Scanning Superlens Microscopy for Non-Invasive Large Field-Of-View Visible Light Nanoscale Imaging

Total Page:16

File Type:pdf, Size:1020Kb

Scanning Superlens Microscopy for Non-Invasive Large Field-Of-View Visible Light Nanoscale Imaging Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging Wang, Feifei; Liu, Lianqing; Yu, Haibo; Wen, Yangdong; Yu, Peng; Liu, Zhu; Wang, Yuechao; Li, Wen Jung Published in: Nature Communications Published: 09/12/2016 Document Version: Final Published version, also known as Publisher’s PDF, Publisher’s Final version or Version of Record License: CC BY Publication record in CityU Scholars: Go to record Published version (DOI): 10.1038/ncomms13748 Publication details: Wang, F., Liu, L., Yu, H., Wen, Y., Yu, P., Liu, Z., Wang, Y., & Li, W. J. (2016). Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging. Nature Communications, 7, [13748]. https://doi.org/10.1038/ncomms13748 Citing this paper Please note that where the full-text provided on CityU Scholars is the Post-print version (also known as Accepted Author Manuscript, Peer-reviewed or Author Final version), it may differ from the Final Published version. When citing, ensure that you check and use the publisher's definitive version for pagination and other details. General rights Copyright for the publications made accessible via the CityU Scholars portal is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Users may not further distribute the material or use it for any profit-making activity or commercial gain. Publisher permission Permission for previously published items are in accordance with publisher's copyright policies sourced from the SHERPA RoMEO database. Links to full text versions (either Published or Post-print) are only available if corresponding publishers allow open access. Take down policy Contact [email protected] if you believe that this document breaches copyright and provide us with details. We will remove access to the work immediately and investigate your claim. Download date: 23/09/2021 ARTICLE Received 15 Dec 2015 | Accepted 31 Oct 2016 | Published 9 Dec 2016 DOI: 10.1038/ncomms13748 OPEN Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging Feifei Wang1,2, Lianqing Liu1, Haibo Yu1, Yangdong Wen1,2, Peng Yu1, Zhu Liu1, Yuechao Wang1 & Wen Jung Li1,3 Nanoscale correlation of structural information acquisition with specific-molecule identification provides new insight for studying rare subcellular events. To achieve this correlation, scanning electron microscopy has been combined with super-resolution fluorescent microscopy, despite its destructivity when acquiring biological structure information. Here we propose time-efficient non-invasive microsphere-based scanning superlens microscopy that enables the large-area observation of live-cell morphology or sub-membrane structures with sub-diffraction-limited resolution and is demonstrated by observing biological and non-biological objects. This microscopy operates in both non-invasive and contact modes with B200 times the acquisition efficiency of atomic force microscopy, which is achieved by replacing the point of an atomic force microscope tip with an imaging area of microspheres and stitching the areas recorded during scanning, enabling sub-diffraction-limited resolution. Our method marks a possible path to non-invasive cell imaging and simultaneous tracking of specific molecules with nanoscale resolution, facilitating the study of subcellular events over a total cell period. 1 State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China. 2 University of Chinese Academy of Sciences, Beijing 100049, China. 3 Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon Tong 999077, Hong Kong. Correspondence and requests for materials should be addressed to L.L. (email: [email protected]) or to W.J.L. (email: [email protected]). NATURE COMMUNICATIONS | 7:13748 | DOI: 10.1038/ncomms13748 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13748 o fully explore the basic mechanisms in life and material FOV increases linearly with the diameter of the superlens, the sciences, and in other areas, research has gradually resolving ability deteriorates as the diameter increases23. This Tmoved into the nanoscale using various novel microscopy limited FOV reduces the range of practical applications; therefore, technologies. Traditional electron microscopy, which achieves methods, such as probe-based manipulations18,21 and immersing a molecular- and atomic-level resolution, has played an microspheres into elastomers19,20,28, have been reported to locate irreplaceable role in this transition; however, the radiation dose microsphere superlenses for observations from a specific position. that the specimens are exposed to by the imaging system’s Unfortunately, when using these methods, it is difficult to achieve energetic