Optical Negative-Index Metamaterials
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bringing Optical Metamaterials to Reality
UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Bringing Optical Metamaterials to Reality Permalink https://escholarship.org/uc/item/5d37803w Author Valentine, Jason Gage Publication Date 2010 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Bringing Optical Metamaterials to Reality By Jason Gage Valentine A dissertation in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering – Mechanical Engineering in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Xiang Zhang, Chair Professor Costas Grigoropoulos Professor Liwei Lin Professor Ming Wu Fall 2010 Bringing Optical Metamaterials to Reality © 2010 By Jason Gage Valentine Abstract Bringing Optical Metamaterials to Reality by Jason Gage Valentine Doctor of Philosophy in Mechanical Engineering University of California, Berkeley Professor Xiang Zhang, Chair Metamaterials, which are artificially engineered composites, have been shown to exhibit electromagnetic properties not attainable with naturally occurring materials. The use of such materials has been proposed for numerous applications including sub-diffraction limit imaging and electromagnetic cloaking. While these materials were first developed to work at microwave frequencies, scaling them to optical wavelengths has involved both fundamental and engineering challenges. Among these challenges, optical metamaterials tend to absorb a large amount of the incident light and furthermore, achieving devices with such materials has been difficult due to fabrication constraints associated with their nanoscale architectures. The objective of this dissertation is to describe the progress that I have made in overcoming these challenges in achieving low loss optical metamaterials and associated devices. The first part of the dissertation details the development of the first bulk optical metamaterial with a negative index of refraction. -
Far-Field Optical Imaging of Viruses Using Surface Plasmon Polariton
Magnifying superlens in the visible frequency range. I.I. Smolyaninov, Y.J.Hung , and C.C. Davis Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA Optical microscopy is an invaluable tool for studies of materials and biological entities. With the current progress in nanotechnology and microbiology imaging tools with ever increasing spatial resolution are required. However, the spatial resolution of the conventional microscopy is limited by the diffraction of light waves to a value of the order of 200 nm. Thus, viruses, proteins, DNA molecules and many other samples are impossible to visualize using a regular microscope. The new ways to overcome this limitation may be based on the concept of superlens introduced by J. Pendry [1]. This concept relies on the use of materials which have negative refractive index in the visible frequency range. Even though superlens imaging has been demonstrated in recent experiments [2], this technique is still limited by the fact that magnification of the planar superlens is equal to 1. In this communication we introduce a new design of the magnifying superlens and demonstrate it in the experiment. Our design has some common features with the recently proposed “optical hyperlens” [3], “metamaterial crystal lens” [4], and the plasmon-assisted microscopy technique [5]. The internal structure of the magnifying superlens is shown in Fig.1(a). It consists of the concentric rings of polymethyl methacrylate (PMMA) deposited on the gold film surface. Due to periodicity of the structure in the radial direction surface plasmon polaritons (SPP) [5] are excited on the lens surface when the lens is illuminated from the bottom with an external laser. -
1 Analysis of Nonlinear Electromagnetic Metamaterials
Analysis of Nonlinear Electromagnetic Metamaterials Ekaterina Poutrina, Da Huang, David R. Smith Center for Metamaterials and Integrated Plasmonics and Department of Electrical and Computer Engineering, Duke University, Box 90291, Durham, NC 27708 Abstract We analyze the properties of a nonlinear metamaterial formed by integrating nonlinear components or materials into the capacitive regions of metamaterial elements. A straightforward homogenization procedure leads to general expressions for the nonlinear susceptibilities of the composite metamaterial medium. The expressions are convenient, as they enable inhomogeneous system of scattering elements to be described as a continuous