Tangram Evolutif

Total Page:16

File Type:pdf, Size:1020Kb

Tangram Evolutif Tangram Évolutif à Ronald Read, pionnier de l'univers du Tangram sans qui ce livre n'existerait pas 1 2 Tangram Évolutif La nature a une perfection à elle, surprenante, et qui résulte d'une addition de limites. La nature est parfaite parce qu'elle n'est pas infinie. Si on comprend les limites, on comprend comment le mécanisme fonctionne. Le tout est de comprendre les limites. Alessandro Baricco, Océan mer 3 4 Tangram Évolutif Le Tangram est un drôle de jeu. Son apparence est simple mais l'objet est insolite avec ses pièces géométriques qui se ressemblent et s'assemblent. Le manuel de jeu est un catalogue de formes variées – des silhouettes noires de bonshommes, des chats, des théières, etc. – que l'on doit reconstituer. De prime abord, il s'agit d'une sorte de puzzle destiné à un public assez jeune. Personnellement, je n'ai pas vraiment été attiré par cet aspect traditionnel du jeu mais j'en aimais le concept au point de vouloir m'en fabriquer en bois, en carton... Plus tard, un professeur de technologie de mon entourage qui voulait le faire fabriquer à ses élèves me posa une question au sujet de ce jeu et je commençais, pour lui répondre, à m'intéresser aux formes convexes qui étaient réalisables. Je m'étonnais qu'il n'en existait que treize, et me demandais si avec d'autres pièces on aurait pu en obtenir davantage. Je crayonnais des découpages de carrés et commençais des inventaires, puis je me dis que ce serait plus commode de chercher les formes convexes réalisables avec un jeu en programmant un ordinateur pour cela. Comme je ne savais pas programmer, je dus me former en lisant tout d'abord un livre1 et en me faisant la main sur d'autres sujets (mes élèves se souviennent de mes programmes d'entraînement au calcul mental...). Enfin je pus concentrer mes efforts sur les tangrams. Les versions de mes programmes se succédant, j'obtins progressivement quelques résultats : ce que je savais faire en trente minutes, le programme le faisait en trente dixièmes de seconde. Bien sûr, il m'avait fallu deux ans pour en arriver là mais, en seulement deux jours, je pouvais passer en revue tous les jeux possibles de la famille du Tangram ayant sept pièces polyaboliques et une aire égale à seize triangles (voir plus loin pour le mot polyabolique). À l'occasion, je prenais contact avec des personnes qui avaient travaillé sur le sujet : l'américain Sergio Antoy, auteur d'une superbe applet pour jouer avec le Tangram et des jeux voisins ; l'anglais Eric Warsop, auteur d'un ingénieux programme recherchant des formes réalisables avec le Tangram ; le canadien Ronald Read qui fut à l'avant-garde pendant une cinquantaine d'années et rédigea plusieurs articles et un livre sur le sujet (il travaillait à l'époque, et malgré son âge avancé, à la génération des tangrams hétérogènes qu'il avait lui-même initiée) ; le français Jean-Paul Delahaye, auteur d'une rubrique dans le journal « Pour la Science » et de livres/compilations sur bien des sujets passionnants, véritable passeur d'informations éveillant la curiosité. En partageant idées et résultats avec ces personnes , je me lançais petit à petit dans la rédaction de textes et de tableaux ainsi que dans la confection d'images. Mon compte-rendu à usage personnel passa de deux à cinq pages, puis devint un article de vingt pages que je mis sur mon site internet ; sous l'impulsion de J.-P. Delahaye, ce texte fut étendu et enrichi aux dimensions d'un livre que les Éditions « Pour la Science » acceptèrent de publier. Pour d'obscures raisons que j'ignore, ce livre que je souhaitais appeler « L'univers du Tangram » ne vit pas le jour. Je ne voulus pas m'arrêter là, surtout que j'avais d'autres résultats à consigner par écrit, dont ceux qui concernaient les tangrams hétérogènes. Je me lançais dans un deuxième livre, réécrivant tout comme si le premier livre n'existait pas. Ce nouveau livre devint progressivement la somme qui est ici et qui représente un état de la recherche. Le quinzième chapitre inventorie quelques-unes des pistes que j'aimerais encore suivre où tout ou presque reste encore à faire, le seizième est un ajout récent qui développe une nouvelle idée de R. Read. 1« Programmer en Java » de Claude Delannoy aux Éditions Eyrolles. 