electron beam is comparable to the irradiation from the large-area imaging and to locate specific sub-diffraction-limited explosion of a 10-megaton hydrogen bomb B30 m away, targets in a large area. In particular, these targets appear in which confines the application of electron microscopy to non- different areas, such as the distribution of lysosomes in cells. destructive cell observation1,2. Scanning probe microscopies In addition to these methods, microspheres or introduced provide another convenient approach to obtain sub-nanometre elastomers still make contact with the samples, and the distance resolution in both air and liquid, but their invasiveness may or interaction force between the microspheres and samples induce unrecoverable structural damage or morphology cannot be precisely controlled due to the lack of effective feedback deformation in sensitive specimens. Specifically, the interaction mechanisms, which further adds to the invasiveness of this forces they produce may drive adherent cells to detach from a microsphere-based super-resolution imaging method. dish surface during scanning with atomic force microscopy In the following, we introduce a non-invasive, environmentally (AFM). The adhesion between cells and tips causes cell damage compatible and high-throughput optical microscopy technique and limits the reusability of the probe and potentially contributes called scanning superlens microscopy (SSUM) for large-area, to cross-contamination. Recently, advancements in life studies super-resolution imaging and structural information acquisition. have accelerated markedly due to the development of super- The distance or interaction forces between the microsphere resolution fluorescence microscopes that circumvent the optical superlenses and the specimens are adjusted using AFM principles, diffraction limit induced by the loss of evanescent waves in far- allowing the scanning and imaging of large areas. On the basis of field imaging, producing nanoscale resolutions3–5. Fluorescent the microsphere superlens imaging properties, two different AFM labelling could allow the identification of specific molecules scanning modes that are compatible with microsphere superlens and to explore the functions of these molecules in life4,6; however, imaging have been demonstrated to achieve microsphere this labelling also induces a loss of structural information because scanning of a large area: the contact mode enables imaging a majority of molecules are unlabeled7. The implementation of stiff samples, and the constant-height mode facilitates of a large fraction of these imaging methods depends on a non-invasive imaging of sensitive specimens. Compared with point-based raster scanning technology, such as the commonly point-based raster scanning microscopes, this new technique used scanning electron microscopy (SEM)8, scanning replaces the ‘point’ with an ‘area’ (that is, the middle area of the probe microscopy (SPM)9,10 and stimulated emission depletion FOV of the microsphere superlens has no aberrations); therefore, (STED)11 microscopy. The acquisition time increases significantly there is a significant improvement in terms of the time efficiency as the imaging area (for example, 450 Â 50 mm2) is enlarged at a for large-area imaging. high resolution (for example, o100 nm). In addition, SPM and SEM typically use a slow scanning speed and increase the number of scan lines used to improve imaging quality12, which further Results leads to time inefficiencies. To increase the imaging speed, Description of the microsphere-based SSUM. Figure 1a shows parallelized scanning systems have been designed for different the basic concept of a microsphere-based SSUM. An AFM types of microscopes (for example, SEM13, SPM14,15 and distance or interaction force control mechanism is introduced to STED16,17), making the systems more complex and expensive, adjust the position of the microsphere above the sample. and requiring sophisticated algorithms to achieve system The magnification of the microscope objectives used in the control and image processing18. Only few of these systems microsphere superlens-based nanoscale imaging is typically are commercially available currently. Compared with these 4 Â 50 with a limited working distance18,22–26. To be compatible microscopes, traditional optical microscopes have certain with these objectives, a custom AFM system (Supplementary unique advantages, such as the ability for non-invasive, real- Fig. 1) illuminates and collects the laser beam of the optical lever time, large-area and fluorescent
Recommended publications
  • Introduction to CODE V: Optics
