Tool Wear in Turning of Titanium Alloy Ti–6Al–4V Challenges and Potential Solutions for Crater Wear, Diffusion and Chip Formation

Total Page:16

File Type:pdf, Size:1020Kb

Tool Wear in Turning of Titanium Alloy Ti–6Al–4V Challenges and Potential Solutions for Crater Wear, Diffusion and Chip Formation Examensarbete 30 hp Oktober 2016 Tool wear in turning of titanium alloy Ti–6Al–4V Challenges and potential solutions for crater wear, diffusion and chip formation Erik Bamford Abstract Tool wear in turning of titanium alloy Ti–6Al–4V Erik Bamford Teknisk- naturvetenskaplig fakultet UTH-enheten Titanium alloys are major materials used in the airplane industry, and prospects show that airplane production will double in the next 20 years. Consequently, the demand Besöksadress: for cutting tools for machining of titanium alloys will increase. The primary problem Ångströmlaboratoriet Lägerhyddsvägen 1 when machining titanium alloys is their low thermal conductivity. Crater wear is the Hus 4, Plan 0 main factor limiting tool life, and is generally caused by thermal diffusion due to high temperatures in the tool-chip interface. Postadress: This master’s thesis was performed in collaboration with Sandvik Coromant, with the Box 536 751 21 Uppsala prospect to increase knowledge of how diffusion and chip formation influences crater wear progression. The aim was to study tool wear of cutting tools when turning Telefon: Ti–6Al–4V. This was done by testing two different rake face geometries, both coated 018 – 471 30 03 and uncoated, at cutting speeds of 30–115 m/min. Diffusion was investigated to learn Telefax: about the impact it has on crater wear. Chips were examined to investigate chip 018 – 471 30 00 formation and shear strain. The coated modified rake face insert showed less crater wear only for the initial few Hemsida: seconds of machining. Uncoated inserts with a modified rake face showed higher http://www.teknat.uu.se/student diffusion rate and faster crater wear progression than did standard inserts. The standard inserts showed twice as long tool life as did the modified inserts. No significant differences in the chip formation mechanism were found between modified and standard inserts. Cracks were found within shear bands that were thinner than usual, which suggest that the generation of cracks allows less shear deformation. Handledare: Roland Bejjani Ämnesgranskare: Staffan Jacobson Examinator: Erik Lewin ISSN: 1650-8297, UPTEC K 16021 “Man is a tool-using animal. Without tools he is nothing, with tools he is all.” –Thomas Carlyle Page | III Page | IV POPULÄRVETENSKAPLIG SAMMANFATTNING Verktygsslitage vid svarvning av titanlegeringen Ti–6Al–4V Utmaningar och möjliga lösningar för gropförslitning, diffusion och spånbildning Titanlegeringar används i stor utsträckning i flygplansindustrin, och prognoser tyder på att flygplansproduktionen kommer att fördubblas under de kommande 20 åren. Följaktligen kommer efterfrågan på skärande verktyg för bearbetning av titan att öka. Några gemensamma fördelar med titanlegeringar är att de har låg densitet, hög styrka och är korrosionsbeständiga. Ett stort problem är däremot att de har en mycket låg värmeledningsförmåga, vilket gör att värmen koncentreras i skäreggen och leder till att skäreggen snabbt slits ut. För att kunna forma ett arbetsmaterial måste skäret som bearbetar det vara hårdare. Vid svarvning av titanlegeringar används ofta skär utan beläggning tillverkade av en metall- och kerambaserad komposit av volframkarbid och kobolt. I andra skärprocesser använder man vanligtvis skärverktyg med skyddande ytskikt för att ytterligare reducera nötningshastigheten av det bearbetande skäret. Det finns fortfarande stora problem med att applicera tunna ytskikt på skär för svarvning i titanlegeringar eftersom beläggningen snabbt slits bort. En vanlig utslitningstyp vid svarvbearbetning av titanlegeringar är gropförslitning, vilket är den faktor som huvudsakligen påverkar verktygets livslängd vid konventionella skärhastigheter inom industrin. Gropförslitning orsakas av diffusion, det vill säga rörelse av atomer mellan det bearbetade materialet och skärverktyget, vilket orsakas av höga temperaturer i skäreggen. Detta leder till att bindningar mellan atomer försvagas och att skärverktyget nöts ut. Det är således viktigt att undersöka denna nötningsmekanism för att kunna utveckla nya skärande verktyg med längre livslängd. Detta examensarbete utfördes i samarbete med Sandvik Coromant, ett världsledande företag som är specialiserade på skärverktyg för bearbetning i metaller. Syftet var att öka kunskapen om hur kemisk diffusion och spånbildning påverkar gropförslitning. Svarvtester genomfördes på ett cylinderformat ämne av titanlegeringen Ti–6Al–4V med skär Page | V med och utan ytbeläggning vid skärhastigheter mellan 30–115 m/min. Eggen på de undersökta skären hade en modifierad spånsida, och jämfördes mot standardskär med en plan