<<

TO DETERMINE THE NUMERICAL OF A GIVEN

Submitted to: Submitted By: Mr. Rohit Verma 1. Rajesh Kumar 2. Sunil Kumar 3. Varun Sharma 4. Jaswinder Singh

INDRODUCTION TO AN OPTICAL FIBER Opticalfiber:anopticalfiberisadielectricwaveguidemadeofglassandplasticwhichis usedtoguideandconfineanelectromagneticwaveandworkontheprincipletototal internalreflection(TIR).Thediameteroftheopticalfibermayvaryfrom0.05mmto 0.25mm. Construction Of An Optical Fiber:

(WhereN1,N2,N3aretherefractiveindexesofcore,claddingandsheathrespectively) Core: itisusedtoguidetheelectromagneticwaves.Locatedatthecenterofthecable mainlymadeofglassorsometimesfromplasticsitalsoasthehighestrefractiveindexi.e. N1. Cladding: itisusedtoreducethescatteringlossesandprovidestrengtht othecore.Ithas lessrefractiveindexthanthatofthecore,whichisthemaincauseoftheTIR,whichis requiredforthepropagationofheightthroughthefiber. Sheath: itistheoutermostcoatingoftheopticalfiber.Itprotectsthecoreandclad ding fromabrasion,contaminationandmoisture. Requirement for making an optical fiber: 1. Itmustbepossibletomakelongthinandflexiblefiberusingthatmaterial 2. Itmustbetransparentataparticularinorderforthefibertoguide lightefficiently. 3. Physicallycompatiblematerialofslightlydifferentindexofrefractionmustbe availableforcoreandcladding. Type Of Optical Fibers:

1. GlassCore+GlassCladding 2. PlasticCore+PlasticCladding 3. GlassCore+PlasticCladding

Properties Of Different Types Of Index Fibers

Multi Mode Step Index Single Mode Step Index Fiber Multi Mode Graded Index Fiber Fiber

1diplomaofcore15m. >80m 5060m 2Diameterofcladding10. 2 2 3Stepindexprofile Stepindexprofile Gradedindexprofile. 4.Fundamentalmodei.e.axial Fundamentalaswellas Fundamentalaswellashighermode. mode. highermode 5.Laserareusedforafine LED’sareused LED’sareused beamoflight

6.NAandǾmax isverysmallso NAandǾmax islarge NAandǾmax islargeeasiertowork theyaredifficulttoworkwith easiertoworkwith with

7.Dispersion≈0.Whichisvery Dispersionis1530 Dispersionis2ns/km smallandisconsideredas0 ns/km

8.Supportsbandwidthof1000 20MHzKm >1GHzkm GHzKm 2 2 2 9.N max =V /2; Nmax =V /2; Nmax =V /2; V=2 πa(NA)/ λ; V=2 πa(NA)/ λ; V=2 πa(NA)/ λ; V≤2.405 V≤2.405 →1toοο

10.Usedinmilitaryapplication Usedinshortruns<1km Usedinlongrunsandareeasyto asscatteringlossesare terminate,asscatteringlossesareless large,theseareeasyto incomparison terminate.

11.Mostexpensive Leastexpensive Moreexpensivethanmultimodestep indexfiber.

NUMERICAL APERTURE OF AN OPTICAL FIBER In,thenumericalaperture(NA)ofanopticalsystemisadimensionlessnumber thatcharacterizestherangeofanglesoverwhichthesystemcanacceptoremitlight.The exactdefinitionofthetermvariesslightlybetweendifferentareasofoptics. Multimodeopticalfiberwillonlypropagatelightentersthefiberwithinacertaincone, knownastheacceptanceconeofthefiber.Thehalfangleofthisconeiscalledthe acceptanceangle,Ǿmax .Forstepindexmultimodefiber,theacceptanceangleis determinedonlybytheindicesofrefraction:

Wheren f istherefractiveindexofthefibercore,andn c istherefractiveindexofthe cladding Thishasthesameformasthenumericalapertureinotheropticalsystem,soithas becomecommontodefinetheNAofanytypeoffibertobe

Wheren oistherefractiveindexalongthecentralaxisofthefiber.Notethatwhenthis definitionisused,theconnectionbetweentheNAAndtheacceptanceangleofthefiber becomeonlyanapproximation.Inparticularmanufacturersoften“NA”forsingle–mode fiberisquitedifferentandcannotbedeterminedfrotheindicesofrefractionalone. Inmultimodefiber,thetermequilibriumnumericalapertureissometimeused.Thisrefer tothenumericalaperturewithrespecttotheextremeexitangleofaemergingfroma fiberinwhichequilibriummodedistributionhasbeenestablished. Thenumericalapertureofanopticalcanbeexpressedquantitativelyas:

2 2 N1 –N2 =(n 1+n 2)={(n 1+n 2)/2}(2n 1) (Weapproximate(n 1+n 2)/2asn 1) Hence,

Observation Table S.NO. DistanceFrom DistanceOfThe NA ScreenFromOptical Spot Fiber

