Field Desorption Mass Spectrometry of Physiologically Active Steroid- and Dammarane-Saponins *

Total Page:16

File Type:pdf, Size:1020Kb

Field Desorption Mass Spectrometry of Physiologically Active Steroid- and Dammarane-Saponins * Field Desorption Mass Spectrometry of Physiologically Active Steroid- and Dammarane-Saponins * T. Komori, M. Kawamura, K. Miyahara, T. Kawasaki, Faculty of Pharmaceutical Sciences, Kyushu University 62, Maedashi 3-1-1, Higashi-ku Fukuoka, 812 Japan O. Tanaka, S. Yahara, Institute of Pharmaceutical Sciences, Hiroshima University, School of Medicine, Kasumi, Hiroshi- ma-shi, 734 Japan and H.-R. Schulten Institute of Physical Chemistry, University of Bonn, Wegelerstr. 12, D-5300 Bonn Z. Naturforsch. 34 c, 1094- 1105 (1979); received July 20, 1979 Natural Products, Physiologically Active Saponins, Sequencing of Underivatized Oligoglycosides, Field Desorption Mass Spectrometry The use of field desorption mass spectrometry is demonstrated not only for molecular weight determination but also for detailed structural analysis of large, underivatized natural products. Owing to cationization by small alkali salt impurities, saponins carrying one to four sugar units gave abundant quasimolecular ions. In addition, the observed sequence-specific fragment ions reflected the complete sequence of the sugar units in the oligoglycosides. This fragmentation of the oligosaccharidic moiety of the natural products was interpreted by analogy with acidic sol- volysis, a mechanism well established in solution chemistry. Of particular interest was a first com­ parison of the field desorption mass spectra obtained from two different commercially available instruments operated by different groups in order to give an estimate of interlaboratory repro­ ducibility in field desorption mass spectrometry. Introduction Electron impact (El)-mass spectrometry (MS) has been shown to be a very useful method [7-10] From the leaves of Lycopersicon pimpinellifolium for identification, determination of purity, and struc­ the fungistatic agent tomatine has been isolated and tural evaluation of saponins. However, for mass spec- crystallized [1] and its structure accurately charac­ trometric investigation volatile derivatives have to be terized as tomatidine 3-0-/?-lycotetraoside [2]. It has produced and often their fragmentation is compli­ also been reported [3] that under natural conditions cated because of the large and complex structure of tomatine may act as an insect repellent rather than the naturally occuring saponins. Moreover, saponins as toxin. Ginseng, the root of Panax ginseng C. A. with more than four sugar do not give molecular Meyer, is one of the most well-known Chinese drugs. ions even when derivatized. In continuation of our It contains characteristically a number of damma- recent reports of field desorption (FD)-MS of na­ rane saponins [4, 5] which are classified into 2 tural products [11 -14] here the results are re­ groups possessing either 20-S-protopanaxadiol or ported of the mass spectrometric studies of physio­ 20-S-protonanaxatriol as the sapogenins. Preliminary, logically active and structurally typical steroid- pharmacological studies of a protopanaxadiol group and dammarane-saponins. In particular, the fission saponin have shown this substance to be a central of terminal sugar units and the sequence-specific nervous system depressing agent, whereas a proto- cleavages in the oligoglycosidic chain(s) have been panaxatriol group saponin has been revealed to be evaluated and compared with data from solution an anti-fatigue and a central nervous system activat­ chemistry. Further, in order to achieve a better un­ ing agent [6]. derstanding of the general fragmentation pattern of * Field Desorption Mass Spectrometry of Natural Prod­ this class o f compound gitogenin- [15] and diosge- ucts Part V, for part IV see ref. [14]. nin- [16] oligoglycosides were recorded by FD-MS Reprint requests to Dr. H.-R. Schulten. as reference substances. The results obtained give a 0341-0382/79/1200-1094 $01.00/0 clear demonstration that FD-MS is not only suitable Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung This work has been digitalized and published in 2013 by Verlag Zeitschrift in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der für Naturforschung in cooperation with the Max Planck Society for the Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Advancement of Science under a Creative Commons Attribution Creative Commons Namensnennung 4.0 Lizenz. 