Bertil Gustafsson a Historical Perspective
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
European Mathematical Society
CONTENTS EDITORIAL TEAM EUROPEAN MATHEMATICAL SOCIETY EDITOR-IN-CHIEF MARTIN RAUSSEN Department of Mathematical Sciences, Aalborg University Fredrik Bajers Vej 7G DK-9220 Aalborg, Denmark e-mail: [email protected] ASSOCIATE EDITORS VASILE BERINDE Department of Mathematics, University of Baia Mare, Romania NEWSLETTER No. 52 e-mail: [email protected] KRZYSZTOF CIESIELSKI Mathematics Institute June 2004 Jagiellonian University Reymonta 4, 30-059 Kraków, Poland EMS Agenda ........................................................................................................... 2 e-mail: [email protected] STEEN MARKVORSEN Editorial by Ari Laptev ........................................................................................... 3 Department of Mathematics, Technical University of Denmark, Building 303 EMS Summer Schools.............................................................................................. 6 DK-2800 Kgs. Lyngby, Denmark EC Meeting in Helsinki ........................................................................................... 6 e-mail: [email protected] ROBIN WILSON On powers of 2 by Pawel Strzelecki ........................................................................ 7 Department of Pure Mathematics The Open University A forgotten mathematician by Robert Fokkink ..................................................... 9 Milton Keynes MK7 6AA, UK e-mail: [email protected] Quantum Cryptography by Nuno Crato ............................................................ 15 COPY EDITOR: KELLY -
LINEAR ALGEBRA METHODS in COMBINATORICS László Babai
LINEAR ALGEBRA METHODS IN COMBINATORICS L´aszl´oBabai and P´eterFrankl Version 2.1∗ March 2020 ||||| ∗ Slight update of Version 2, 1992. ||||||||||||||||||||||| 1 c L´aszl´oBabai and P´eterFrankl. 1988, 1992, 2020. Preface Due perhaps to a recognition of the wide applicability of their elementary concepts and techniques, both combinatorics and linear algebra have gained increased representation in college mathematics curricula in recent decades. The combinatorial nature of the determinant expansion (and the related difficulty in teaching it) may hint at the plausibility of some link between the two areas. A more profound connection, the use of determinants in combinatorial enumeration goes back at least to the work of Kirchhoff in the middle of the 19th century on counting spanning trees in an electrical network. It is much less known, however, that quite apart from the theory of determinants, the elements of the theory of linear spaces has found striking applications to the theory of families of finite sets. With a mere knowledge of the concept of linear independence, unexpected connections can be made between algebra and combinatorics, thus greatly enhancing the impact of each subject on the student's perception of beauty and sense of coherence in mathematics. If these adjectives seem inflated, the reader is kindly invited to open the first chapter of the book, read the first page to the point where the first result is stated (\No more than 32 clubs can be formed in Oddtown"), and try to prove it before reading on. (The effect would, of course, be magnified if the title of this volume did not give away where to look for clues.) What we have said so far may suggest that the best place to present this material is a mathematics enhancement program for motivated high school students. -
Application of Variational Methods and Galerkin Method in Solving Engineering Problems Represented by Ordinary Differential Equations
International Journal of Mechanical And Production Engineering, ISSN: 2320-2092, Volume- 4, Issue-4, Apr.-2016 APPLICATION OF VARIATIONAL METHODS AND GALERKIN METHOD IN SOLVING ENGINEERING PROBLEMS REPRESENTED BY ORDINARY DIFFERENTIAL EQUATIONS 1B.V. SIVA PRASAD REDDY, 2K. RAJESH BABU 1,2Department of Mechanical Engineering, Sri Venkateswara University college of Engineering, Tirupati, India E-mail: [email protected], [email protected]; Abstract – Nowadays the accuracy of problem solving is very important. In olden days the Variational methods were used to solve all engineering problems like structural, heat transfer and fluid mechanics problems. With the emergence of Finite Element Method (FEM) those methods are become less important, although FEM is also an approximate method of numerical technique. The concept of variational methods is inducted to solve majority of engineering problems, which gives more accurate results than any other type