    Introduction to CODE V Training: Day 1 “Optics 101” Digital Camera Design Study User Interface and Customization 3280 East Foothill Boulevard Pasadena, California 91107 USA (626) 795-9101 Fax (626) 795-0184 e-mail: [email protected] World Wide Web: http://www.opticalres.com Copyright © 2009 Optical Research Associates Section 1 Optics 101 (on a Budget) Introduction to CODE V Optics 101 • 1-1 Copyright © 2009 Optical Research Associates Goals and “Not Goals” •Goals: – Brief overview of basic imaging concepts – Introduce some lingo of lens designers – Provide resources for quick reference or further study •Not Goals: – Derivation of equations – Explain all there is to know about optical design – Explain how CODE V works Introduction to CODE V Training, “Optics 101,” Slide 1-3 Sign Conventions • Distances: positive to right t >0 t < 0 • Curvatures: positive if center of curvature lies to right of vertex VC C V c = 1/r > 0 c = 1/r < 0 • Angles: positive measured counterclockwise θ > 0 θ < 0 • Heights: positive above the axis Introduction to CODE V Training, “Optics 101,” Slide 1-4 Introduction to CODE V Optics 101 • 1-2 Copyright © 2009 Optical Research Associates Light from Physics 102 • Light travels in straight lines (homogeneous media) • Snell’s Law: n sin θ = n’ sin θ’ • Paraxial approximation: –Small angles:sin θ~ tan θ ~ θ; and cos θ ~ 1 – Optical surfaces represented by tangent plane at vertex • Ignore sag in computing ray height • Thickness is always center thickness – Power of a spherical refracting surface: 1/f = φ = (n’-n)*c
    [Show full text]
  • Far-Field Optical Imaging of Viruses Using Surface Plasmon Polariton
    Magnifying superlens in the visible frequency range. I.I. Smolyaninov, Y.J.Hung , and C.C. Davis Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA Optical microscopy is an invaluable tool for studies of materials and biological entities. With the current progress in nanotechnology and microbiology imaging tools with ever increasing spatial resolution are required. However, the spatial resolution of the conventional microscopy is limited by the diffraction of light waves to a value of the order of 200 nm. Thus, viruses, proteins, DNA molecules and many other samples are impossible to visualize using a regular microscope. The new ways to overcome this limitation may be based on the concept of superlens introduced by J. Pendry [1]. This concept relies on the use of materials which have negative refractive index in the visible frequency range. Even though superlens imaging has been demonstrated in recent experiments [2], this technique is still limited by the fact that magnification of the planar superlens is equal to 1. In this communication we introduce a new design of the magnifying superlens and demonstrate it in the experiment. Our design has some common features with the recently proposed “optical hyperlens” [3], “metamaterial crystal lens” [4], and the plasmon-assisted microscopy technique [5]. The internal structure of the magnifying superlens is shown in Fig.1(a). It consists of the concentric rings of polymethyl methacrylate (PMMA) deposited on the gold film surface. Due to periodicity of the structure in the radial direction surface plasmon polaritons (SPP) [5] are excited on the lens surface when the lens is illuminated from the bottom with an external laser.
    [Show full text]
  • Depth of Focus (DOF)
    Erect Image Depth of Focus (DOF) unit: mm Also known as ‘depth of field’, this is the distance (measured in the An image in which the orientations of left, right, top, bottom and direction of the optical axis) between the two planes which define the moving directions are the same as those of a workpiece on the limits of acceptable image sharpness when the microscope is focused workstage. PG on an object. As the numerical aperture (NA) increases, the depth of 46 focus becomes shallower, as shown by the expression below: λ DOF = λ = 0.55µm is often used as the reference wavelength 2·(NA)2 Field number (FN), real field of view, and monitor display magnification unit: mm Example: For an M Plan Apo 100X lens (NA = 0.7) The depth of focus of this objective is The observation range of the sample surface is determined by the diameter of the eyepiece’s field stop. The value of this diameter in 0.55µm = 0.6µm 2 x 0.72 millimeters is called the field number (FN). In contrast, the real field of view is the range on the workpiece surface when actually magnified and observed with the objective lens. Bright-field Illumination and Dark-field Illumination The real field of view can be calculated with the following formula: In brightfield illumination a full cone of light is focused by the objective on the specimen surface. This is the normal mode of viewing with an (1) The range of the workpiece that can be observed with the optical microscope. With darkfield illumination, the inner area of the microscope (diameter) light cone is blocked so that the surface is only illuminated by light FN of eyepiece Real field of view = from an oblique angle.