1 1.30cm 1.2cm 0.4779 2 2.25cm 2.1cm 0.4787 3 3.40cm 3.0cm 0.4934

Fiber Optic Solutions for Industry Fiber Optic Applications

Defense&government • Interconnects :Standardandcustom fiberoptics:superior cablingsolutionsforyourapplication. performance,ruggedzed • Networking :Trunkcables, Defense& co nstruction,andquick distributioncables,high density Government turnaroundtimes. interconnectcables,andstandard Commercial&indus trial patchcords. fiberoptics:flexibility • GigabitEthernet :Fiberopticgigabit andmultigigEthernetsolutionsina andversatilityfor Commercial standard&custom multitudeofstyles,sizes,lengths,and &Industrial applications. specialfeatures. • HarshEnvironment :Designedto DataStoragefiber provideperformanceanddurabilityin optics:designedand themostdemandingenvironments. manufacturedto • Military :Requiringrigoroustesting DataStorage optimizeyourdata andharshenvironmentcertificationto communication,testing, ensurereliabilityandperformancein andanalysis. thefield. • Aerospace/Avionics :Provide Research& maximumperformanceanddurability Developmentfiber inharshconditionsanddemanding optics:providing environments. Research& connectivitytothenext • DataTransferTests :Designedand Development generationofinvention manufacturedtoensurequalityand andscientific performanceforallyourtesting achievement. applications. • UnmannedVehicles :Support missioncriticalgroundtoUAV Test&measurement communicationanddatacollection fiberoptics:providing applications. efficientmeansfor Test& opticaltesting, Measurement diagnostics,and maintenanceprocedures. Manufacturingfiber optics:superior products,customizable Manufacturing tosuityourexact requirement. Broadband&MSOfiber optics:support broadbandandMSO Broadband& networkapplications MSO frominsidethecentral officeallthewaytothe subscriber. Medicalfiberoptics: multipleglassand plasticopticalfiber Medical productsforuseina multitudeofmedical applications. Telecomfiberoptics: Fromstandardcable assembliesandloop Telecom backstoopticaldrop cables,productstosuit your telecommunications application.

EXPERIMENT -:Tomeasurethenumericalapertureoftheopticalfiber. APPARATUS-:Fiberopticaltrainerkit. THEORY-:Numerical aperture of the optical fiber is maximum angle at which the light incident on the fiber end is transmitted long the fiber. Thelightrayshouldstrikethefiber endwithinitscoreofacceptanceelseitisreflectedOutofthefiber Consideration in numerical aperture measure: - Itisveryimportantthattheopticalsourceshouldbeproperlyalignedwiththecableand thedistancefromthelaunchedpointandcablebeproperlyselectedtoensurethatthe maximumamountofopticalfiberpoweristransferredtothecable. PROCEDURE:

 Connectthepowersupplytotheabroad .  ConnectthefrequencygeneratorKHzsinewaveoutputtoinputofemitter1 current.Adjustitsamplitudeat5v.p.p.  Connectoneendofthefibercabletotheoutputsocketofemitter1currentand theotherendtotheN.Ameasurement.Holdthewhitescreenfacingsuchthatits cutfaceisperpendiculartotheaxisofthefiber.  Holdthewhitescreenwith4concentriccircles(10,15,20,25mmdiameter) verticallyatadistancetomaketheredspotfromthefibercoincidewith10mm spot.  Recordthedistanceofscreenfromthefiberfromendperpendicularandnotethe diameterwofthefiber.  CapturetheN.A.fromtheformulagivenbelow. W N.A. = 4L 2 +W 2  .Varythedistancebetweenthescreenandopticalfibercableandmakeit coincidewithoneoftheconcentriccircles.Notethedistance.  .Tabulatethevariousdistanceanddiameterofthecirclemadeonethewhite screenandcomputetheN.A.fromtheformulagivenbelow. FORMULAE Acceptance Angle And Acceptance Cone

Let’sconsiderthelightpropagationinanopticalfiber.Theendatwhichthe lightentersthefiberiscalledthelaunchingend.Lettherefractiveindexof the core be n 1 and the refractive index of cladding be n 2 (n 1>n 2). Let the outside medium from which the light is launched into the fiber have a refractiveindexn 0.Letthelightrayenterthefiberatanangleθ itotheaxis ofthefiber.Lettherefractedraymakeanangleθrwiththeaxisandstrike the core cladding interface at an angle φ. If φ>θ c (critical angle), therays undergoesTIRattheinterface.Aslongas φ≥θc,thelightremainswithinthe fiber. Applyingsnell’slawtothelaunchingfaceofthefiber,weget n 0Sinθi = n1Sinθr

n1 i.e. Sinθi = Sinθr n 0

n1 i.e. Sinθi = Sin(90 − φ) φ n2 n 0

n1 i.e. Sinθi = Cosφ θi θrn1 n 0

Where φ=θ c,θ i=θ max

n1 So Sinθmax = Cosθc n 0 2 2 n 2 2 n1 − n 2 Now Sinθc = so Cosθc = 1 − Sin θc = n1 n1 2 2 n1 − n 2 Hence Sinθmax = n 0 2 2 2 If (n 1 n2 )≤n 0 , then for all values of θ i<θ max TIR will occur. Assuming n0=1i.e.lettheoutsidemediumfromwhichlightislaunchedintothefiberbe airthen,

−1 2 2 θmax = Sin [ n1 − n 2 ] Numerical Aperture Itisthemeasureof theamountoflightcanbeacceptedbyafiber.Itis 2 2 definedastheSineoftheacceptanceanglei.e. NA = Sin max = n1 − n 2 2 2 n1 − n 2 n( 1 − n 2 )(n1 + n 2 ) n( 1 + n 2 ) i.e. NA = n1 2 = n1 2 = n1 ≅ n1 2 n1 n1 n1 becausen 1≅n2foropticalfibers.