spånsida. Gropförslitningen undersöktes med mätinstrumentet Alicona för att få en tydlig bild av skärytans topografi, vilket visade hur ytan påverkats efter svarvning vid olika tidpunkter och skärhastigheter. Titan fastnar i gropen på skäret och diffusionen leder till att bitar avlägsnas från skärverktyget, vilket bidrar till förslitningsprocessen. Detta studerades genom att titta på tvärsnitt av skären med svepelektronmikroskop. Diffusionen av titan och kol studerades med elektronmikrosond för att mäta halten av titan och kol vid gränssnittet av titanskiktet och skärverktyget, samt för att undersöka skärets nötningshastighet. Under bearbetningsprocessen bildas svinn i form av spånor. Tvärsnitt av spånor kan studeras för att få en inblick i hur spånbildningsprocessen påverkar gropförslitningen. Titanspånor har en segmenterad geometri, det vill säga att de är sågtandade. Interna spänningar under bearbetningsprocessen bidrar till att materialet skjuvas och kan avslöja hur materialet påverkas av deformationen under bearbetningen. Skjuvning är ett mått på hur mycket materialet deformeras utan volymförändring och uppkommer genom att två motsatta spänningar påfrestar materialet, vilket leder till att materialet töjs ut. Specifika dimensioner och vinklar i titanspånorna uppmättes med hjälp av ljusoptiskt mikroskop och graden av segmentering, segmentfrekvensen och skjuvningen i spånorna beräknades. Skjuvningen kan avbildas med ljusoptiskt- och svepelektronmikroskop och visar sig som smala skjuvningsband mellan segmenten. Energiröntgenspektroskop användes för att studera diffusion av partiklar från skärverktyg till titanspånor. Tillämpning av beläggning på spånsidan av skärverktyget bidrog till en minskad kemisk diffusion, men beläggningen kan orsaka andra förslitningsmekanismer som påskyndar gropförslitning. Belagda skärverktyg med modifierad spånsida visade på en mindre gropförslitning de första sekunderna av bearbetning, vilket troligtvis beror på att beläggningen var kvar på en större yta än för standardskär. Skär utan beläggning med en modifierad spånsida visade högre diffusionshastighet och snabbare gropförslitningshastighet än standardskär. Mätning av fasförslitning visade att standardskär hade dubbelt så lång livslängd som modifierade skär. Förändringar i spånbildningen kan påverka gropförslitningen och bestäms genom att undersöka spångeometrin. Dock kunde inga signifikanta skillnader bekräftas mellan modifierade och standardskär. Page | VI TABLE OF CONTENTS ABSTRACT ............................................................................................................................................................... I POPULÄRVETENSKAPLIG SAMMANFATTNING........................................................................................................ V ACKNOWLEDGEMENTS ......................................................................................................................................... XI LIST OF ABBREVIATIONS ....................................................................................................................................... XII LIST OF NOMENCLATURE..................................................................................................................................... XIII LIST OF FIGURES .................................................................................................................................................. XIV IN CHAPTER 1: INTRODUCTION .................................................................................................................. XIV IN CHAPTER 2: THEORY .............................................................................................................................. XIV IN CHAPTER 3: LITERATURE REVEIW ........................................................................................................... XIV IN CHAPTER 4: METHODOLOGY................................................................................................................... XV IN CHAPTER 5: RESULTS AND DISCUSSIONS ................................................................................................. XV IN APPENDIX B ........................................................................................................................................... XVI IN APPENDIX C ........................................................................................................................................... XVI IN APPENDIX D .......................................................................................................................................... XVI IN APPENDIX F .......................................................................................................................................... XVII IN APPENDIX G ........................................................................................................................................