4.0 International License. T. Komori et al. ■ Field Desorption Mass Spectrometry of Natural Products 1095 for molecular weight determination but is a powerful valley definition) which is partly due to the higher tool for structural investigation of these underivat- ion source potentials of + 6 kV/— 4 kV employed for ized oligoglycosides. the Varian instrument. All FD spectra were recorded As the free steroid- and dammarane-saponins were electrically (scantimes between 4 and 8 s/decade). studied by two different analytical groups and with Data processing was performed by the Spectrosys- different commercially available instruments it was tem MAT 200. Alternatively, the signals were accu­ of interest to investigate whether a preliminary, qual­ mulated by a multichannel analyzer (Varian CAT- itative comparison of the FD results was possible 1024) which was triggered by the cyclic magnetic and obtain for the first time information about in­ scan of the mass spectrometer. An example of an terlaboratory reproducibility. original plot of the multichannel analyzer output is shown in Fig. 2. Methods Results and Discussion JEOL D-300 instrument, Kyushu University Our previous FD investigations of oligoglycosidic The FD spectra were produced on a commercial natural products indicated that the process respon­ JEOL D-300 instrument (combined EI/FD ion sible for the cleavage of sugar units at the glycosidic source). All spectra were recorded electrically (scan oxygen could be explained by analogy with the well speed: 120 s or 300 s/full range). The resolution ob­ established mechanism of acidic hydrolysis in solu­ tained was R = 1200 (10% valley definition) and the tion chemistry. Proton transfer reactions in the ad­ average accuracy in the mass determination was sorbed sample on the surface of the FD emitter ±0.3 mass unit (m.u.). For accurate mass measurements lead, for instance, to a preferential loss of terminal ar- reference masses were taken from the El mass spectra rhamnose in comparison with aglycone-linked ß- of perfluorokerosene. Field desorption emitters, used glucose [12]. In order to evaluate the more general in all experiments, were prepared by high temperature validity of this concept the FD mass spectrum of activation of 10 |im diam. tungsten wires. FD emit­ tomatine (1) was recorded (Fig. 1). The character­ ters with an average length of 30 |im for the carbon istic signals obtained can be described as follows: microneedles were used as standards. The ionization 1. The FD spectrum of 1 shows the [M + Na]+ efficiency and the adjustment of the FD emitter ion at m /z 1056 as the base peak. The correspond­ were determined by means of m /z 58 of acetone in ing cation complexes of potassium are not observ­ the field ionization mode. All FD spectra were pro­ ed. The [M -I- H]+ ion is recorded with 86% rel. duced at an ion source pressure of 3 x 10-7 Torr, abundance. and ion source temp, between 60 °C and 70 °C, the 2. In the FD-spectra o f steroid tri- and tetra-gly- ion source potentials were + 3 or + 2 kV for the field cosides [11, 12] the glucosidic bond cleavage at C-3 anode and — 5 kV for the slotted cathode plate. The of the aglycone was not observed. Consistently also samples were desorbed by direct heating (emitter the FD-spectrum of 1 did not show the galactosidic heating current) without emission control. MeOH bond cleavage at C-3 of the aglycone. was used as solvent for all compounds. In general, 3. In general, /?-D-xylosides are hydrolyzed about lxlO -5# was applied as sample to the standard 4.8 times faster than /?-D-glucosides in solution chem­ emitter via the syringe technique. The substances 2, istry [17]. In the FD spectrum o f 1 which is averaged 3, 7, 8, and 9 were recorded by the D-300 instru­ from 5 consecutive magnetic scans in the mass range ment. from m /z 100 to m /z 1100 the loss of the terminal xylose unit (C5H90 4 , 133 m. u.) leads to the [(M + Varian MAT 731 instrument, University of Bonn Na)-132]+ ion at m /z 924, and the [(M + H)-132]+ The same sample amount, same solvent, and the ion at m /z 902. Loss of the glucose unit (C6Hn0 5, same type of FD emitter was used including the 163 m. u.) gives the [(M + Na)-162]+ ion at m /z 894 procedure for control of the ionization efficiency. and [(M + H)-162]+ ion at m /z 872, respectively. In Similar ion source pressure and ion source tempera­ this case, cleavage of the terminal xylopyranosyl ture were maintained as described above. The ob­ bond does indeed give the more intense fragment tained mass resolution was higher (R = 2000, 10% ions than that of the glucopyranosyl bond. 1096 T. Komori et al. • Field Desorption Mass Spectrometry of Natural Products m/z ---------------------------------• Fig. 1. FD mass spectrum of 1. Electrical recording (Methods, B), between 30 and 35 mA emitter heating current using the Varian MAT 200 data system; detection threshold 500 counts. The ratio for the loss of glucose: xylose is about 1 : 3.6. However, due to the relatively short time for the two sequence-specific fragment ions in FD. These magnetic scan covering the whole mass range, the are produced by the elimination of terminal xylose at small number of spectra which were recorded and m /z 924 and terminal glucose at m /z 894 from the averaged by the data system and the narrow interval high molecular weight natural product 1. of 30 to 35 mA emitter heating current (close to the Using repetitive magnetic scans in the mass range best anode temperature (BAT)), only a rough esti­ from m /z 890 to m /z 931 a sample o f 1 was com ­ mate of the prevailing cleavage of the terminal ß- pletely desorbed and the FD ions were recorded in D-xylose can be made.
