Radio Communications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Amateur Radio Operations 2019 World Jamboree
Amateur Radio Operations 2019 World Jamboree Version 6, March 2019 All changes from Version 5 are highlighted in red. Table of Contents Table of Contents ................................................................................................................... 2 Overview ................................................................................................................................ 4 Activities Overview ................................................................................................................. 5 Demonstration Station ........................................................................................................... 7 ARDF --- FoxHunting .............................................................................................................. 12 International Space Station .................................................................................................. 13 WV8BSA VHF-UHF Repeaters ................................................................................................ 14 Media Staff ........................................................................................................................... 14 Facilities ............................................................................................................................... 14 Staff ..................................................................................................................................... 15 Organization Charts ............................................................................................................. -
47 CFR §97 - Rules of the Amateur Radio Service
47 CFR §97 - Rules of the Amateur Radio Service (updated January, 2014) Subpart A—General Provisions §97.1 Basis and purpose. The rules and regulations in this part are designed to provide an amateur radio service having a fundamental purpose as expressed in the following principles: (a) Recognition and enhancement of the value of the amateur service to the public as a voluntary noncommercial communication service, particularly with respect to providing emergency communications. (b) Continuation and extension of the amateur's proven ability to contribute to the advancement of the radio art. (c) Encouragement and improvement of the amateur service through rules which provide for advancing skills in both the communication and technical phases of the art. (d) Expansion of the existing reservoir within the amateur radio service of trained operators, technicians, and electronics experts. (e) Continuation and extension of the amateur's unique ability to enhance international goodwill. §97.3 Definitions. (a) The definitions of terms used in part 97 are: (1) Amateur operator. A person named in an amateur operator/primary license station grant on the ULS consolidated licensee database to be the control operator of an amateur station. (2) Amateur radio services. The amateur service, the amateur-satellite service and the radio amateur civil emergency service. (4) Amateur service. A radiocommunication service for the purpose of self-training, intercommunication and technical investigations carried out by amateurs, that is, duly authorized persons interested in radio technique solely with a personal aim and without pecuniary interest. (5) Amateur station. A station in an amateur radio service consisting of the apparatus necessary for carrying on radiocommunications. -
Teaching with Technology: a Proposal for Using Amateur Radio in the Classroom
DOCUMENT RESUME ED 378 943 IR 016 946 AUTHOR Newell, Peter R. TITLE Teaching with Technology: A Proposal for Using Amateur Radio in the Classroom. PUB DATE Dec 94 NOTE 29p.; Adapted from a paper submitted in partial fulfillment of class requirements for VTE 500, Contemporary Concepts in Vocational-Technical Education, Spring 1994, and published in the 1994 American Radio Relay League National Educational Workshop proceedings. A"AILLE FROMPeter R. Newell, 8226 Trevi Lane, Clay, NY 13041 ($10). PUB TYPE Viewpoints (Opinion/Position Papers, Essays, etc.) (120) Reports Evaluative/Feasibility (142) EDRS PRICE MF01/PCO2 Plus Postage. DESCRIPTORS *Communication (Thought Transfer); Educational Innovation; *Educational Radio; Educational' Technology; Elementary Secondary Education; Interdisciplinary Approach; Language Arts; Self Esteem; *Student Motivation; ''Teaching Methods; *Vocational Education IDENTIFIERS *Ham Radio ABSTRACT Amateur radio is a technology and activity that offers great potential when integrated into academic or vocational curricula. Programs with electrical, electronics, and electromechanical content can benefit from the use of amateur radio, and can also enhance language and communications skills. The biggest value of amateur radio may lie in its ability to enhance a student's motivation and self-esteem. In addition to its specific vocational and technical applications, amateur radio can assist in teaching basic skills and in reducing the isolation of students and teachers as it promotes interdisciplinary education and cultural awareness. Amateur radio is distinctly different from citizens band, as it is a noncommercial service. Ham operators do not need an electronics background, although technical knowledge and skills are helpful. Several examples of the educational use of amateur radio illustrate its potential for academic and vocational education. -