of approximate methods. The engineering problems like uniform bar, beams, heat transfer and fluid flow problems are used in our daily life and they play an important role in the development of our society. To achieve drastic development in the society, it is a must to focus on adopting approximation methods that improve the accuracy of engineering solution. Of all the methods, Galerkin method is emerging as an alternative and more accurate method than those of Ritz, Rayleigh – Ritz methods. Any physical problem in nature can be transformed into an equivalent mathematical model by idealization process and describing its behavior by a suitable governing equation with associated boundary conditions. Against this backdrop, the present work focuses on application of different variational methods in solving ordinary differential equations. -
Exploring Continuous Tensegrities
Exploring Continuous Tensegrities by Edward Bruce “Ted” Ashton (Under the direction of Dr. Jason Cantarella) Abstract A discrete tensegrity framework can be thought of as a graph in Euclidean n-space where each edge is of one of three types: an edge with a fixed length (bar) or an edge with an upper (cable) or lower (strut) bound on its length. Roth and Whiteley, in their 1981 paper “Tensegrity Frameworks”, showed that in certain cases, the struts and cables can be replaced with bars when analyzing the framework for infinitesimal rigidity. In that case we call the tensegrity bar equivalent. In specific, they showed that if there exists a set of positive weights, called a positive stress, on the edges such that the weighted sum of the edge vectors is zero at every vertex, then the tensegrity is bar equivalent. In this paper we consider an extended version of the tensegrity framework in arXiv:0704.2784v2 [math.MG] 14 May 2007 which the vertex set is a (possibly infinite) set of points in Euclidean n-space and the edgeset is a compact set of unordered pairs of vertices. These are called continuous tensegrities. We show that if a continuous tensegrity has a strictly positive stress, it is bar equivalent and that it has a semipositive stress if and only if it is partially bar equivalent. We also show that if a tensegrity is minimally bar equivalent (it is bar equivalent but removing any open set of edges makes it no longer so), then it has a strictly positive stress. In particular, we examine the case where the vertices form a rectifiable curve and the possible motions of the curve are limited to local isometries of it. -
Www .Ima.Umn.Edu
ce Berkeley National Laboratory) ce Berkeley Who should attend? Industrial engineers and scientists who want to learn about modern techniques in scientific computations Researchers from academic institutions involved in multidisciplinary collaborations Organizer Robert V. Kohn Tutorial Lectures: Weinan E Leslie F. Greengard courtesy and S.Graphics J-D. Yu Sakia (Epson Research Corporation), and J.A. Sethian (Dept. and Lawren UC Berkeley of Mathematics, James A. Sethian www.ima.umn.edu The primary goal of this workshop is to facilitate the use of the best computational techniques in important industrial applications. Key developers of three of the most significant recent or emerging paradigms of computation – fast multipole methods, level set methods, and multiscale computation – will provide tutorial introductions to these classes of methods. Presentations will be particularly geared to scientists using or interested in using these approaches in industry. In addition the workshop will include research reports, poster presentations, and problem posing by industrial researchers, and offer ample time for both formal and informal discussion, related to the use of these new methods of computation. The IMA is an NSF funded Institute Schedule Weinan E received his Ph.D. from the University of California at Los Angeles in 1989. He was visiting MONDAY, MARCH 28 member at the Courant Institute from 1989 to 1991. He joined the IAS in Princeton as a long term mem- All talks are in Lecture Hall EE/CS 3-180 ber in 1992 and went on to take a faculty 8:30 Coffee and Registration position at the Courant Institute at New York Reception Room EE/CS 3-176 University in 1994. -
The Bibliography