medium using the standard notation of nonlinear optics. We illustrate the validity and accuracy of our theoretical framework by performing measurements on a fabricated metamaterial sample composed of an array of split ring resonators (SRRs) with packaged varactors embedded in the capacitive gaps in a manner similar to that of Wang et al. [Opt. Express 16 , 16058 (2008)]. Because the SRRs exhibit a predominant magnetic response to electromagnetic fields, the varactor-loaded SRR composite can be described as a magnetic material with nonlinear terms in its effective magnetic susceptibility. Treating the composite as a nonlinear effective medium, we can quantitatively assess the performance of the medium to enhance and facilitate nonlinear processes, including second harmonic generation, three- and four-wave mixing, self-focusing and other well-known nonlinear phenomena. We illustrate the accuracy of our approach by predicting the intensity- dependent resonance frequency shift in the effective permeability of the varactor-loaded SRR medium and comparing with experimental measurements. 1. Introduction Metamaterials consist of arrays of magnetically or electrically polarizable elements. -
Phase Reversal Diffraction in Incoherent Light
Phase Reversal Diffraction in incoherent light Su-Heng Zhang1, Shu Gan1, De-Zhong Cao2, Jun Xiong1, Xiangdong Zhang1 and Kaige Wang1∗ 1.Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China 2.Department of Physics, Yantai University, Yantai 264005, China Abstract Phase reversal occurs in the propagation of an electromagnetic wave in a negatively refracting medium or a phase-conjugate interface. Here we report the experimental observation of phase reversal diffraction without the above devices. Our experimental results and theoretical analysis demonstrate that phase reversal diffraction can be formed through the first-order field correlation of chaotic light. The experimental realization is similar to phase reversal behavior in negatively refracting media. PACS numbers: 42.87.Bg, 42.30.Rx, 42.30.Wb arXiv:0908.1522v1 [quant-ph] 11 Aug 2009 ∗ Corresponding author: [email protected] 1 Diffraction changes the wavefront of a travelling wave. A lens is a key device that can modify the wavefront and perform imaging. The complete recovery of the wavefront is possible if its phase evolves backward in time in which case an object can be imaged to give an exact copy. A phase-conjugate mirror formed by a four-wave mixing process is able to generate the conjugate wave with respect to an incident wave and thus achieve lensless imaging[1]. A slab of negative refractive-index material can play a role similar to a lens in performing imaging[2, 3, 4, 5, 6, 7]. Pendry in a recent paper[8] explored the similarity between a phase-conjugate interface and negative refraction, and pointed out their intimate link to time reversal. -
Advanced Metamaterials for High Resolution Focusing and Invisibility Cloaks
Doctoral thesis submitted for the degree of Doctor of Philosophy in Telecommunication Engineering Postgraduate programme: Communication Technology Advanced metamaterials for high resolution focusing and invisibility cloaks Presented by: Bakhtiyar Orazbayev Director: Dr. Miguel Beruete Díaz Pamplona, November 2016 Abstract Metamaterials, the descendants of the artificial dielectrics, have unusual electromagnetic parameters and provide more abilities than naturally available dielectrics for the control of light propagation. Being able to control both permittivity and permeability, metamaterials have opened a way to obtain a double negative medium. The first experimental realization of such medium gave an enormous impulse for research in the field of electromagnetism. As result, many fascinating electromagnetic devices have been developed since then, including metamaterial lenses, beam steerers and even invisibility cloaks. The possible applications of metamaterials are not limited to these devices and can be applied in many fields, such as telecommunications, security systems, biological and chemical sensing, spectroscopy, integrated nano-optics, nanotechnology, medical imaging systems, etc. The aim of this doctoral thesis, performed at the Public University of Navarre in collaboration with the University of Texas at Austin, the Valencia Nanophotonics Technology Center in the UPV and King’s College London, is to contribute to the development of metamaterial based devices, including their fabrication and, when possible, experimental verification. The thesis is not focused on a single application or device, but instead tries to provide an extensive exploration of the different metamaterial devices. These results include the following: Three different lens designs based on a fishnet metamaterial are presented: a broadband zoned fishnet metamaterial lens, a Soret fishnet metamaterial lens and a Wood zone plate fishnet metamaterial. -