Recommended publications
  • 5.1 GRINDING Definitions
    UNIT-V GRINDING AND BROACHING 5.1 Grinding Definitions Cutting conditions in grinding Wheel wear Surface finish and effects of cutting temperature Grinding wheel Grinding operations Finishing Processes Introduction Finishing processes 5.1 GRINDING Definitions Abrasive machining is a material removal process that involves the use of abrasive cutting tools. There are three principle types of abrasive cutting tools according to the degree to which abrasive grains are constrained, bonded abrasive tools: abrasive grains are closely packed into different shapes, the most common is the abrasive wheel. Grains are held together by bonding material. Abrasive machining process that use bonded abrasives include grinding, honing, superfinishing; coated abrasive tools: abrasive grains are glued onto a flexible cloth, paper or resin backing. Coated abrasives are available in sheets, rolls, endless belts. Processes include abrasive belt grinding, abrasive wire cutting; free abrasives: abrasive grains are not bonded or glued. Instead, they are introduced either in oil-based fluids (lapping, ultrasonic machining), or in water (abrasive water jet cutting) or air (abrasive jet machining), or contained in a semisoft binder (buffing). Regardless the form of the abrasive tool and machining operation considered, all abrasive operations can be considered as material removal processes with geometrically undefined cutting edges, a concept illustrated in the figure: The concept of undefined cutting edge in abrasive machining. Grinding Abrasive machining can be likened to the other machining operations with multipoint cutting tools. Each abrasive grain acts like a small single cutting tool with undefined geometry but usually with high negative rake angle. Abrasive machining involves a number of operations, used to achieve ultimate dimensional precision and surface finish.
    [Show full text]
  • Technical Guidance Reference
    Technical Guidance Reference References N11 to N42 N N Parts Technical Guidance Guidance Technical N Reference Technical Guidance Turning Edition ................................................ N12 Milling Edition ................................................. N17 Endmilling Edition ........................................... N21 Drilling Edition ................................................. N24 SUMIBORON Edition ...................................... N29 References SI Unit Conversion List ................................... N33 Metals Symbols Chart (Excerpt) .................... N34 Steel and Non-Ferrous Metal Symbol Chart (Excerpt) ... N36 Hardness Scale Comparison Chart .............. N37 Dimensional Tolerance of Standard Fittings .... N38 Dimensional Tolerance and Fittings .............. N40 Standard of Tapers ......................................... N41 Surface Roughness ....................................... N42 N11 Technical Guidance The Basics of Turning, Turning Edition Calculating Cutting Speed Calculating Power Requirements f (1) Calculating rotation speed from cutting speed n : Spindle Speed (min-1) P m c : Power requirements (kW) v n 1,000×vc c : Cutting speed (m/min) D n ø v = D c : Cutting speed (m/min) X×Dm m : Inner/outer diameter of workpiece (mm) vc×f×a p×k c p Pc = f : Feed Rate (mm/rev) X : ≈ 3.14 a 60×103×V References ap : Depth of cut (mm) k : Specific cutting force (MPa) N v D c Example: c=150m/min, m=100mm P H = c H : Required horsepower (HP) 1,000 × 150 Feed Direction n = = 478 (min-1) 0.75 3.14 ×
    [Show full text]
  • Guide to Machining Carpenter Specialty Alloys Guide to Machining Carpenter Special Ty All O Ys
    GUIDE TO MACHINING CARPENTER SPECIAL GUIDE TO MACHINING CARPENTER SPECIALTY ALLOYS Carpenter Technology Corporation TY ALL Wyomissing, PA 19610 U.S.A. 1-800-654-6543 Visit us at www.cartech.com O YS For on-line purchasing in the U.S., visit www.carpenterdirect.com GUIDE TO MACHINING CARPENTER SPECIALTY ALLOYS Carpenter Technology Corporation Wyomissing, Pennsylvania 19610 U.S.A. Copyright 2002 CRS Holdings, Inc. All Rights Reserved. Printed in U.S.A. 9-02/7.5M The information and data presented herein are suggested starting point values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his/her own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available. Unless otherwise noted, all registered trademarks are property of CRS Holdings, Inc., a subsidiary of Carpenter Technology Corporation. ISO 9000 and QS-9000 Registered Headquarters - Reading, PA Guide to Machining CARPENTER SPECIALTY ALLOYS Contents Introduction ............................................................................. 1 General Stainless Material and Machining Characteristics .... 3 Classification of Stainless Steels .............................................. 5 Basic Families and Designations ........................................ 5 Austenitic