Referenced Books [Ach92] N. I. Achieser. Theory of Approximation. Dover Publications Inc., New York, 1992. Reprint of the 1956 English translation of the 1st Rus- sian edition; the 2nd augmented Russian edition is available, Moscow, Nauka, 1965. [AH05] Kendall Atkinson and Weimin Han. Theoretical Numerical Analysis: A Functional Analysis Framework, volume 39 of Texts in Applied Mathe- matics. Springer, New York, second edition, 2005. [Atk89] Kendall E. Atkinson. An Introduction to Numerical Analysis. John Wiley & Sons Inc., New York, second edition, 1989. [Axe94] Owe Axelsson. Iterative Solution Methods. Cambridge University Press, Cambridge, 1994. [Bab86] K. I. Babenko. Foundations of Numerical Analysis [Osnovy chislennogo analiza]. Nauka, Moscow, 1986. [Russian]. [BD92] C. A. Brebbia and J. Dominguez. Boundary Elements: An Introductory Course. Computational Mechanics Publications, Southampton, second edition, 1992. [Ber52] S. N. Bernstein. Collected Works. Vol. I. The Constructive Theory of Functions [1905–1930]. Izdat. Akad. Nauk SSSR, Moscow, 1952. [Russian]. [Ber54] S. N. Bernstein. Collected Works. Vol. II. The Constructive Theory of Functions [1931–1953]. Izdat. Akad. Nauk SSSR, Moscow, 1954. [Russian]. [BH02] K. Binder and D. W. Heermann. Monte Carlo Simulation in Statistical Physics: An Introduction, volume 80 of Springer Series in Solid-State Sciences. Springer-Verlag, Berlin, fourth edition, 2002. [BHM00] William L. Briggs, Van Emden Henson, and Steve F. McCormick. A Multigrid Tutorial. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition, 2000. [Boy01] John P. Boyd. Chebyshev and Fourier Spectral Methods. Dover Publi- cations Inc., Mineola, NY, second edition, 2001. [Bra84] Achi Brandt. Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, volume 85 of GMD-Studien [GMD Studies]. -
Linear Algebra Over a Division Ring Cédric Milliet
Linear Algebra over a division ring Cédric Milliet To cite this version: Cédric Milliet. Linear Algebra over a division ring. 2016. hal-01283071v4 HAL Id: hal-01283071 https://hal.archives-ouvertes.fr/hal-01283071v4 Preprint submitted on 14 Aug 2016 (v4), last revised 2 Jun 2020 (v7) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. GÉOMÉTRIE ALGÉBRIQUE ÉLÉMENTAIRE AU-DESSUS D’UN CORPS NON COMMUTATIF CÉDRIC MILLIET Résumé. On considère un analogue de la topologie de Zariski sur un corps non commuta- tif K. Un fermé de base est donné par les zéros d’un polynôme en la conjugaison par un élément de K fixé à coefficients à droite dans K. Cela nous permet de développer des notions de géométrie algébrique élémentaire : variété algébrique affine, morphisme, comorphisme, une dimension de Zariski, un théorème de Chevalley pour les ensembles constructibles et un Null- stellensatz. On applique ces résultats à la théorie des modèles des corps non commutatifs, en considérant un corps non commutatif K dont la théorie dans le langage (+, ×, 0, 1) n’a pas la propriété d’indépendance de Shelah. Si K est de caractéristique p, on montre qu’il est de dimension finie sur son centre. -
A Complete Bibliography of Publications in Nordisk Tidskrift for Informationsbehandling, BIT, and BIT Numerical Mathematics
A Complete Bibliography of Publications in Nordisk Tidskrift for Informationsbehandling, BIT,andBIT Numerical Mathematics Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 09 June 2021 Version 3.54 Title word cross-reference [3105, 328, 469, 655, 896, 524, 873, 455, 779, 946, 2944, 297, 1752, 670, 2582, 1409, 1987, 915, 808, 761, 916, 2071, 2198, 1449, 780, 959, 1105, 1021, 497, 2589]. A(α) #24873 [1089]. [896, 2594, 333]. A∗ [2013]. A∗Ax = b [2369]. n A [1640, 566, 947, 1580, 1460]. A = a2 +1 − 0 n (3) [2450]. (A λB) [1414]. 0=1 [1242]. 1 [334]. α [824, 1580]. AN [1622]. A(#) [3439]. − 12 [3037, 2711]. 1 2 [1097]. 1:0 [3043]. 10 AX − XB = C [2195, 2006]. [838]. 11 [1311]. 2 AXD − BXC = E [1101]. B [2144, 1953, 2291, 2162, 3047, 886, 2551, 957, [2187, 1575, 1267, 1409, 1489, 1991, 1191, 2007, 2552, 1832, 949, 3024, 3219, 2194]. 2; 3 979, 1819, 1597, 1823, 1773]. β [824]. BN n − p − − [1490]. 2 1 [320]. 2 1 [100]. 2m 4 [1181]. BS [1773]. BSI [1446]. C0 [2906]. C1 [1105]. 3 [2119, 1953, 2531, 1351, 2551, 1292, [3202]. C2 [3108, 2422, 3000, 2036]. χ2 1793, 949, 1356, 2711, 2227, 570]. [30, 31]. Cln(θ); (n ≥ 2) [2929]. cos [228]. D 3; 000; 000; 000 [575, 637]. -
Single Digits