Super-Resolution Imaging by Dielectric Superlenses: Tio2 Metamaterial Superlens Versus Batio3 Superlens
hv photonics Article Super-Resolution Imaging by Dielectric Superlenses: TiO2 Metamaterial Superlens versus BaTiO3 Superlens Rakesh Dhama, Bing Yan, Cristiano Palego and Zengbo Wang * School of Computer Science and Electronic Engineering, Bangor University, Bangor LL57 1UT, UK; [email protected] (R.D.); [email protected] (B.Y.); [email protected] (C.P.) * Correspondence: [email protected] Abstract: All-dielectric superlens made from micro and nano particles has emerged as a simple yet effective solution to label-free, super-resolution imaging. High-index BaTiO3 Glass (BTG) mi- crospheres are among the most widely used dielectric superlenses today but could potentially be replaced by a new class of TiO2 metamaterial (meta-TiO2) superlens made of TiO2 nanoparticles. In this work, we designed and fabricated TiO2 metamaterial superlens in full-sphere shape for the first time, which resembles BTG microsphere in terms of the physical shape, size, and effective refractive index. Super-resolution imaging performances were compared using the same sample, lighting, and imaging settings. The results show that TiO2 meta-superlens performs consistently better over BTG superlens in terms of imaging contrast, clarity, field of view, and resolution, which was further supported by theoretical simulation. This opens new possibilities in developing more powerful, robust, and reliable super-resolution lens and imaging systems. Keywords: super-resolution imaging; dielectric superlens; label-free imaging; titanium dioxide Citation: Dhama, R.; Yan, B.; Palego, 1. Introduction C.; Wang, Z. Super-Resolution The optical microscope is the most common imaging tool known for its simple de- Imaging by Dielectric Superlenses: sign, low cost, and great flexibility. -
All-Angle Negative Refraction Without Negative Effective Index
RAPID COMMUNICATIONS PHYSICAL REVIEW B, VOLUME 65, 201104͑R͒ All-angle negative refraction without negative effective index Chiyan Luo, Steven G. Johnson, and J. D. Joannopoulos* Department of Physics and Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 J. B. Pendry Condensed Matter Theory Group, The Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom ͑Received 22 January 2002; published 13 May 2002͒ We describe an all-angle negative refraction effect that does not employ a negative effective index of refraction and involves photonic crystals. A few simple criteria sufficient to achieve this behavior are presented. To illustrate this phenomenon, a microsuperlens is designed and numerically demonstrated. DOI: 10.1103/PhysRevB.65.201104 PACS number͑s͒: 78.20.Ci, 42.70.Qs, 42.30.Wb Negative refraction of electromagnetic waves in ‘‘left- We observe from Fig. 1 that due to the negative-definite ץ ץ 2ץ handed materials’’ has become of interest recently because it photonic effective mass / ki k j at the M point, the fre- is the foundation for a variety of novel phenomena.1–6 In quency contours are convex in the vicinity of M and have particular, it has been suggested that negative refraction leads inward-pointing group velocities. For frequencies that corre- to a superlensing effect that can potentially overcome the spond to all-convex contours, negative refraction occurs as diffraction limit inherent in conventional lenses.2 These phe- illustrated in Fig. 2. The distinct refracted propagating modes nomena have been described in the context of an effective- are determined by the conservation of the frequency and the medium theory with negative index of refraction, and at the wave-vector component parallel to the air/photonic-crystal moment only appear possible in the microwave regime. -
Physics and Applications of Negatively Refracting Electromagnetic Materials Steven M