    [Show full text]
  • Optical Negative-Index Metamaterials
    REVIEW ARTICLE Optical negative-index metamaterials Artifi cially engineered metamaterials are now demonstrating unprecedented electromagnetic properties that cannot be obtained with naturally occurring materials. In particular, they provide a route to creating materials that possess a negative refractive index and offer exciting new prospects for manipulating light. This review describes the recent progress made in creating nanostructured metamaterials with a negative index at optical wavelengths, and discusses some of the devices that could result from these new materials. VLADIMIR M. SHALAEV designed and placed at desired locations to achieve new functionality. One of the most exciting opportunities for metamaterials is the School of Electrical and Computer Engineering and Birck Nanotechnology development of negative-index materials (NIMs). Th ese NIMs bring Center, Purdue University, West Lafayette, Indiana 47907, USA. the concept of refractive index into a new domain of exploration and e-mail: [email protected] thus promise to create entirely new prospects for manipulating light, with revolutionary impacts on present-day optical technologies. Light is the ultimate means of sending information to and from Th e arrival of NIMs provides a rather unique opportunity for the interior structure of materials — it packages data in a signal researchers to reconsider and possibly even revise the interpretation of zero mass and unmatched speed. However, light is, in a sense, of very basic laws. Th e notion of a negative refractive index is one ‘one-handed’ when interacting with atoms of conventional such case. Th is is because the index of refraction enters into the basic materials. Th is is because from the two fi eld components of light formulae for optics.
    [Show full text]
  • Recent Progress in Scanning Electron Microscopy for the Characterization of fine Structural Details of Nano Materials
    Progress in Solid State Chemistry 42 (2014) 1e21 Contents lists available at ScienceDirect Progress in Solid State Chemistry journal homepage: www.elsevier.com/locate/pssc Recent progress in scanning electron microscopy for the characterization of fine structural details of nano materials Mitsuo Suga a,*, Shunsuke Asahina a, Yusuke Sakuda a, Hiroyoshi Kazumori a, Hidetoshi Nishiyama a, Takeshi Nokuo a, Viveka Alfredsson b, Tomas Kjellman b, Sam M. Stevens c, Hae Sung Cho d, Minhyung Cho d, Lu Han e, Shunai Che e, Michael W. Anderson f, Ferdi Schüth g, Hexiang Deng h, Omar M. Yaghi i, Zheng Liu j, Hu Young Jeong k, Andreas Stein l, Kazuyuki Sakamoto m, Ryong Ryoo n,o, Osamu Terasaki d,p,** a JEOL Ltd., SM Business Unit, Tokyo, Japan b Physical Chemistry, Lund University, Sweden c Private Contributor, UK d Graduate School of EEWS, KAIST, Republic of Korea e School of Chemistry & Chemical Engineering, Shanghai Jiao Tong University, China f Centre for Nanoporous Materials, School of Chemistry, University of Manchester, UK g Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Mülheim, Germany h College of Chemistry and Molecular Sciences, Wuhan University, China i Department of Chemistry, University of California, Berkeley, USA j Nanotube Research Center, AIST, Tsukuba, Japan k UNIST Central Research Facilities/School of Mechanical & Advanced Materials Engineering, UNIST, Republic of Korea l Department of Chemistry, University of Minnesota, Minneapolis, USA m Department of Nanomaterials Science, Chiba University,
    [Show full text]
  • Transmission Electron Microscope