    [Show full text]
  • Machining of Aluminum and Aluminum Alloys / 763
    ASM Handbook, Volume 16: Machining Copyright © 1989 ASM International® ASM Handbook Committee, p 761-804 All rights reserved. DOI: 10.1361/asmhba0002184 www.asminternational.org MachJning of Aluminum and AlumJnum Alloys ALUMINUM ALLOYS can be ma- -r.. _ . lul Tools with small rake angles can normally chined rapidly and economically. Because be used with little danger of burring the part ," ,' ,,'7.,','_ ' , '~: £,~ " ~ ! f / "' " of their complex metallurgical structure, or of developing buildup on the cutting their machining characteristics are superior ,, A edges of tools. Alloys having silicon as the to those of pure aluminum. major alloying element require tools with The microconstituents present in alumi- larger rake angles, and they are more eco- num alloys have important effects on ma- nomically machined at lower speeds and chining characteristics. Nonabrasive con- feeds. stituents have a beneficial effect, and ,o IIR Wrought Alloys. Most wrought alumi- insoluble abrasive constituents exert a det- num alloys have excellent machining char- rimental effect on tool life and surface qual- acteristics; several are well suited to multi- ity. Constituents that are insoluble but soft B pie-operation machining. A thorough and nonabrasive are beneficial because they e,,{' , understanding of tool designs and machin- assist in chip breakage; such constituents s,~ ,.t ing practices is essential for full utilization are purposely added in formulating high- of the free-machining qualities of aluminum strength free-cutting alloys for processing in alloys. high-speed automatic bar and chucking ma- Strain-hardenable alloys (including chines. " ~ ~p /"~ commercially pure aluminum) contain no In general, the softer ailoys~and, to a alloying elements that would render them lesser extent, some of the harder al- c • o c hardenable by solution heat treatment and ,p loys--are likely to form a built-up edge on precipitation, but they can be strengthened the cutting lip of the tool.
    [Show full text]
  • New Method of Determination of the Tool Rake Angle on the Basis of the Crack Angle of the Specimen in Tensile Tests and Numerical Simulations L
    Surface Effects and Contact Mechanics IX 207 New method of determination of the tool rake angle on the basis of the crack angle of the specimen in tensile tests and numerical simulations L. Kukielka1, J. Chodor1 & B. Storch2 1Department of Mechanical Engineering, Koszalin University of Technology, Poland 2Department of Processes Monitoring, Koszalin University of Technology, Poland Abstract Turning is a very complicated technological process. To increase the quality of the product and minimize the cost of turning, we should know the physical phenomena that exist during the process. In some of the literature the thermo-mechanical models and other dependencies between the shape of the tool and the shape of the chip are presented. This paper is a continuation of previous issues and focuses on proper determination of active cutter geometry. A new method of determination of tool rake angle in two steps is presented. In the first step the basic angle is determined on the basis of the crack angle of the specimen in a tensile test. In the second step the optimal angle is determined using numerical simulations. The influence of the cutter geometry in the active part and the tool rake angle on the states of strain and stress in the surface layer during turning is explained. The phenomena on a typical incremental step were described using a step-by-step incremental procedure, with an updated Lagrangian formulation. The turning process is considered as a geometrical and physical non-linear initial and boundary problem. The finite element method (FEM) and the dynamic explicit method (DEM) were used to obtain the solution.