5 On peut croire qu'il faut beaucoup aimer les nombres pour écrire un tel livre, car il y en a beaucoup, en vérité, dans toutes les pages. Ils sont un peu comme les nuages où, certaines fois, on distingue un visage ou une fée. Parfois ils m'impressionnent par leur taille ou leur régularité, parfois les chiffres se répètent ou se suivent de façon intrigante. Jamais ils ne me paraissent déplacés : ils font partie du tableau et je les recopie de mes programmes comme un jardinier arrachant les mauvaises herbes et valorisant les bonnes... Plus je m'aventure dans les recoins de cet univers combinatoire, plus je suis confronté à mes propres limites (manque de compétences ou de temps pour les acquérir). Je mets en forme les éléments qui se dégagent et souhaite les faire parler pour qu'ils nous livrent leurs secrets ultimes. J'ai parfois l'impression de survoler certains sujets qui méritent un arrêt ou, au contraire, d'aller trop en profondeur sur des points de détails. Quand je pense au lecteur éventuel qui, par manque de familiarité avec le sujet, peine à suivre mes descriptions de ces paysages combinatoires, je veux lui rester accessible et continue à nager en surface. Mais parfois je me laisse absorber par le sujet et plonge un peu plus profond pour chercher les perles qui se cachent... Jamais le sujet ne me lasse et, malgré la diversité des thèmes abordés, il me semble qu'il n'a été qu'à peine effleuré... J'espère que certains trouveront autant de plaisir que j'en ai eu à dresser les colonnes de chiffres de ce jeu universel et à écrire ces lignes. Comme le sujet est loin d'être clôt, je serais tenté d'appeler ce livre « Tangram, tome 1 » car il me paraît évident qu'un 2ème tome au moins devrait s'y ajouter. Sam Lloyd avait eu cette idée il y a un siècle, quand il inventa des racines légendaires au jeu. Il écrivit une histoire où la tension évolutive amenait des êtres supérieurs, plus spirituels que les hommes de son temps, qui sauraient combiner les pièces du jeu d'une manière nouvelle. Il s'agissait peut-être d'une vision prophétique de la recherche avec les ordinateurs, mais il reste encore beaucoup à faire pour aller au-delà de nos premiers résultats. Il me plaît d'imaginer qu'en d'autres temps et en d'autres espaces, des êtres plus évolués que nous manipulent aussi les sept pièces ingénieuses. Ce jeu universel est intemporel. Mais que font-ils avec ? Quelle facétie géométrique traquent-ils et de quels moyens usent-ils ? Avec votre concours, nos connaissances sur le sujet peuvent encore s'accroître et revigorer l'intérêt qu'on lui porte et qu'il mérite. Philippe Moutou Septembre 2014 6 Tangram Évolutif Chapitre 1 : Rencontre avec le Tangram vec ses pièces géométriques, le Tangram appartient à la catégorie des jeux de dissection géométrique : on découpe une silhouette en pièces et, avec ces pièces, sans chevauchement, Aon reconstitue une multitude de silhouettes Le Tangram est un jeu constitué de sept pièces très simples. Cinq triangles isocèles rectangles – des demi-carrés – de trois tailles différentes : deux petits, un moyen et deux grands. Le triangle moyen pourrait être formé avec les deux petits. Assemblés autrement, ces deux petits triangles peuvent former les deux autres pièces du jeu : un carré et une autre figure appelée parallélogramme. Techniquement, le carré est aussi un parallélogramme – car il suffit à un quadrilatère d'avoir ses côtés opposés parallèles pour en être un – mais, faute de mieux, nous appellerons ainsi l'unique parallélogramme du jeu qui n'est pas carré. Les grands triangles, quant à eux, sont constitués de quatre petits triangles, ou deux moyens. Toutes ensembles, ces sept pièces couvrent une surface égale à seize fois celle d'un des petits triangles. Comme deux petits triangles forment un carré, on pourrait dire une surface égale à huit fois celle du carré. Habituellement on mesure plutôt les surfaces avec des carrés, mais l'unité d'aire naturelle avec un jeu dont les pièces se réduisent à des petits triangles est