Physics and Applications of Negatively Refracting Electromagnetic Materials Steven M. Anlage, Michael Ricci, Nathan Orloff Work Funded by NSF/ECS-0322844 1 Outline What are Negative Index of Refraction Metamaterials? What novel properties do they have? How are they made? What new RF/microwave applications are emerging? Superconducting Metamaterials Caveats / Prospects for the future 2 Why Negative Refraction? n > 0 n >< 0 1 2 r r Hr refractedH H ray normalθ r Snell’s Law 2 k normalθ θ1 r 2 refracted r n1 sin(θ1) = n2 sin(θ2) k ray k incident r r r ray E EE PositiveNegative Index Index of of Refraction Refraction (PIR) (NIR) = =Right Left Handed Medium (RHM)(LHM) n1>0 n2<0>0 n n11>0>0 Two images! NIRPIR // RHMLHM source No real image Flat“Lens” Lens 3 How can we make refractive index n < 0? ”Use “Metamaterials ng materials withArtificially prepared dielectric and conducti negative values of both ε and μ r r r r DE= ε BH= μ ÎonNegative index of refracti! Many optical properties are reversed! Propagating Waves μ RHM Vac RHM Vac LHM n=εμ >0 ε n=εμ <0 Ordinary Negative Propagating Waves!Non-propagating Waves Refraction Refraction LHM 4 Negative Refraction: Consequences Left-Handed or Negative Index of Refraction Metamaterials ε < 0 AND μ < 0 Veselago, 1967 Propagating waves have index of refraction n < 0 ⇒ Phase velocity is opposite to Poynting vector direction Negative refraction in Snell’s Law: n1 sinθ1 = n2 sinθ2 Flat lens with no optical axis Converging Lens → Diverging Lens “Perfect” Lens (Pendry, 2000) and vice-versa Reverse Doppler Effect Reversed Čerenkov Effect Radiation Tension RHM LHM RHM Flat Lens Imaging Point source “perfect image” V. -
EEE17 Negative Refraction in Metamaterials
EEE 17 Negative Refraction in Metamaterials EEE17 Negative Refraction in Metamaterials Cheng Zixiang Raffles Institution Lian Kay Sean Temasek JC NRP Supervisor: Prof. Luo Yu NTU EEE 17 Negative Refraction in Metamaterials Research Plan Artificially engineered metamaterials have unique properties that cannot be obtained with natural materials. Negative Index Metamaterials or NIMs, as they are commonly known, have a negative refractive index, thus light rays are refracted on the same side of the normal on entering the material. Our project focuses on two ways of achieving NIMs. One would be constructing dielectric metamaterials created with a periodic array of subwavelength unit cells, the other would be creating a hyperbolic metamaterial by alternating layers of mediums of different refractive index. The aim of our project is to investigate the materials that can be used to construct the hyperbolic and dielectric method of realising negative refraction and the efficacy of the material used. Both approaches achieved negative refraction in the mid infra-red frequency. The simulation would be done with COMSOL software. EEE 17 Negative Refraction in Metamaterials Abstract A metamaterial is a material engineered to have a property not found in nature. Metamaterials usually gain their properties from structure rather than composition, offering a great freedom in material design. Recently, well designed metamaterials have received much interest because their atypical interaction with electromagnetic waves that can be used for subwavelength imaging and designing cloaking devices. In my project, that property is to be able to realise negative refraction in certain frequencies of the electromagnetic spectrum. The metamaterial concept was proposed in 1999 by John Pendry, who detailed in a paper in 2000 applying the concept of negative refraction to create a lens that can focus light onto a sub-wavelength area. -
Negative Refraction at Deep-Ultraviolet Frequency in Monocrystalline Graphite
Negative refraction at deep-ultraviolet frequency in monocrystalline graphite Jingbo Sun, Ji Zhou*, Lei Kang, Rui Wang, Xianguo Meng, Bo Li, Feiyu Kang and Longtu Li State Kay Lab of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China Abstract: Negative refraction is such a prominent electromagnetic phenomenon that most researchers believe it can only occur in artificially engineered metamaterials. In this article, we report negative refraction for all incident angles for the first time in a naturally existing material. Using ellipsometry measurement of the equifrequency contour in the deep-ultraviolet frequency region (typically 254 nm), obvious negative refraction was demonstrated in monocrystalline graphite for incident angles ranging from 20o to 70o. This negative refraction is attributed to extremely strong anisotropy in the crystal structure of graphite, which gives the crystal indefinite permeability. This result not only explores a new route to identifying natural negative-index materials, but it also holds promise for