr\2001) Wakkanai 45 35 40 30 35 30 25 25 obs. 20 obs. pre.

20 15 pre. MUF MUF (MHz) 15 MUF (MHz) 10 10 5 5 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time (hour)

MUF with LT (Mar\2001) Wakkanai MUF with LT (Jun/2001) Wakkanai 30 25 25 20 20 15 obs. obs. 15 pre. pre.

10 MUF MUF (MHz) MUF MUF (MHz) 10 5 5

0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time (hour)

MUF with LT (Jul\2001) Wakkanai MUF with LT (Aug\2001) Wakkanai 30 25 20 25 20 15 obs. obs. pre. 15

10 pre. MUF MUF (MHz) MUF MUF (MHz) 10 5 5 0 0 5 10 15 20 25 0 0 5 10 15 20 25 Local time (hour) Local time (hour)

MUF with LT (Sep\2001) Wakkanai MUF with LT (Oct\2001) Wakkanai 35 45 30 40 35 25 30 20 obs. 25 obs.

15 pre. 20 pre. MUF MUF (MHz) MUF MUF (MHz) 15 10 10 5 5 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time (hour) MUF with LT (Nov\2001) Wakkanai MUF with LT (Dec\2001) Wakkanai 50 50 45 45 40 40 35 35 30 30 obs. obs. 25 25 pre. pre. 20 20 MUF MUF (MHz) 15 MUF (MHz) 15 10 10 5 5 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time (hour)

Figure 6 Observed and predicted BMUF with LT for year 2001.

14

MUF with LT (Jan/2004) Wakkanai MUF with LT (Feb/2004) Wakkanai 35 35 30 30 25 25

20 MUF(obs.) 20 MUF(obs.)

15 MUF(pre.) 15 MUF(pre.) MUF MUF (MHz) MUF (MHz) 10 10 5 5 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time (hour)

MUF with LT (Mar/2004) Wakkanai MUF with LT (Apr/2004) Wakkanai 30 30 25 25

20 20 MUF(obs.) MUF(obs.) 15 15 MUF(pre.) MUF(pre.)

10 10

MUF MUF (MHz) MUF (MHz) 5 5 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time (hour) MUF with LT (May/2004) Wakkanai MUF with LT (Jun/2004) Wakkanai 25 25 20 20

15 15 MUF(obs.) MUF(obs.) MUF(pre.) MUF(pre.) 10

10 MUF MUF (MHz)

MUF (MHz) 5 5 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time (hour)

MUF with LT (Jul/2004) Wakkanai MUF with LT (Aug/2004) Wakkanai

25 25 20 20 15 15 MUF(obs.) MUF(obs.) MUF(pre.) MUF(pre.)

10 10

MUF MUF (MHz) MUF (MHz) 5 5

0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time (hour)

MUF with LT (Sep/2004) Wakkanai MUF with LT (Oct/2004) Wakkanai 25 35 30 20 25 15 MUF(obs.) 20 MUF(obs.) MUF(pre.) MUF(pre.)

10 15 MUF MUF (MHz) MUF (MHz) 10 5 5 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time(hour)

MUF with LT (Nov/2004) Wakkanai MUF with LT (Dec/2004) Wakkanai 35 30 30 25 25 20 MUF(obs.) 20 MUF(obs.) 15 MUF(pre.) 15 MUF(pre.)

10 MUF MUF (MHz) MUF (MHz) 10 5 5 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time (hour)

Figure 7 Observed and predicted BMUF for year 2004.

15

MUF with LT (Jan\2005) Wakkanai MUF with LT (Feb\2005) Wakkanai

30 30 25 25 20 20 MUF(obs.) 15 MUF(obs.) MUF(pre.) 15 MUF(pre.)

10 MUF MUF (MHz) MUF (MHz) 10 5 5 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time (hour)

MUF with LT (Mar/2005) Wakkanai MUF with LT (Apr\2005) Wakkanai 30 25 25 20 20 MUF(obs.) 15 15 MUF(pre.) MUF(obs.) MUF(pre.) 10 10 MUF MUF (MHz) 5 MUF (MHz) 5 0 0 5 10 15 20 25 0 0 5 10 15 20 25 Local time (hour) Local time (hour) MUF with LT (May/2005) Wakkanai MUF with LT (Jun\2005) Wakkanai 25 25

20 20 15 MUF(obs.) 15 MUF(obs.) 10 MUF(pre.) MUF(pre.)

10 5

MUF MUF (MHz) MUF MUF (MHz) 5 0 0 5 10 15 20 25 0 0 5 10 15 20 25 Local time (hour)

Local time (hour)

MUF with LT (Jul/2005) Wakkanai MUF with LT (Aug/2005) Wakkanai 25 25 20 20 15 15 MUF(obs.) MUF(obs.) MUF(pre.) MUF(pre.)

10 10

MUF MUF (MHz) MUF MUF (MHz) 5 5 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time (hour) MUF with LT (Sep/2005) Wakkanai MUF with LT (Oct/2005) Wakkanai 25 30

20 25 20 15 MUF(obs.) MUF(obs.) 15 MUF(pre.) MUF(pre.) 10

10 MUF MUF (MHz) MUF (MHz) 5 5

0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time (hour)

MUF with LT (Nov/2005) Wakkanai MUF with LT (Dec/2005) Wakkanai 30 30 25 25 20 20 MUF(obs.) MUF(obs.) 15 15 MUF(pre.) MUF(pre.)

10 MUF MUF (MHz)

MUF MUF (MHz) 10 5 5 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time (hour)

Figure 8 Observed and predicted BMUF for year 2005.

16

MUF with LT (Jan\2001) Wakkanai MUF with LT (Feb\2001) Wakkanai 40 45 40 35 35 30 30 25 obs. 25 obs. 20 pre. pre. corr. 20

15 corr. MUF MUF (MHz) MUF (MHz) 15 10 10 5 5 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time (hour) MUF with LT (Mar\2001) Wakkanai MUF with LT (Apr\2001) Wakkanai 45 35 40 30 35 25 30 25 obs. 20 obs. pre. pre.

20 corr. 15 corr. MUF MUF (MHz) 15 MUF (MHz) 10 10 5 5 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time (hour)

MUF with LT (May\2001) Wakkanai MUF with LT (Jun/2001) Wakkanai 30 30 25 25

20 20 obs. obs. 15 pre. 15 pre.

corr. corr. MUF MUF (MHz) MUF MUF (MHz) 10 10 5 5

0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time (hour)

MUF with LT (Jul\2001) Wakkanai MUF with LT (Jul\2001) Wakkanai 25 25

20 20

15 obs. 15 obs. pre. pre.

10 corr. 10 corr.

MUF MUF (MHz) MUF (MHz) 5 5 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time (hour) MUF with LT (Sep\2001) Wakkanai MUF with LT (Oct\2001) Wakkanai 35 45 30 40 35 25 30 20 obs. 25 obs. pre. pre.

15 corr. 20 corr. MUF MUF (MHz) MUF MUF (MHz) 15 10 10 5 5 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time (hour) MUF with LT (Nov\2001) Wakkanai MUF with LT (Dec\2001) Wakkanai 50 60 45 40 50 35 40 30 obs. obs. 25 pre. 30 pre.

20 corr. corr MUF MUF (MHz)

15 MUF (MHz) 20 10 5 10 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Local time (hour) Local time (hour)

Figure 9 observed, predicted and corrected BMUF for year 2001.

17