le triangle, aussi nous dirons indifféremment que l'aire totale du jeu est de huit carrés ou de seize triangles (sous-entendu seize petits triangles isocèles rectangles). Illustration 1: Les sept pièces du jeu : 5 triangles, 1 carré et 1 parallélogramme non carré (appelé plus loin « le parallélogramme »). Ces pièces couvrent une aire totale égale à 16 petits triangles Comme le montre notre illustration (à gauche), les sept pièces de ce jeu peuvent être dessinées dans un quadrillage, les sommets des pièces étant placés sur les nœuds du quadrillage (les intersections des droites perpendiculaires qui forment le quadrillage). Certains des côtés de ces pièces mesurent autant que l'écart entre les 7 Chapitre 1 : Rencontre avec le Tangram lignes parallèles du quadrillage. Les quatre côtés du carré sont ainsi égaux à cet écart que nous choisissons comme unité de longueur. Les autres côtés des pièces peuvent mesurer deux unités de longueur (le triangle moyen a un côté mesurant deux unités, les grands triangles en ont deux chacun), mais on rencontre aussi une longueur intermédiaire, lorsque le côté est constitué par une diagonale du carré.
Recommended publications
  • Volume 2 Shape and Space
    Volume 2 Shape and Space Colin Foster Introduction Teachers are busy people, so I’ll be brief. Let me tell you what this book isn’t. • It isn’t a book you have to make time to read; it’s a book that will save you time. Take it into the classroom and use ideas from it straight away. Anything requiring preparation or equipment (e.g., photocopies, scissors, an overhead projector, etc.) begins with the word “NEED” in bold followed by the details. • It isn’t a scheme of work, and it isn’t even arranged by age or pupil “level”. Many of the ideas can be used equally well with pupils at different ages and stages. Instead the items are simply arranged by topic. (There is, however, an index at the back linking the “key objectives” from the Key Stage 3 Framework to the sections in these three volumes.) The three volumes cover Number and Algebra (1), Shape and Space (2) and Probability, Statistics, Numeracy and ICT (3). • It isn’t a book of exercises or worksheets. Although you’re welcome to photocopy anything you wish, photocopying is expensive and very little here needs to be photocopied for pupils. Most of the material is intended to be presented by the teacher orally or on the board. Answers and comments are given on the right side of most of the pages or sometimes on separate pages as explained. This is a book to make notes in. Cross out anything you don’t like or would never use. Add in your own ideas or references to other resources.
    [Show full text]
  • Math-GAMES IO1 EN.Pdf
    Math-GAMES Compendium GAMES AND MATHEMATICS IN EDUCATION FOR ADULTS COMPENDIUMS, GUIDELINES AND COURSES FOR NUMERACY LEARNING METHODS BASED ON GAMES ENGLISH ERASMUS+ PROJECT NO.: 2015-1-DE02-KA204-002260 2015 - 2018 www.math-games.eu ISBN 978-3-89697-800-4 1 The complete output of the project Math GAMES consists of the here present Compendium and a Guidebook, a Teacher Training Course and Seminar and an Evaluation Report, mostly translated into nine European languages. You can download all from the website www.math-games.eu ©2018 Erasmus+ Math-GAMES Project No. 2015-1-DE02-KA204-002260 Disclaimer: "The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein." This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. ISBN 978-3-89697-800-4 2 PRELIMINARY REMARKS CONTRIBUTION FOR THE PREPARATION OF THIS COMPENDIUM The Guidebook is the outcome of the collaborative work of all the Partners for the development of the European Erasmus+ Math-GAMES Project, namely the following: 1. Volkshochschule Schrobenhausen e. V., Co-ordinating Organization, Germany (Roland Schneidt, Christl Schneidt, Heinrich Hausknecht, Benno Bickel, Renate Ament, Inge Spielberger, Jill Franz, Siegfried Franz), reponsible for the elaboration of the games 1.1 to 1.8 and 10.1. to 10.3 2. KRUG Art Movement, Kardzhali, Bulgaria (Radost Nikolaeva-Cohen, Galina Dimova, Deyana Kostova, Ivana Gacheva, Emil Robert), reponsible for the elaboration of the games 2.1 to 2.3 3.