...................................single digits ...................................single digits In Praise of Small Numbers MARC CHAMBERLAND Princeton University Press Princeton & Oxford Copyright c 2015 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW press.princeton.edu All Rights Reserved The second epigraph by Paul McCartney on page 111 is taken from The Beatles and is reproduced with permission of Curtis Brown Group Ltd., London on behalf of The Beneficiaries of the Estate of Hunter Davies. Copyright c Hunter Davies 2009. The epigraph on page 170 is taken from Harry Potter and the Half Blood Prince:Copyrightc J.K. Rowling 2005 The epigraphs on page 205 are reprinted wiht the permission of the Free Press, a Division of Simon & Schuster, Inc., from Born on a Blue Day: Inside the Extraordinary Mind of an Austistic Savant by Daniel Tammet. Copyright c 2006 by Daniel Tammet. Originally published in Great Britain in 2006 by Hodder & Stoughton. All rights reserved. Library of Congress Cataloging-in-Publication Data Chamberland, Marc, 1964– Single digits : in praise of small numbers / Marc Chamberland. pages cm Includes bibliographical references and index. ISBN 978-0-691-16114-3 (hardcover : alk. paper) 1. Mathematical analysis. 2. Sequences (Mathematics) 3. Combinatorial analysis. 4. Mathematics–Miscellanea. I. Title. QA300.C4412 2015 510—dc23 2014047680 British Library -
Fundamental Theorems in Mathematics
SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635]. -
Biodata Dr. JS
Biodata Dr. J. S. Rao CEO, Innovative Engineering Designs and Simulation Global Solutions President, The Vibration Institute of India Chief Editor, Journal Vibration Engineering and Technologies 1039, 2nd Cross, BEL Layout, Block II Bangalore 560097 +91 98453 46503 [email protected] Also Chief Science Officer (consulting) Altair Engineering India Pvt. Ltd., Bangalore 560103 Contents Title Page Number 1. Experience 2 2. Education 2 3. Memberships of Scientific Bodies 3 4. Contributions to Scientific Community 3 5. Research Areas 5 6. Doctoral Theses 5 7. Review Work 6 8. Industrial Consultancy and Sponsored Work 6 9. Books 9 10. Awards 10 11. Congresses and Schools 11 12. National and International Seminars 14 13. Five Decades of Research Work 18 14. Journal Papers 31 15. Conference Papers 38 16. Contributions as Science Counselor 53 1 Dr. J.S. Rao 1. EXPERIENCE President Kumaraguru College of Technology, Coimbatore 2012-2016 Protem Chancellor K L University, Vijayawada 2011-2012 Director GMR Energy Ltd., Bangalore 2000-2012 CEO, Dynaspede Integrated Systems, Bangalore 2004-2005 Chief Technology Officer, QuEST, Bangalore 2001-2004 Professor of Mechanical Engineering The University of New South Wales, Sydney, Australia 1996 NSC Research Chair Professor National Chung Cheng University, Chia-Yi, Taiwan 1994-96 Professor of Mechanical Engineering Inst. fur Mech., Gesamthochschule, Kassel, Germany 1988 Sr. Technical Consultant, Stress Technology Inc., Adjunct Professor Mechanical Engineering Rochester Institute of Technology, Rochester, NY, USA 1980-81 Professor of Mechanical Engineering Concordia University, Montreal, Canada 1980 Professor of Mechanical Engineering Inst. Nationale des Sciences Appliquees, Lyon, France 1980 Science Counselor Indian Embassy, Washington DC 1984-89 Indian Institute of Technology, Delhi Professor of Mechanical Engineering 1975-2000 Faculty 1960-70 Professor of Mechanical Engineering Indian Institute of Technology, Kharagpur 1970-75 Post-Doctoral Commonwealth Fellow University of Surrey, Guildford, England 1968-70 2 Dr. -
Professor Ilya Yakovich Shtaerman (1891-1962)
Professor Ilya Yakovich Shtaerman (1891-1962) I.Y. Shtaerman (1891-1962) - Ph.D., professor, an expert in the field of mechanics, corresponding member of the USSR Academy of Sciences (1939). The scientific activity of I.Y. Shtaerman was formed under the leadership of Professor of Mechanics University of Kiev: P.V. Voronets. Main areas of research I.Y. Shtaerman were devoted to the study of problems of the theory of elasticity, structural mechanics and mathematics. Ilya Shtaerman was born April 19, 1891 in the city of Mogilev-Podolsky; in 1910 - graduated from high school in Kamenetz-Podolsk and in 1915 - graduated from the Faculty of Physics and Mathematics of Kiev University. He published "Differential equations of the plate, rolling without slipping on a fixed surface," which has developed some of the provisions of the master's thesis of his teacher, P.V.Voronets. In 1918 he graduated from the Faculty of Engineering KPI; 1918 - 1941 he worked in the KPI and taught at the Kiev Institute of Public Education; 1920-1934 - member of Applied Mechanics committee, Academy of Sciences of the Ukrainian SSR; 1924-1941r. - Professor, Head of Department of Theoretical Mechanics KPI. In 1930 he defended his doctoral thesis "On the integration of the differential equations of equilibrium of elastic shells." 1934-1943 - Researcher, Institute of Mathematics, Ukrainian Academy of Sciences; 1943 - Professor of the Moscow Institute of Civil Engineering. I.Y. Shtaerman developed a number of methods for solving the complex problems of the theory of elasticity. It was the first major study of this issue, as set out in Russian.