Supplemental Information for an Amateur Radio Facility
COMMONWEALTH O F MASSACHUSETTS C I T Y O F NEWTON SUPPLEMENTAL INFORMA TION FOR AN AMATEUR RADIO FACILITY ACCOMPANYING APPLICA TION FOR A BUILDING PERMI T, U N D E R § 6 . 9 . 4 . B. (“EQUIPMENT OWNED AND OPERATED BY AN AMATEUR RADIO OPERAT OR LICENSED BY THE FCC”) P A R C E L I D # 820070001900 ZON E S R 2 SUBMITTED ON BEHALF OF: A LEX ANDER KOPP, MD 106 H A R TM A N ROAD N EWTON, MA 02459 C ELL TELEPHONE : 617.584.0833 E- MAIL : AKOPP @ DRKOPPMD. COM BY: FRED HOPENGARTEN, ESQ. SIX WILLARCH ROAD LINCOLN, MA 01773 781/259-0088; FAX 419/858-2421 E-MAIL: [email protected] M A R C H 13, 2020 APPLICATION FOR A BUILDING PERMIT SUBMITTED BY ALEXANDER KOPP, MD TABLE OF CONTENTS Table of Contents .............................................................................................................................................. 2 Preamble ............................................................................................................................................................. 4 Executive Summary ........................................................................................................................................... 5 The Telecommunications Act of 1996 (47 USC § 332 et seq.) Does Not Apply ....................................... 5 The Station Antenna Structure Complies with Newton’s Zoning Ordinance .......................................... 6 Amateur Radio is Not a Commercial Use ............................................................................................... 6 Permitted by -
The Beginner's Handbook of Amateur Radio
FM_Laster 9/25/01 12:46 PM Page i THE BEGINNER’S HANDBOOK OF AMATEUR RADIO This page intentionally left blank. FM_Laster 9/25/01 12:46 PM Page iii THE BEGINNER’S HANDBOOK OF AMATEUR RADIO Clay Laster, W5ZPV FOURTH EDITION McGraw-Hill New York San Francisco Washington, D.C. Auckland Bogotá Caracas Lisbon London Madrid Mexico City Milan Montreal New Delhi San Juan Singapore Sydney Tokyo Toronto McGraw-Hill abc Copyright © 2001 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United States of America. Except as per- mitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. 0-07-139550-4 The material in this eBook also appears in the print version of this title: 0-07-136187-1. All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trade- marked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringe- ment of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. For more information, please contact George Hoare, Special Sales, at [email protected] or (212) 904-4069. TERMS OF USE This is a copyrighted work and The McGraw-Hill Companies, Inc. -
Echolink Users Guide
EchoLink Users Guide Version 1.0 Affiliated Club EchoLink Internet Linking for Amateur Radio What is Echolink? EchoLink uses VoIP (Voice Over Internet Protocol) to allow licensed amateur Radio Operators to communicate with other Amateurs via the Internet. It is primarily a Windows based application and is offered free of charge at http://www.echolink.org. There is also a new EchoLinux and EchoMac available. Now available is an iPhone and Android app that can be used to con- nect to operators around the world while you are on the go. It was developed by Jonathan Taylor (K1RFD) in 2002 (He received Hamvention 2003 Special Achievement Award). The system allows reliable worldwide connections to be made between radio amateurs, greatly enhancing Amateur Radio's communications capabilities. In essence it is the same as other VoIP applications (such as Skype), but with the unique addition of the ability to link to an amateur radio station's trans- ceiver. Before using the system it is necessary for a prospective user's call sign to be validated. The EchoLink system requires that each new user provide positive proof of license and identity before his or her call sign is added to the list of validated users. EchoLink Users Guide Version 1.0 | 3 Modes EchoLink can be operated strictly between two computers connected to the Internet using the PC soundcard with Speakers and a Microphone. EchoLink can be interfaced to a standard FM transceiver as a “simplex link” from your home QTH. EchoLink can be interfaced to a VHF or UHF repeater for more coverage. -
A Simplified Mathematical Model to Calculate the Maximum Usable Frequencies Over Iraqi Territory Khalid A