    GG 711: Advanced Techniques in Geophysics and Materials Science Lecture 14 Transmission Electron Microscope Pavel Zinin HIGP, University of Hawaii, Honolulu, USA www.soest.hawaii.edu\~zinin Resolution of SEM Transmission electron microscopy (TEM) is a microscopy technique whereby a beam of electrons is transmitted through an ultra thin specimen, interacting with the specimen as it passes through. An image is formed from the interaction of the electrons transmitted through the specimen; the image is magnified and focused onto an imaging device, such as a fluorescent screen, on a layer of photographic film, or to be detected by a sensor such as a CCD camera. The first TEM was built by Max Kroll and Ernst Ruska in 1931, with this group developing the first TEM with resolution power greater than that of light in 1933 and the first commercial TEM in 1939. The first practical TEM, Originally installed at I. G Farben-Werke and now on display at the Deutsches Museum in Munich, Germany Comparison of LM and TEM Both glass and EM lenses subject to same distortions and aberrations Glass lenses have fixed focal length, it requires to change objective lens to change magnification. We move objective lens closer to or farther away from specimen to focus. EM lenses to specimen distance fixed, focal length varied by varying current through lens LM: (a) Direct observation TEM: (a) Video imaging (CRT); (b) image of the image; (b) image is is formed by transmitted electrons impinging formed by transmitted light on phosphor coated screen Transmission Electron Microscope: Principle Ray diagram of a conventional transmission electron microscope (top Positioning of signal path) and of a scanning transmission electron microscope (bottom path).
    [Show full text]
  • Light and Electron Microscopy of the Exocrine Pancreas in the Chronically Reserpinized Rat1
    003 1 -3998/89/2505-0482$02.00/0 PEDIATRIC RESEARCH Vol. 25, No. 5, 1989 Copyright O 1989 International Pediatric Research Foundation, Inc. Printed rn U.S.A. Light and Electron Microscopy of the Exocrine Pancreas in the Chronically Reserpinized Rat1 GILLES GRONDIN, FRANCOIS A. LEBLOND, JEAN MORISSET, AND DENIS LEBEL Centre de Recherche sur Ies Micanismes de Sicrition, Faculty of Science, University of Sherbrooke, Sherbrooke, QC, Canada, JIK 2RI ABSTRACT. The effects of reserpine injections were stud- been the most studied (1-8). The main effects induced by the ied on the morphology of the pancreas in an experimental reserpine treatment on the ultrastructure of the pancreas are the model for cystic fibrosis, the chronically reserpinized rat. following: an accumulation of granules in the acinar cell, an A detailed examination of the tissue was carried out at the alteration of the granule ultrastructure, a slight diminution of light and electron microscopic levels. The nonspecific ef- the RER and Golgi apparatus, the presence of autophagic bodies, fects of secondary malnutrition induced by the drug were and an augmentation of lysosomal bodies (3,5,9, 10). In another assessed with a group of animals pair fed with the treated paper (1 I), we report the effects of such a treatment on pancreatic animals. In a companion paper, we show that pancreatic growth and on the amount of a glycoprotein characteristic of the wt, lipase, and GP-2 contents also are affected by reserpine zymogen granule membrane, the GP-2. In this study, we specif- treatment. In this study, we report that no morphologic ically report the effects of chronic reserpine treatment at two differences were observed between the exocrine pancreatic doses, on the structure and ultrastructure of the rat pancreas.