Recommended publications
  • Anti-HIV Triterpenoid Components
    Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2014, 6(4):438-443 ISSN : 0975-7384 Research Article CODEN(USA) : JCPRC5 Anti-HIV triterpenoid components Benyong Han* and Zhenhua Peng Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P. R. China _____________________________________________________________________________________________ ABSTRACT AIDS is a pandemic immunosuppresive disease which results in life-threatening opportunistic infections and malignancies. Exploration of effective components with anti-HIV in native products is significant for prevention and therapy of AIDS. This review will focus on the mechanisms of action of anti-HIV triterpenes and the structural features that contribute to their anti-HIV activity and site of action and compare their concrete activity. Keywords: Triterpenes components, Anti-HIV, Activity _____________________________________________________________________________________________ INTRODUCTION HIV is the pathogenic of AIDS. In order to combat the debilitating disease acquired immune deficiency syndrome and the emergence of Anti-HIV, we search, research and develop the drug which can preventing and curing the disease. It is known that three enzyme play an important role in the development of HIV, such as nucleoside analogue HIV reverse transcriptase(RT), HIV integrase and HIV protease. However, the efficacy of these HIV enzyme inhibitors is limited by the development of drug resistance. The most potent HIV-1 protease inhibitor is components of polypeptide, however, the efficacy of components is low and expensive and the emergence of Anti- HIV is also their disadvantage.In the search of the drug of An-HIV, some triterpenoid components from nutural plant revealed good activity. TRITERPENES CHEMICAL CONSTITUTION The triterpenoid components distributing extensively in the nature which are consisted of thirty carbon atom are in the state of dissociation or indican, some combine with sugar are called triterpenoid saponins.
    [Show full text]
  • Modern Mass Spectrometry
    Modern Mass Spectrometry MacMillan Group Meeting 2005 Sandra Lee Key References: E. Uggerud, S. Petrie, D. K. Bohme, F. Turecek, D. Schröder, H. Schwarz, D. Plattner, T. Wyttenbach, M. T. Bowers, P. B. Armentrout, S. A. Truger, T. Junker, G. Suizdak, Mark Brönstrup. Topics in Current Chemistry: Modern Mass Spectroscopy, pp. 1-302, 225. Springer-Verlag, Berlin, 2003. Current Topics in Organic Chemistry 2003, 15, 1503-1624 1 The Basics of Mass Spectroscopy ! Purpose Mass spectrometers use the difference in mass-to-charge ratio (m/z) of ionized atoms or molecules to separate them. Therefore, mass spectroscopy allows quantitation of atoms or molecules and provides structural information by the identification of distinctive fragmentation patterns. The general operation of a mass spectrometer is: "1. " create gas-phase ions "2. " separate the ions in space or time based on their mass-to-charge ratio "3. " measure the quantity of ions of each mass-to-charge ratio Ionization sources ! Instrumentation Chemical Ionisation (CI) Atmospheric Pressure CI!(APCI) Electron Impact!(EI) Electrospray Ionization!(ESI) SORTING DETECTION IONIZATION OF IONS OF IONS Fast Atom Bombardment (FAB) Field Desorption/Field Ionisation (FD/FI) Matrix Assisted Laser Desorption gaseous mass ion Ionisation!(MALDI) ion source analyzer transducer Thermospray Ionisation (TI) Analyzers quadrupoles vacuum signal Time-of-Flight (TOF) pump processor magnetic sectors 10-5– 10-8 torr Fourier transform and quadrupole ion traps inlet Detectors mass electron multiplier spectrum Faraday cup Ionization Sources: Classical Methods ! Electron Impact Ionization A beam of electrons passes through a gas-phase sample and collides with neutral analyte molcules (M) to produce a positively charged ion or a fragment ion.