    [Show full text]
  • Teacher's Guide to Shape by Shape
    Using Puzzles to Teach Problem Solving TEACHER’S GUIDE TO SHAPE BY SHAPE Also includes Brick by Brick, Block by Block, and That-A-Way BENEFITS Shape by Shape vs. Tangrams Shape by Shape is an assembly puzzle that is an exciting way to teach elements of Shape by Shape is closely related to Tangrams, a classic — problem solving puzzle invented in China that became a world wide — visual and thinking craze in the early 18th century. The seven simple — geometry and measurement Tangram shapes can be arranged to create thousands — combinatorial reasoning of different silhouettes, such as people, animals, letters, The game is self-directed, with 60 challenge cards that and everyday objects. Tangrams are used in schools to include hints. The activities in this guide will help your stu- teach problem solving, geometry and fractions. dents get more out of Shape by Shape. ABOUT THE GAME Equipment. Shape by Shape includes 14 puzzle pieces (6 orange and 8 yellow), 60 challenge cards with answers on the backs, and a tray that doubles as storage for the cards. Shape by Shape and Tangrams are both based on the same triangular grid. They are similar enough that most Tangram activities work with Shape by Shape. Shape by Shape, however, is bigger and more complex. We recommend that you introduce math concepts with Tangrams first, then use Shape by Shape as a fol- low-up activity to explore concepts in more depth. Shape by Shape is different enough fromTangrams that both are worth owning. The main differences are: In a frame .
    [Show full text]
  • Polypad Teacher Guide
    Mathigon Polypad Teacher Guide Polypad is a collection of interactive digital manipulatives designed to be used by both teachers and students. Physical (or concrete) manipulatives have long been a feature in many mathematics classrooms, and their benefits in helping students to develop conceptual understanding are well researched and understood. Digital (or virtual) manipulatives are a comparatively recent addition to the mathematics teacher’s toolkit, but research has already shown there are clear advantages to using them in the classroom (Hunt et al, 2011). Availability is key: not every classroom has access to class sets of many types of physical manipulative, whereas digital manipulatives are available with any computer, tablet or smartphone. Polypad provides a set of digital manipulatives that can be used instead of or alongside physical manipulatives to support students’ development of key mathematical concepts in shape, number and algebra. Mathigon runs on all recent browsers and operating system, and supports touch-screens (including on small smartphone screens). Within our native mobile app for iOS and Android, it also runs completely offline. UI elements Sidebar The sidebar contains all the available shapes and tiles. You can click them to add a copy to our canvas, or you can drag them directly from the sidebar onto the canvas. On small screens, you may have to press the icon in the bottom left corner to reveal the sidebar. At the bottom of the sidebar, there are a number of additional tool icons: Save and share: one of the most useful features for teachers is the ability to save the canvas at any time and share a link with other people.
    [Show full text]
  • Martin Gardner Papers SC0647
    http://oac.cdlib.org/findaid/ark:/13030/kt6s20356s No online items Guide to the Martin Gardner Papers SC0647 Daniel Hartwig & Jenny Johnson Department of Special Collections and University Archives October 2008 Green Library 557 Escondido Mall Stanford 94305-6064 [email protected] URL: http://library.stanford.edu/spc Note This encoded finding aid is compliant with Stanford EAD Best Practice Guidelines, Version 1.0. Guide to the Martin Gardner SC064712473 1 Papers SC0647 Language of Material: English Contributing Institution: Department of Special Collections and University Archives Title: Martin Gardner papers Creator: Gardner, Martin Identifier/Call Number: SC0647 Identifier/Call Number: 12473 Physical Description: 63.5 Linear Feet Date (inclusive): 1957-1997 Abstract: These papers pertain to his interest in mathematics and consist of files relating to his SCIENTIFIC AMERICAN mathematical games column (1957-1986) and subject files on recreational mathematics. Papers include correspondence, notes, clippings, and articles, with some examples of puzzle toys. Correspondents include Dmitri A. Borgmann, John H. Conway, H. S. M Coxeter, Persi Diaconis, Solomon W Golomb, Richard K.Guy, David A. Klarner, Donald Ervin Knuth, Harry Lindgren, Doris Schattschneider, Jerry Slocum, Charles W.Trigg, Stanislaw M. Ulam, and Samuel Yates. Immediate Source of Acquisition note Gift of Martin Gardner, 2002. Information about Access This collection is open for research. Ownership & Copyright All requests to reproduce, publish, quote from, or otherwise use collection materials must be submitted in writing to the Head of Special Collections and University Archives, Stanford University Libraries, Stanford, California 94304-6064. Consent is given on behalf of Special Collections as the owner of the physical items and is not intended to include or imply permission from the copyright owner.