    [Show full text]
  • Characterization of Machinability in Lead-Free Brass Alloys
    DEGREE PROJECT IN MATERIALS DESIGN AND ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2018 Characterization of machinability in lead-free brass alloys KASIM AYTEKIN KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF INDUSTRIAL ENGINEERING AND MANAGEMENT Abstract Recent legislation has put focus on the toxic nature of lead as an alloying element in brass products. Water supply systems are of biggest concern where suspected lead leakages from brass products are threatening human health. A comprehensive study has been conducted in order to characterize the machinability of lead-free brass alloys to provide the industry with necessary information to assist a replacement of the leaded alternatives. The characterization has focused on two particular machining processes, namely turning and drilling and has been based on cutting force generation and chip formation. While the turning tests aimed to characterize the machinability by comparing two lead-free alloys (CW511L and AquaNordic) with a leaded alloy (CW625N), drilling tests aimed to characterize machinability of the lead-free AquaNordic alloy particularly, with the main focus put on the impact of tool geometry on machinability. The results have shown that significantly higher cutting forces are generated during turning of lead-free alloys as compared to the leaded. There was, however, no significant difference between the two lead-free alloys regarding cutting forces while chip formation is improved for AquaNordic. Drilling tests have shown that the machinability of the lead-free AquaNordic alloy can be improved by increasing the tool rake angle and decreasing tool diameter. Based on the results from this thesis work, it has been concluded that the machinability of lead-free brass alloys is sufficiently good to be able to be adopted by the industry.
    [Show full text]
  • A New Cutting Tool Design for Cryogenic Machining of Ti–6Al–4V Titanium Alloy
    materials Article A New Cutting Tool Design for Cryogenic Machining of Ti–6Al–4V Titanium Alloy Alborz Shokrani 1,* and Stephen T Newman 1 Department of Mechanical Engineering, University of Bath, BA2 7AY Bath, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-1225-38-6588 Received: 3 January 2019; Accepted: 31 January 2019; Published: 4 February 2019 Abstract: Titanium alloys are extensively used in aerospace and medical industries. About 15% of modern civil aircrafts are made from titanium alloys. Ti–6Al–4V, the most used titanium alloy, is widely considered a difficult-to-machine material due to short tool life, poor surface integrity, and low productivity during machining. Cryogenic machining using liquid nitrogen (LN2) has shown promising advantages in increasing tool life and material removal rate whilst improving surface integrity. However, to date, there is no study on cutting tool geometry and its performance relationship in cryogenic machining. This paper presents the first investigation on various cutting tool geometries for cryogenic end milling of Ti–6Al–4V alloy. The investigations revealed that a 14◦ rake angle and a 10◦ primary clearance angle are the most suitable geometries for cryogenic machining. The effect of cutting speed on tool life was also studied. The analysis indicated that 110 m/min cutting speed yields the longest tool life of 91 min whilst allowing for up to 83% increased productivity when machining Ti–6Al–4V. Overall the research shows significant impact in machining performance of Ti–6Al–4V with much higher material removal rate. Keywords: cryogenic machining; cutting tool; cutting geometry; titanium 1.