A Simplified Mathematical Model to Calculate the Maximum Usable Frequencies Over Iraqi Territory Khalid A. Hadi*, Loay E. Goerge** A Simplified Mathematical Model to Calculate the Maximum Usable Frequencies Over Iraqi Territory Khalid A. Hadi*, Loay E. Goerge** * Department of Astronomy & Space, College of Science, University of Baghdad ** Department of Computer Science, College of Science, University of Baghdad Receiving Date: 25-02-2011 - Accept Date: 13-06-2011 Abstract In this project, the spatial and temporal variation of maximum usable frequency (MUF) parameter is investigated and modeled. The values of MUF for Baghdad station links, with other stations distributed over Iraq territory, where determined using the international reference model (RECF533) for HF propagation. The determined MUF dataset reflected that the spatial distribution of this parameter for Baghdad station shows circular symmetry, which stimulated the possibility of using a two dimensional second order polynomial in order to describe MUF variation. The main feature of this adopted mathematical model is its low complexity. The results of conducted analysis indicated that the spatial variation of MUF is simple while its temporal variation is more complicated and needs more sophisticated mathematical description than the polynomial description. The test results showed that the accuracy of proposed simple model lies within the tolerance of REC533 reference model. Key words: Ionosphere, HF communication prediction, MUF Vol 7 No: 4, October 2011 1 20 ISSN: 2222-8373 A Simplified Mathematical Model to Calculate the Maximum Usable Frequencies Over Iraqi Territory 1. INTRODUCTION The Maximum Usable Frequency, denoted by MUF, is an important ionospheric parameter. It is defined as the highest frequency that allows reliable long-range high frequency (HF) radio communication between two points due to ion-ospheric refraction. -
Kenwood TH-D74A/E Operating Tips
1 Copyrights for this Manual JVCKENWOOD Corporation shall own all copyrights and intellectual properties for the product and the manuals, help texts and relevant documents attached to the product or the optional software. A user is required to obtain approval from JVCKENWOOD Corporation, in writing, prior to redistributing this document on a personal web page or via packet communication. A user is prohibited from assigning, renting, leasing or reselling the document. JVCKENWOOD Corporation does not warrant that quality and functions described in this manual comply with each user’s purpose of use and, unless specifically described in this manual, JVCKENWOOD Corporation shall be free from any responsibility for any defects and indemnities for any damages or losses. Software Copyrights The title to and ownership of copyrights for software, including but not limited to the firmware and optional software that may be distributed individually, are reserved for JVCKENWOOD Corporation. The firmware shall mean the software which can be embedded in KENWOOD product memories for proper operation. Any modifying, reverse engineering, copying, reproducing or disclosing on an Internet website of the software is strictly prohibited. A user is required to obtain approval from JVCKENWOOD Corporation, in writing, prior to redistributing this manual on a personal web page or via packet communication. Furthermore, any reselling, assigning or transferring of the software is also strictly prohibited without embedding the software in KENWOOD product memories. Copyrights for recorded Audio The software embedded in this transceiver consists of a multiple number of and individual software components. Title to and ownership of copyrights for each software component is reserved for JVCKENWOOD Corporation and the respective bona fide holder. -
Statement of ARRL, the National Association for Amateur Radio
Statement of Michael Lisenco on behalf of ARRL, the national association for Amateur Radio Hearing entitled “This is not a Drill: An Examination of Emergency Alert Systems” Before the Senate Committee on Commerce, Science and Transportation United States Senate January 25, 2018 I. Summary of Testimony 1. In emergencies, prior to and during disasters and their immediate aftermath, when other communications systems have failed or are overwhelmed, volunteer Amateur Radio operators are ready, willing, able and prepared to provide alerting information, restoration communications; interoperable communications for first responders which lack that capability; health and welfare message traffic, and operations and support communications for disaster relief organizations and served agencies. 2. Radio Amateurs quickly re-establish communications during that critical window of time between a disaster’s occurrence and the re- establishment of normal communications. 3. Amateur Radio operators contributed substantially to the dissemination of accurate information following the recent missile alert in Hawaii; and Amateur Radio is a key component of communications planning in the event of an actual ballistic missile attack in Hawaii. 4. The extensive Amateur Radio deployment of 50 volunteers from the U.S. mainland to Puerto Rico, and the long-term dedication of more than 75 resident Amateur Radio operators in the first few days of the recovery effort following the devastation there was the best example of the value of Amateur Radio in disaster relief communications. Virtually all communications infrastructure on the Island was destroyed or crippled by the high winds. Amateur Radio operators provided restoration communications for weeks following the hurricane, and in fact local radio Amateurs are still providing communications for power utilities. -