    [Show full text]
  • Methods of Ion Generation
    Chem. Rev. 2001, 101, 361−375 361 Methods of Ion Generation Marvin L. Vestal PE Biosystems, Framingham, Massachusetts 01701 Received May 24, 2000 Contents I. Introduction 361 II. Atomic Ions 362 A. Thermal Ionization 362 B. Spark Source 362 C. Plasma Sources 362 D. Glow Discharge 362 E. Inductively Coupled Plasma (ICP) 363 III. Molecular Ions from Volatile Samples. 364 A. Electron Ionization (EI) 364 B. Chemical Ionization (CI) 365 C. Photoionization (PI) 367 D. Field Ionization (FI) 367 IV. Molecular Ions from Nonvolatile Samples 367 Marvin L. Vestal received his B.S. and M.S. degrees, 1958 and 1960, A. Spray Techniques 367 respectively, in Engineering Sciences from Purdue Univesity, Layfayette, IN. In 1975 he received his Ph.D. degree in Chemical Physics from the B. Electrospray 367 University of Utah, Salt Lake City. From 1958 to 1960 he was a Scientist C. Desorption from Surfaces 369 at Johnston Laboratories, Inc., in Layfayette, IN. From 1960 to 1967 he D. High-Energy Particle Impact 369 became Senior Scientist at Johnston Laboratories, Inc., in Baltimore, MD. E. Low-Energy Particle Impact 370 From 1960 to 1962 he was a Graduate Student in the Department of Physics at John Hopkins University. From 1967 to 1970 he was Vice F. Low-Energy Impact with Liquid Surfaces 371 President at Scientific Research Instruments, Corp. in Baltimore, MD. From G. Flow FAB 371 1970 to 1975 he was a Graduate Student and Research Instructor at the H. Laser Ionization−MALDI 371 University of Utah, Salt Lake City. From 1976 to 1981 he became I.
    [Show full text]
  • Electrification Ionization: Fundamentals and Applications
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 11-12-2019 Electrification Ionization: undamentalsF and Applications Bijay Kumar Banstola Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Analytical Chemistry Commons Recommended Citation Banstola, Bijay Kumar, "Electrification Ionization: undamentalsF and Applications" (2019). LSU Doctoral Dissertations. 5103. https://digitalcommons.lsu.edu/gradschool_dissertations/5103 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. ELECTRIFICATION IONIZATION: FUNDAMENTALS AND APPLICATIONS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Bijay Kumar Banstola B. Sc., Northwestern State University of Louisiana, 2011 December 2019 This dissertation is dedicated to my parents: Tikaram and Shova Banstola my wife: Laxmi Kandel ii ACKNOWLEDGEMENTS I thank my advisor Professor Kermit K. Murray, for his continuous support and guidance throughout my Ph.D. program. Without his unwavering guidance and continuous help and encouragement, I could not have completed this program. I am also thankful to my committee members, Professor Isiah M. Warner, Professor Kenneth Lopata, and Professor Shengli Chen. I thank Dr. Fabrizio Donnarumma for his assistance and valuable insights to overcome the hurdles throughout my program. I appreciate Miss Connie David and Dr.