    [Show full text]
  • Time Travel and Other Mathematical Bewilderments Time Travel
    TIME TRAVEL AND OTHER MATHEMATICAL BEWILDERMENTS TIME TRAVEL AND OTHER MATHEMATICAL BEWILDERMENTS MARTIN GARDNER me W. H. FREEMAN AND COMPANY NEW YORK Library of'Congress Cataloguing-in-Publication Data Gardner, Martin, 1914- Time travel and other mathematical bewilderments. 1nclud~:s index. 1. Mathematical recreations. I. Title. QA95.G325 1987 793.7'4 87-11849 ISBN 0-7167-1924-X ISBN 0-7167-1925-8 @bk.) Copyright la1988 by W. H. Freeman and Company No part of this book may be reproduced by any mechanical, photographic, or electronic process, or in the form of a photographic recording, nor may it be stored in a retrieval system, transmitted, or otherwise copied for public or private use, without written permission from the publisher. Printed in the United States of America 34567890 VB 654321089 To David A. Klarner for his many splendid contributions to recreational mathematics, for his friendship over the years, and in !gratitude for many other things. CONTENTS CHAPTER ONE Time Travel 1 CHAPTER TWO Hexes. and Stars 15 CHAPTER THREE Tangrams, Part 1 27 CHAPTER FOUR Tangrams, Part 2 39 CHAPTER FIVE Nontransitive Paradoxes 55 CHAPTER SIX Combinatorial Card Problems 71 CHAPTER SEVEN Melody-Making Machines 85 CHAPTER EIGHT Anamorphic. Art 97 CHAPTER NINE The Rubber Rope and Other Problems 11 1 viii CONTENTS CHAPTER TEN Six Sensational Discoveries 125 CHAPTER ELEVEN The Csaszar Polyhedron 139 CHAPTER TWELVE Dodgem and Other Simple Games 153 CHAPTER THIRTEEN Tiling with Convex Polygons 163 CHAPTER FOURTEEN Tiling with Polyominoes, Polyiamonds, and Polyhexes 177 CHAPTER FIFTEEN Curious Maps 189 CHAPTER SIXTEEN The Sixth Symbol and Other Problems 205 CHAPTER SEVENTEEN Magic Squares and Cubes 213 CHAPTER EIGHTEEN Block Packing 227 CHAPTER NINETEEN Induction and ~robabilit~ 24 1 CONTENTS ix CHAPTER TWENTY Catalan Numbers 253 CHAPTER TWENTY-ONE Fun with a Pocket Calculator 267 CHAPTER TWENTY-TWO Tree-Plant Problems 22 7 INDEX OF NAMES 291 Herewith the twelfth collection of my columns from Scientijic American.