    [Show full text]
  • DRILL POINT GEOMETRY by JOSEPH MAZOFF Mr
    DRILL POINT GEOMETRY by JOSEPH MAZOFF Mr. Joseph Mazoff, inventor and member of the Society of Manufacturing Engineers, started his metal crafts career in Pennsylvania as a young apprentice nine years old in a black smith shop in 1926. In 1938 at age 18, competing against more than 300 experienced competitors in their fifties and sixties, Mr. Mazoff took first place in the Pennsylvania state wide tool grinding contest, including twist drill sharpening. Mr. Mazoff has lectured on Drill Point Geometry in various universities such as Brigham Young and other teaching institutions in nationwide states such as Texas, Kentucky, Pennsylvania, Ohio, New Mexico and other states. Mr. Mazoff has also conducted Drill Point Geometry seminars at large machine shops at major industrial plants such as Pratt & Whitney at East Hartford, Connecticut, General Electric at Schenectady, N.Y., The Abex Corporation, The Philadelphia Naval Shipyard & other major installations thathave large machine shops. Also, Mr. Mazoff authored an 11 page article titled "Choose the Best Drill Point Geometry" which was printed in the June 1989 issue of "Modern Machine Shop" magazine. (Reprints of article available by contacting "Modern Machine Shop" magazine). Back in the Appalachian Mountains where the author started his career in a blacksmith shop, electricity was unknown. Consequently, when drilling holes manually with 1-1/2" diameter drills, such drilling was painstakingly slow, requiring much time, patience and physical effort. Therefore, through experimentation; it was established that once a conical (conventional) surfaced drill was ground with a flat surface (multi-faceted point); it produc a linear chisel which required 150 percent less thrust than a conventional drill.
    [Show full text]
  • General Machining Practice for Cmi Electromagnetic Iron
    GENERAL MACHINING PRACTICE FOR CMI ELECTROMAGNETIC IRON Electromagnetic Iron can be readily machined when proper tool angles are used. Tools should be ground to more acute cutting edge angles than are used for mild steel. The recommended angles and cutting conditions are given in Tables I and II. Since Electromagnetic Iron is a soft, ductile iron, it is difficult to push it off with tools ground with zero rake, as one would with carbon steel. With low rake angles, tremendous pressures can be generated, the tool may not want to feed properly, and the chips can be thick, blued, straight and stiff. On the other hand, with high rake angles, the tool cuts cleanly, the cutting pressures and heat generated are greatly reduced, the chips are bright and peel off in loose curls, and good surfaces are obtained. Electromagnetic Iron tends to machine more like copper than steel. Because Electromagnetic Iron is quite ductile, the chips tend to form continuous curls rather than breaking up. For this reason, it may be necessary to shape the tool to divert the chips in the manner desired. Good machining practices should be followed. For maximum rigidity, keep tools clamped tightly with as little overhang as possible. The cutting edges should be on center. It is important that drills, taps, cut-off tools and pick-ups be in good alignment. Use a copious supply of cutting fluid. The data given here is offered as guides for proper tool design and application. For special conditions, it may be necessary to alter these designs. For example, when surface finish is secondary to cutting speed and stock removal, or when machining a hot-rolled round with mill scale still on, less rake combined with a coarser feed rate may be desirable.
    [Show full text]
  • Controlling Gradation of Surface Strains and Nanostructuring by Large-Strain Machining R
    Author's personal copy Available online at www.sciencedirect.com Scripta Materialia 60 (2009) 17–20 www.elsevier.com/locate/scriptamat Controlling gradation of surface strains and nanostructuring by large-strain machining R. Calistes, a S. Swaminathan, b T.G. Murthy, a C. Huang, a C. Saldana, a M.R. Shankar c and S. Chandrasekar a, * aCenter for Materials Processing and Tribology, School of Industrial Engineering, Purdue University, 315 N Grant Street, West Lafayette, IN 47907-2023, USA bDepartment of Mechanical and Astronautical Engineering, Naval Postgraduate School, Monterey, CA 93943-5146, USA cDepartment of Industrial Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA Received 24 July 2008; revised 5 August 2008; accepted 14 August 2008 Available online 7 September 2008 Direct measurement of the deformation field associated with the creation of a machined surface shows that the strains in the surface and chip are large and essentially equal. This is supported by microstructure and hardness data. By interpreting these results in the framework of an upper bound model for the deformation, control of severe plastic deformation parameters on the machined surface is seen to be feasible, suggesting interesting opportunities for nano- and microscale engineering of surface microstructures by machining. Ó 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. Keywords: Surfaces; Nanostructure; Severe plastic deformation; Machining The formation of a chip during machining oc- Electron backscatter diffraction (EBSD) analysis of curs by severe plastic deformation (SPD) in a deforma- deformation in machined stainless steel indicates that tion zone ahead of the advancing tool cutting edge [1] . the subsurface microstructure is also ultrafine-grained Controlled, large plastic strains (of the order of 1–15) (UFG) and this UFG region extends tens of microme- can be imposed in the chip in a single pass of deforma- ters into the depth [12] .