    [Show full text]
  • Liquid Injection Field Desorption/Ionization-Mass
    Liquid Injection Field Desorption/Ionization- Mass Spectrometry of Ionic Liquids Jürgen H. Gross Institute of Organic Chemistry, University of Heidelberg, Heidelberg, Germany ϩ Ten ionic liquids based on four types of organic cations, C (imidazolium, pyrrolidinium, pyridinium, and phosphonium), combined with various types of anions, AϪ, were analyzed by liquid injection field desorption/ionization- (LIFDI) mass spectrometry. For the purpose of LIFDI analysis the ionic liquids were dissolved in methanol, acetonitrile or tetrahydrofuran at Ϫ concentrationsof0.01–0.1 ␮lmL 1. The measurements were performed on a double-focusing magnetic sector instrument. In all ionic liquid LIFDI spectra, the intact cation of the compound ϩ yielded the base peak accompanied by cluster ions of the general formula [C A] and ϩ 2 occasionally [C3A2] . Tandem mass spectrometry and reconstructed ion chromatograms were employed to reveal the identity of the observed ions. Although limited to positive-ion mode, LIFDI also provided analytical information on the anions due to cluster ion formation. Depending on actual emitter condition and ionic liquid the limit of detection in survey scans was determined to 5–50 pg of ionic liquid. (J Am Soc Mass Spectrom 2007, 18, 2254–2262) © 2007 American Society for Mass Spectrometry onic liquids (ILs)have recently received widespread FD employs strong electric fields in the order of 1010 Ϫ Ϫ interest among many areas of chemical research as Vm 1 (1VÅ 1) to effect the ionization of atoms and Ithey act as highly polar thermally stable solvents in molecules [11, 12, 31]. The necessary field strength is chemical synthesis [1–3]. Consequently, there is a need normally achieved by setting whisker-bearing wires— for the development of methods for their analysis, be it so-called activated emitters [32–34]—to high electric for the sake of checking their purity, to verify their potential of typically 10–12 kV opposed to a counter absence in products from processes where ILs are electrode at ϳ2 mm distance.
    [Show full text]
  • Comparative Studies on Performance of CCC and Preparative RP-HPLC In
    s & H oid orm er o t n S f a l o S l c a Journal of i n e r n u c o e Zhang, et al., J Steroids Horm Sci 2015, 6:1 J .1000.150 ISSN: 2157-7536 Steroids & Hormonal Science DOI: 10.4172/2157-7536 Research Article Open Access Comparative Studies on Performance of CCC and Preparative RP-HPLC in Separation and Purification of Steroid Saponins from Dioscorea Zingiberensis C.H.Wright Xinxin Zhang1, Jianli Liu1, Wenji Sun1 and Yoichiro Ito2* 1Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai North Road, Xi’an, Shaanxi 710069, China 2Laboratory of Bioseparation Technology, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA *Corresponding author: Yoichiro Ito, Laboratory of Bioseparation Technology, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA, Tel: +1 (301) 496-1210; Fax: +1 (301) 402-0013; E-mail: [email protected] Rec date: Dec 29, 2014, Acc date: Feb 19, 2015, Pub date: Feb 25, 2015 Copyright: © 2015 Zhang X, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Steroid Saponins from Dioscorea zingiberensis C.H.Wright were separated for the first time using two chromatographic methods for comparison: counter-current chromatography (CCC) coupled with evaporative light scattering detector (ELSD) and preparative reversed phase high-performance liquid chromatography (RP-HPLC) with an ultraviolet detector.
    [Show full text]
  • FD) and Liquid Injection Field Desorption Ionization (LIFDI
    Soft ionization by Field Ionization (FI), Field desorption (FD) and Liquid Injection Field Desorption Ionization (LIFDI) H. Bernhard Linden Linden CMS GmbH [email protected] www.LIFDI.com 1 LINDEN CMS GmbH, 2012 Soft ionization by FI, FD and LIFDI Introduction by mouth watering soft ionization spectra 1. General and theoretical overview 2. Various instruments – identical technique 3. Automated LIFDI 4. Improved FI intensity 5. LIFDI on FT-ICR instruments 6. LIFDI of air/moisture sensitive metal complexes 7. Orbitrap with ESI-LIFDI combination 2 LINDEN CMS GmbH, 2012 FI and FD are known for soft ionization of non-polar compounds, LIFDI outperforms other MS techniques for characterization of organometallics due to its softness and convenient handling order of soft ionization References Liquid injection field desorption/ionization of transition decomposition decreases : ESI > LIFDI metal fluoride complexes Trevor A. Dransfield, Ruqia Nazir, Robin N. Perutz and “LIFDI ... gave the molecular ion peaks [M]+ as base peaks (100%) ... Adrian C. Whitwood With ESI, the compounds showed decomposition.” J. Fluorine Chem. 131, 2010, 1213-1217 loss of CO decreases : MALDI > FAB > FD *) Analysis of ruthenium carbonyl–porphyrin complexes: a comparison of matrix-assisted laser desorption/ionisation “ruthenium carbonyl complexes exhibited time-of-flight, fast-atom bombardment and field desorption abundant carbon monoxide (CO) loss in MALDI-TOF-MS and still a mass spectrometry, measurable CO loss in FAB-MS. Only FD-MS yielded the molecular ion M. Frauenkron, A. Berkessel and J. H. Gross as the base peak of the spectra in all cases.” Eur. J. Mass Spectrom. 1997, 3, 427 - 438 “fragmentation decreases Comparison of electrospray mass spectrometry with other soft ionization techniques for the characterization of cationic along the series FAB > ESI > FD “ *) π-hydrocarbon organometallic complexes , L.