    [Show full text]
  • The Future of Electron Microscopy
    BNL-108108-2015-JA Feature Article for Physics Today The Future of Electron Microscopy Yimei Zhu and Hermann Dürr Seeing is believing. So goes the old adage, and seen evidence is undoubtedly satisfying in that it can be interpreted readily, though not necessarily always correctly. For centuries, humans have tried continuously to improve their abilities of seeing things, from developing telescopes to observe our solar systems, to microscopes to reveal bacteria and viruses. The 2014 Nobel Prize in Chemistry was awarded to Eric Betzig, Stefan Hell and William Moerner for their pioneering work on super-resolution fluorescence microscopy, overcoming Abbe’s diffraction limit in the resolution of conventional light microscopes. It was a breakthrough that enabled ground-breaking discoveries in biological research and also is testimony of the importance of modern microscopy. In February 2014 the US Department of Energy’s Office of Basic Energy Science held a two day workshop that brought together experts from various fields to identify new science that will be enabled by advances in electron microscopy. [1] The workshop focused on studies of ultrafast processes, atomic resolution, sample environments and measuring functionality at nanoscales. This article captures some of the exciting discussions the workshop generated. Seeing with electrons Electrons, photons and neutrons are three fundamental probes of condensed matter. They are routinely used to study complementary physical properties of materials. Neutrons interact with nuclei and atomic spins, x-ray photons with electron clouds and electron probes with electrostatic potentials, i.e., positively charged nuclei screened by negatively charged electrons. Compared with x-rays and neutrons, one advantage of electrons is their much stronger interaction with matter (105 times stronger than elastically scattered x-rays due to the coulomb interaction); hence, for a very small probing volume, the interaction generates strong signals, making it far easier to image and detect individual atoms, molecules, and nanoscale objects.
    [Show full text]
  • Advanced Metamaterials for High Resolution Focusing and Invisibility Cloaks
    Doctoral thesis submitted for the degree of Doctor of Philosophy in Telecommunication Engineering Postgraduate programme: Communication Technology Advanced metamaterials for high resolution focusing and invisibility cloaks Presented by: Bakhtiyar Orazbayev Director: Dr. Miguel Beruete Díaz Pamplona, November 2016 Abstract Metamaterials, the descendants of the artificial dielectrics, have unusual electromagnetic parameters and provide more abilities than naturally available dielectrics for the control of light propagation. Being able to control both permittivity and permeability, metamaterials have opened a way to obtain a double negative medium. The first experimental realization of such medium gave an enormous impulse for research in the field of electromagnetism. As result, many fascinating electromagnetic devices have been developed since then, including metamaterial lenses, beam steerers and even invisibility cloaks. The possible applications of metamaterials are not limited to these devices and can be applied in many fields, such as telecommunications, security systems, biological and chemical sensing, spectroscopy, integrated nano-optics, nanotechnology, medical imaging systems, etc. The aim of this doctoral thesis, performed at the Public University of Navarre in collaboration with the University of Texas at Austin, the Valencia Nanophotonics Technology Center in the UPV and King’s College London, is to contribute to the development of metamaterial based devices, including their fabrication and, when possible, experimental verification. The thesis is not focused on a single application or device, but instead tries to provide an extensive exploration of the different metamaterial devices. These results include the following: Three different lens designs based on a fishnet metamaterial are presented: a broadband zoned fishnet metamaterial lens, a Soret fishnet metamaterial lens and a Wood zone plate fishnet metamaterial.
    [Show full text]
  • Super-Resolution Imaging by Dielectric Superlenses: Tio2 Metamaterial Superlens Versus Batio3 Superlens
    hv photonics Article Super-Resolution Imaging by Dielectric Superlenses: TiO2 Metamaterial Superlens versus BaTiO3 Superlens Rakesh Dhama, Bing Yan, Cristiano Palego and Zengbo Wang * School of Computer Science and Electronic Engineering, Bangor University, Bangor LL57 1UT, UK; [email protected] (R.D.); [email protected] (B.Y.); [email protected] (C.P.) * Correspondence: [email protected] Abstract: All-dielectric superlens made from micro and nano particles has emerged as a simple yet effective solution to label-free, super-resolution imaging. High-index BaTiO3 Glass (BTG) mi- crospheres are among the most widely used dielectric superlenses today but could potentially be replaced by a new class of TiO2 metamaterial (meta-TiO2) superlens made of TiO2 nanoparticles. In this work, we designed and fabricated TiO2 metamaterial superlens in full-sphere shape for the first time, which resembles BTG microsphere in terms of the physical shape, size, and effective refractive index. Super-resolution imaging performances were compared using the same sample, lighting, and imaging settings. The results show that TiO2 meta-superlens performs consistently better over BTG superlens in terms of imaging contrast, clarity, field of view, and resolution, which was further supported by theoretical simulation. This opens new possibilities in developing more powerful, robust, and reliable super-resolution lens and imaging systems. Keywords: super-resolution imaging; dielectric superlens; label-free imaging; titanium dioxide Citation: Dhama, R.; Yan, B.; Palego, 1. Introduction C.; Wang, Z. Super-Resolution The optical microscope is the most common imaging tool known for its simple de- Imaging by Dielectric Superlenses: sign, low cost, and great flexibility.