    [Show full text]
  • The Shape of the Cone of the Twist Drills
    The shape of the cone of the twist drills With reference to figure N°1 we can give the following definitions: Fig. N°1- Some characteristic angles of twist drill ε : Helix angle; it is formed by the tangent of the medium helix with the axis of the drill tip . Its value is much smaller than the harder the material to be drilled. : Point angle; it is the angle formed by the two main cutting edges. : Upper rake angle β : Cutting rake angle α : Lip relief angle. Cone of the re-sharpening means the end of the drill tip which has the task of removing the chips. On this cone are made the re-sharpening. On the cone of the re-sharpening are distinguished two other angles, in addition to those described just above. Fig. N°2 – Characteristic angles of the cone of re-sharpening = Lip relief angle (measured on the periphery) = Chisel edge angle (inclination of the transversal cutting edge) Lip relief angle As already mentioned, the cutting edge traveling a helical path which, in addition to increasing rake angle has the effect of decreasing the lip relief angle. The amount of variation of the angle is: where = Proceeding towards the top of the cone, therefore, the angle Δα grows up to become infinite on the axis . This leads to two considerations: 1) To be effective the lip relief angle should be variable in the opposite direction to the variation of Δα, which will be greater towards the center. 2) Near of the axis the angle cannot be large enough and in this area then there will be the maximum resistance to penetration.
    [Show full text]
  • Unit 2 Design of Single Point Cutting Tools
    Design of Single UNIT 2 DESIGN OF SINGLE POINT CUTTING Point Cutting Tools TOOLS Structure 2.1 Introduction Objectives 2.2 Design of Tool Shank 2.3 Design of Tool Geometry 2.3.1 Basic Elements 2.3.2 Influence of Various Angles on Tool Design 2.4 Selection of Tool Material 2.4.1 Desirable Properties of Tool Material 2.4.2 Characteristics of Some Important Tool Material 2.5 Calculation of Forces and Design for Cutting Forces 2.6 Summary 2.7 Key Words 2.8 Answers to SAQs 2.1 INTRODUCTION Design of single point cutting tool is an important aspect of tool engineering. This unit deals with the design of tool shank, design of single point cutting tool, and various forces involved during machining of the workpiece. Strength and rigidity of tool is also taken into account while designing single point cutting tool. Objectives After studying this unit, you should be able to • design tool shank, • design single point cutting tool, • select appropriate tool material, and • calculate and analyze the forces acting on tool. 2.2 DESIGN OF TOOL SHANK The shank of a cutting tool is generally analyzed for strength and rigidity. Tool is assumed to be loaded as a cantilever by tool forces at the cutting edge as shown in Figure 2.1. F H L0 B Lc Figure 2.1 : Forces Acting on Tool Shank 19 Design of Cutting Tools and Holding Devices Figure 2.2 : Deflections and Frequency of Chatter for Several Overhung Values The notations used in design of shank is given below : F = Permissible tangential force during machining, N f = Chatter frequency, cycle per second (c.p.s) H = Depth of shank, mm B = Width of shank, mm L0 = Length of overhung, mm d = Deflection of shank, mm E = Young’s modulus of material, N/mm2 I = Moment of inertia, mm4 hc = Height of centres, mm 2 σut = Ultimate tensile strength, N/mm 2 σper = Permissible stress of shank material, N/mm Lc = Length of centres, mm The main design criterion for shank size is rigidity.
    [Show full text]