    [Show full text]
  • The MALDI Process and Method 1
    1 1 The MALDI Process and Method Franz Hillenkamp , Thorsten W. Jaskolla , and Michael Karas 1.1 Introduction Matrix-assisted laser desorption/ionization ( MALDI ) is one of the two “soft” ioni- zation techniques besides electrospray ionization ( ESI ) which allow for the sensi- tive detection of large, nonvolatile and labile molecules by mass spectrometry. Over the past 27 years, MALDI has developed into an indispensable tool in analyti- cal chemistry, and in analytical biochemistry in particular. In this chapter, the reader will be introduced to the technology as it stands now, and some of the underlying physical and chemical mechanisms as far as they have been investi- gated and clarifi ed to date will be discussed. Attention will also be focused on the central issues of MALDI, that are necessary for the user to understand for the effi cient application of this technique. As an in-depth discussion of these topics is beyond the scope of this chapter, the reader is referred to recent reviews [1–4] . Details of the current state of instrumentation, including lasers and their coupling to mass spectrometers, will be presented in Chapter 2 . As with most new technologies, MALDI came as rather a surprise even to the experts in the fi eld on the one hand, but also evolved from a diversity of prior art and knowledge on the other hand. The original notion had been that (bio)mole- cules with masses in excess of about 500–1000 Da could not be isolated out of their natural (e.g., aqueous) environment, and even less be charged for an analysis in the vacuum of a mass spectrometer without excessive and unspecifi c fragmenta- tion.
    [Show full text]
  • American Ginseng (Panax Quinquefolium L.) As a Source of Bioactive Phytochemicals with Pro-Health Properties
    Review American Ginseng (Panax quinquefolium L.) as a Source of Bioactive Phytochemicals with Pro-Health Properties Daria Szczuka 1,*, Adriana Nowak 1,*, Małgorzata Zakłos-Szyda 2, Ewa Kochan 3, Grażyna Szymańska 3, Ilona Motyl 1 and Janusz Blasiak 4 1 Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland; [email protected] 2 Institute of Technical Biochemistry, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland; [email protected] 3 Pharmaceutical Biotechnology Department, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; [email protected] (E.K.); [email protected] (G.S.) 4 Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; [email protected] * Correspondence: [email protected] (D.S.); [email protected] (A.N.) Received: 12 April 2019; Accepted: 7 May 2019; Published: 9 May 2019 Abstract: Panax quinquefolium L. (American Ginseng, AG) is an herb characteristic for regions of North America and Asia. Due to its beneficial properties it has been extensively investigated for decades. Nowadays, it is one of the most commonly applied medical herbs worldwide. Active compounds of AG are ginsenosides, saponins of the glycosides group that are abundant in roots, leaves, stem, and fruits of the plant. Ginsenosides are suggested to be primarily responsible for health-beneficial effects of AG. AG acts on the nervous system; it was reported to improve the cognitive function in a mouse model of Alzheimer’s disease, display anxiolytic activity, and neuroprotective effects against neuronal damage resulting from ischemic stroke in animals, demonstrate anxiolytic activity, and induce neuroprotective effects against neuronal damage in ischemic stroke in animals.
    [Show full text]
  • NIH Public Access Author Manuscript Nat Prod Rep
    NIH Public Access Author Manuscript Nat Prod Rep. Author manuscript; available in PMC 2013 September 16. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Nat Prod Rep. 2009 October ; 26(10): 1321–1344. doi:10.1039/b810774m. Plant-derived triterpenoids and analogues as antitumor and anti- HIV agents† Reen-Yen Kuo, Keduo Qian, Susan L. Morris-Natschke, and Kuo-Hsiung Lee* Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7568, USA. Abstract This article reviews the antitumor and anti-HIV activities of naturally occurring triterpenoids, including the lupane, ursane, oleanane, lanostane, dammarane, and miscellaneous scaffolds. Structure–activity relationships of selected natural compounds and their synthetic derivatives are also discussed. 1 Introduction Natural products are an excellent reservoir of biologically active compounds. For centuries, extracts from natural products have been a main source of folk medicines, and even today, many cultures still employ them directly for medicinal purposes. Among the classes of identified natural products, triterpenoids, one of the largest families, have been studied intensively for their diverse structures and variety of biological activities. As a continued study of naturally occurring drug candidates, this review describes the research progress over the last three years (2006–2008) on triterpenoids possessing cytotoxic or anti-HIV activity, with focus on the occurrence, biological activities, and structure–activity relationships of selected compounds and their synthetic derivatives. 2 Potential antitumor effects of triterpenoids 2.1 The lupane group Betulinic acid (1) is a naturally occurring pentacyclic triterpene belonging to the lupane family.