    [Show full text]
  • Development of Optical Hyperlens for Imaging Below the Diffraction Limit
    Development of optical hyperlens for imaging below the diffraction limit Hyesog Lee, Zhaowei Liu, Yi Xiong, Cheng Sun and Xiang Zhang* 5130 Etcheverry Hall, NSF Nanoscale Science and Engineering Center (NSEC), University of California, Berkeley, CA 94720 *Corresponding author: [email protected] http://xlab.me.berkeley.edu Abstract: We report here the design, fabrication and characterization of optical hyperlens that can image sub-diffraction-limited objects in the far field. The hyperlens is based on an artificial anisotropic metamaterial with carefully designed hyperbolic dispersion. We successfully designed and fabricated such a metamaterial hyperlens composed of curved silver/alumina multilayers. Experimental results demonstrate far-field imaging with resolution down to 125nm at 365nm working wavelength which is below the diffraction limit. ©2007 Optical Society of America OCIS codes: (110 0180) Microscopy; (220.4241) Optical design and fabrication: Nanostructure fabrication References and links 1. E. Abbe, Arch. Mikroskop. Anat. 9, 413 (1873) 2. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner and R. L. Kostelak, “Breaking the diffraction barrier – optical microscopy on a nanometric scale,” Science 251, 1468-1470 (1991) 3. S. W. Hell, “Toward Fluorescence nanoscopy,” Nat. Biotechnol. 21, 1347-1355 (2003) 4. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” P. Natl. Acad. Sci. 102, 13081-13086 (2005) 5. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000) 6. N. Fang, H. Lee, C. Sun and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens” Science 308, 534-537 (2005) 7.
    [Show full text]
  • To Determine the Numerical Aperture of a Given Optical Fiber
    TO DETERMINE THE NUMERICAL APERTURE OF A GIVEN OPTICAL FIBER Submitted to: Submitted By: Mr. Rohit Verma 1. Rajesh Kumar 2. Sunil Kumar 3. Varun Sharma 4. Jaswinder Singh INDRODUCTION TO AN OPTICAL FIBER Optical fiber: an optical fiber is a dielectric wave guide made of glass and plastic which is used to guide and confine an electromagnetic wave and work on the principle to total internal reflection (TIR). The diameter of the optical fiber may vary from 0.05 mm to 0.25mm. Construction Of An Optical Fiber: (Where N1, N2, N3 are the refractive indexes of core, cladding and sheath respectively) Core: it is used to guide the electromagnetic waves. Located at the center of the cable mainly made of glass or sometimes from plastics it also as the highest refractive index i.e. N1. Cladding: it is used to reduce the scattering losses and provide strength t o the core. It has less refractive index than that of the core, which is the main cause of the TIR, which is required for the propagation of height through the fiber. Sheath: it is the outer most coating of the optical fiber. It protects the core and clad ding from abrasion, contamination and moisture. Requirement for making an optical fiber: 1. It must be possible to make long thin and flexible fiber using that material 2. It must be transparent at a particular wavelength in order for the fiber to guide light efficiently. 3. Physically compatible material of slightly different index of refraction must be available for core and cladding.
    [Show full text]