Using High Frequency Propagation to Calculate Basic Maximum Usable Frequency
Using High Frequency Propagation to Calculate Basic Maximum Usable Frequency Israa Abdualqassim Mohammed Ali* * University of Baghdad, College of Science, Baghdad, Iraq Received: XX 20XX / Accepted: XX 20XX / Published online: ABSTRACT A comparison between observed (obs.) digital ionospheric sounding data and predicted (pre.) using International Reference Ionosphere (IRI) model for critical frequency (foF2) and Basic Maximum Usable Frequency (BMUF) of ionospheric F2-Layer has been made. A mid-latitude region selected for this research work by using data from station Wakkanai (45.38o N, 141.66o E). This study included 12 monthly median data from year (2001, R12=111) selected for high Sunspot number (SSN) and years for low SSN (2004, R12=44) and (2005, R12=29). Frequency parameters foF2 reveals that there is a good correlation between observed and predicted except for January of years 2001 and 2004, and BMUF revealed that there is a good correlation between observed and predicted for years of low SSN and all months except in month 1, 9 and 12 of year 2004, for year 2001 of high SSN there is a bad correlation. A correction factor as a function of time used from fitting technique to correct the predicted value with observed value of BMUF for year 2001. Keywords: Ionosphere; foF2; M3000F2; BMUF Author Correspondence, e-mail: [email protected] 1. INTRODUCTION The maximum usable frequency (MUF) is important ionospheric parameter for radio users because of its role in radio frequency management and for providing a good communication 1 link between two locations (Athieno et al., 2015; Suparta et al., 2018). -
Radio Transmission and the Ionosphere
Ih S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS WASHINGTON / » ruT O v / Letter Circular LC-614 RADIO TRANSMISSION AND THE IONOSPHERE October 23, 19^0 6 . s TKD :ANK U. 3. DEPARTMENT OF COMMERCE Letter 1-6 NATIONAL BUREAU OF STANDARDS Circular Washington LC-6l4 ( Supersedes LC-E75) October 23 , 19^0 RADIO TRANSMISSION' AND THE IONOSPHERE Radio transmission over great distances is made possible by . reflection of the radio waves from ionized (electrically conduct- ing) layers in the ionosphere, the upper region of the earth* atmosphere. How far the radio waves go, and what frequencies may be used, are determined by the heights and the degree of ionization of the ionized layers, which are located between about BO kilometers (30 miles) and 400 kilometers (250 miles) above the earth's surface. Because of variations in the ionized layers, the conditions of radio wave transmission vary with time of day, with season, and from year to year. For the efficient maintenance of radio services it is important to have a constant supply of information on these changes. To this end an ionosphere observing, reporting, and predicting service is provided by the National Bureau of Standards. It is analogous to the weather reporting service, though quite independent of it-; the factors producing or affecting weather exist at much lower levels of the atmosphere than the ionosphere. The results of the Bureau * work on the ionosphere arid -radio transmission are made available to the public by a Science Service Urslgram and radio broadcast each week, and regular publication each month and each quarter, as well as through special papers (see References at end hereof) published from time to time on particular phases of the subject. -
QRP Contesting and Dxing K6UFO - Mark “Mork” Aaker
QRP Contesting and DXing K6UFO - Mark “Mork” Aaker QRP LOW Power HIGH Power “QRP” is an old telegraph signal: “lower your power.” QRP? = Can you lower your power? Today, the standard Amateur Radio meanings are : • QRP = 5 Watts or less transmitter power. • Low Power = up to 100 Watts, e.g., a “barefoot” radio. (up to 150 Watts in ARRL contests) • High Power “QRO”, from 100 W (or 150 W) up to the contest limit (1,500 W) or the country’s legal limit. Canada: 2,250 W PEP USA 1,500 W Japan: 1,000 W Italy: 500 W U.K.: 400 W Oman: 150 W How MUCH Power? • Total Energy Output of the Sun 10^26 W • Nuclear reactor 1 Gigawatt = 10^9 W • Shortwave Broadcast 1 Megawatt = 10^6 W • AM/FM radio Broadcast 50,000 W • Digital TV Broadcast 10,000 W • Amateur Radio 1,500 W • Microwave oven 1,000 W @ 2.45 GHz How little Power? • Amateur Radio 1,500 W – 100 W – 5 W • Christmas tree bulb 7 W – 5 W • CB Radio 4 W • LED Flashlight 3 W – 1W • Cell phone 2 W - 0.002 Watt • FRS radio 500 milliwatt • WiFi transmitter 100 milliwatt – 0.1 mW • Equivalent light output of a Firefly 1 mW It’s the Law! …as far as I can tell, no Amateur has ever been cited. Let’s get this out of the way, Can QRP really work? ARRL Field Day 2012: #3 highest score, station K6EI, 2,827 contacts, 5 watts. #5 highest score, station W5YA , 1,937 contacts, 5 watts.