the development of an ultraviolet hyperlens, which may lead to a breakthrough in nanolithography, the most critical technology necessary for the next generation of electronics. Since the concept of negative-index materials (NIMs) was first proposed by Veselago1, it has been realised by various mechanisms such as left-handed materials2-4, photonic crystals5, 6, and artificially indefinite media7, 8. A well-established route for constructing NIM structures is based on Veselago’s theory of left-handed materials (LHM), simultaneous negative permittivity (ε), and magnetic permeability (μ) with different types of metamaterials9−12. Recent experimental13 and theoretical14 results have also shown negative refraction phenomena in photonic crystals in regimes of negative group velocity and negative effective index above the first band near the Brillouin zone centre (Γ), without the requirement of an overlap in negative permittivity and permeability. -
Dielectric Optical Cloak
Dielectric Optical Cloak Jason Valentine1*, Jensen Li1*, Thomas Zentgraf1*, Guy Bartal1 and Xiang Zhang1,2 1NSF Nano-scale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California, Berkeley, California 94720, USA 2Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 *These authors contributed equally to this work Invisibility or cloaking has captured human’s imagination for many years. With the recent advancement of metamaterials, several theoretical proposals show cloaking of objects is possible, however, so far there is a lack of an experimental demonstration at optical frequencies. Here, we report the first experimental realization of a dielectric optical cloak. The cloak is designed using quasi-conformal mapping to conceal an object that is placed under a curved reflecting surface which imitates the reflection of a flat surface. Our cloak consists only of isotropic dielectric materials which enables broadband and low-loss invisibility at a wavelength range of 1400-1800 nm. 1 For years, cloaking devices with the ability to render objects invisible were the subject of science fiction novels while being unattainable in reality. Nevertheless, recent theories including transformation optics (TO) and conformal mapping [1-4] proposed that cloaking devices are in principle possible, given the availability of the appropriate medium. The advent of metamaterials [5-7] has provided such a medium for which the electromagnetic material properties can be tailored at will, enabling precise control over the spatial variation in the material response (electric permittivity and magnetic permeability). The first experimental demonstration of cloaking was recently achieved at microwave frequencies [8] utilizing metallic rings possessing spatially varied magnetic resonances with extreme permeabilities. -
Functional Metasurfaces Electromagnetic Waves
Department of Radio Science and Engineering Aalto- The thesis is devoted to metasurfaces, which Ra'di Younes are composite layers designed to manipulate DD Functional Metasurfaces electromagnetic waves. The appeal of these 211 / functional metasurfaces lies in their ability 2015 to control the flow of electromagnetic waves in electrically thin planar structures. This Functional Metasurfaces thesis studies different functional Younes Ra'di metasurfaces such as off-band-transparent absorbing metasurfaces, off-band- transparent reflecting metasurfaces, Huygens' metasurfaces, and parity-time- symmetric teleportation devices. It also indicates likely research avenues for the future. Inductive layer (jX) Loss (Rl) dl da Gain (Ra) 4 1 0.5 2 Standing-wave 0 l region 0 0 (V/m) x/ total total E -2 -0.5 -4 -1 -4 -2 0 2 4 z/l0 l0/4 3l0 l0/4 h jX jX -h h 0 0 0 9HSTFMG*agfggd+ ISBN 978-952-60-6566-3 (printed) BUSINESS + ISBN 978-952-60-6567-0 (pdf) ECONOMY 0 0 0 ISSN-L 1799-4934 0 in in in in ISSN 1799-4934 (printed) ART + in Z Z Z Z ISSN 1799-4942 (pdf) DESIGN + Z ARCHITECTURE UniversityAalto Aalto University School of Electrical Engineering SCIENCE + Department of Radio Science and Engineering TECHNOLOGY www.aalto.fi CROSSOVER DOCTORAL DOCTORAL DISSERTATIONS DISSERTATIONS 2015 Aalto University publication series DOCTORAL DISSERTATIONS 211/2015 Functional Metasurfaces Younes Ra'di A doctoral dissertation completed for the degree of Doctor of Science (Technology) to be defended, with the permission of the Aalto University School of Electrical Engineering, at a public examination held at the lecture hall S1 of the school on 18 December 2015 at 14:00.