    [Show full text]
  • Atmospheric Pressure Chemical Ionization (APCI): Less Polar
    LC-MS Based Metabolomics AnalysingAnalysing thethe METABOLOMEMETABOLOME 1.1. MetaboliteMetabolite ExtractionExtraction 2.2. MetaboliteMetabolite detectiondetection (with(with oror withoutwithout separation)separation) 3.3. DataData analysisanalysis MetaboliteMetabolite DetectionDetection GC-MS: Naturally volatile or made volatile (any organic- flavors, sugars, lipids, acids) NMR – any compound containing hydrogen HP Liquid - Chromatography + detector Comon detectors- - UV-detector (phenolics) - MASS SPECTROMETER (MS) as detector (LC-MS) MetaboliteMetabolite DetectionDetection MASS SPECTROMETER (MS) as detector (LC-MS): Compounds that are not well characterized by other methods: Non volatile High molecular weight Too sensitive to heat to be analyzed by GC Your Result Sample LC/MS Sample Sample Efficient Separation Preparation Introduction Gradient (column) Data (computer) LC- MS Ions Ions Ionization UV Detection Separation MS Interface Spectra Today ComponentsComponents inin LCLC--MSMS Ion Ion Formation Sorting PeptiPeptiddee && ProteinProtein SeqSequuenciencinngg Compound ID APcI Analyzer Software LC Structure Elucidation ESI & Detector Quantitation Interface: Chemical Triple Quadrupole Atmospheric Results Separation Quadrupole -Time Of Flight Pressure Quadrupole - Ion-Trap Ionization FT-MS MassMass SpectrometerSpectrometer 1. Breaks up constituents into molecular ions and other fragments 2. The ions then pass through an electric and/or magnetic field that separates them according to their mass-to-charge ratio (m/z) 3. Measures masses MassMass SpectrometerSpectrometer 4. Universal detection method * compared to UV/VIS (PDA), fluorescence etc. * more specific than NMR 5. More sensitive for most compounds 6. Structural information on metabolite * fragmentation pattern * accurate mass 7. For both LC and GC TechnologyTechnology ofof LCLC--MSMS andand LCLC--MSMS--MSMS –– InterfacesInterfaces-- IonizationIonization (elimination(elimination ofof solventsolvent andand generationgeneration ofof gasgas--phasephase ions)ions) –– e.g.e.g.
    [Show full text]
  • Open Natural Products Research: Curation and Dissemination of Biological Occurrences of Chemical Structures Through Wikidata
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.28.433265; this version posted March 1, 2021. The copyright holder has placed this preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt this material for any purpose without crediting the original authors. Open Natural Products Research: Curation and Dissemination of Biological Occurrences of Chemical Structures through Wikidata Adriano Rutz1,2, Maria Sorokina3, Jakub Galgonek4, Daniel Mietchen5, Egon Willighagen6, James Graham7, Ralf Stephan8, Roderic Page9, Jiˇr´ıVondr´aˇsek4, Christoph Steinbeck3, Guido F. Pauli7, Jean-Luc Wolfender1,2, Jonathan Bisson7, and Pierre-Marie Allard1,2 1School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland 2Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland 3Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena, Lessingstr. 8, 07732 Jena, Germany 4Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo n´amˇest´ı2, 166 10, Prague 6, Czech Republic 5School of Data Science, University of Virginia, Dell 1 Building, Charlottesville, Virginia 22904, United States 6Dept of Bioinformatics-BiGCaT, NUTRIM, Maastricht University, Universiteitssingel 50, NL-6229 ER, Maastricht, The Netherlands 7Center for Natural Product Technologies, Program for Collaborative Research
    [Show full text]