    [Show full text]
  • The Shattered Urn: Rebuilding Objects with Linear Algebra
    The Shattered Urn: Rebuilding Objects with Linear Algebra John Burkardt Department of Mathematics University of South Carolina 15 November 2018 1 / 99 The Shattered Urn: Rebuilding Objects with Linear Algebra Colloquium and Seminar Series sponsored by: Society of Industrial and Applied Mathematics Pi Mu Epsilon Mathematics Honor Society ... 12:00-1:00, 15 November 2018 138 McKenna Hall University of Pittsburgh at Greensburg References: http://people.math.sc.edu/burkardt/presentations/polyominoes 2018 upg.pdf Marcus Garvie, John Burkardt, A New Mathematical Model for Tiling Finite Regions of the Plane with Polyominoes, submitted. 2 / 99 The Portland Vase 25AD - A Reconstruction Problem 3 / 99 Ostomachion - Archimedes, 287-212 BC 4 / 99 Tangrams - Song Dynasty, 960-1279 5 / 99 Dudeney - The Broken Chessboard (1919) 6 / 99 Golomb - Polyominoes (1965) 7 / 99 Puzzle Statement 8 / 99 Tile Variations: Reflections, Rotations, All Orientations 9 / 99 Puzzle Variations: Holes or Infinite Regions 10 / 99 Is It Math? \One can guess that there are several tilings of a 6 × 10 rectangle using the twelve pentominoes. However, one might not predict just how many there are. An exhaustive computer search has found that there are 2339 such tilings. These questions make nice puzzles, but are not the kind of interesting mathematical problem that we are looking for." \Tilings" - Federico Ardila, Richard Stanley 11 / 99 Is it \Simple" Computer Science? 12 / 99 Sequential Solution: Backtracking 13 / 99 Is it \Clever" Computer Science? 14 / 99 Simultaneous Solution:
    [Show full text]
  • Puzzles from Around the World 5¿ Richard I
    Contents Foreword iÜ Elwyn Berlekamp and Tom Rodgers I Personal Magic ½ Martin Gardner: A “Documentary” ¿ Dana Richards Ambrose, Gardner, and Doyle ½¿ Raymond Smullyan A Truth Learned Early ½9 Carl Pomerance Martin Gardner = Mint! Grand! Rare! ¾½ Jeremiah Farrell Three Limericks: On Space, Time, and Speed ¾¿ Tim Rowett II Puzzlers ¾5 A Maze with Rules ¾7 Robert Abbott Biblical Ladders ¾9 Donald E. Knuth Card Game Trivia ¿5 Stewart Lamle Creative Puzzle Thinking ¿7 Nob Yoshigahara v vi Contents Number Play, Calculators, and Card Tricks: Mathemagical Black Holes 4½ Michael W. Ecker Puzzles from Around the World 5¿ Richard I. Hess OBeirnes Hexiamond 85 Richard K. Guy Japanese Tangram (The Sei Shonagon Pieces) 97 Shigeo Takagi How a Tangram Cat Happily Turns into the Pink Panther 99 Bernhard Wiezorke Pollys Flagstones ½¼¿ Stewart Coffin Those Peripatetic Pentominoes ½¼7 Kate Jones Self-Designing Tetraflexagons ½½7 Robert E. Neale The Odyssey of the Figure Eight Puzzle ½¾7 Stewart Coffin Metagrobolizers of Wire ½¿½ Rick Irby Beautiful but Wrong: The Floating Hourglass Puzzle ½¿5 Scot Morris Cube Puzzles ½45 Jeremiah Farrell The Nine Color Puzzle ½5½ Sivy Fahri Twice: A Sliding Block Puzzle ½6¿ Edward Hordern Planar Burrs ½65 M. Oskar van Deventer Contents vii Block-Packing Jambalaya ½69 Bill Cutler Classification of Mechanical Puzzles and Physical Objects Related to Puzzles ½75 James Dalgety and Edward Hordern III Mathemagics ½87 A Curious Paradox ½89 Raymond Smullyan A Powerful Procedure for Proving Practical Propositions ½9½ Solomon W. Golomb Misfiring Tasks ½9¿ Ken Knowlton Drawing de Bruijn Graphs ½97 Herbert Taylor Computer Analysis of Sprouts ½99 David Applegate, Guy Jacobson, and Daniel Sleator Strange New Life Forms: Update ¾¼¿ Bill Gosper Hollow Mazes ¾½¿ M.
    [Show full text]
  • Nested Reconfigurable Robots: Theory, Design, and Realization
    International Journal of Advanced Robotic Systems ARTICLE Nested Reconfigurable Robots: Theory, Design, and Realization Regular Paper Ning Tan1*, Nicolas Rojas2, Rajesh Elara Mohan1, Vincent Kee3 and Ricardo Sosa4 1 Singapore University of Technology and Design, Singapore 2 Yale University, New Haven, USA 3 Massachusetts Institute of Technology, Cambridge, USA 4 Auckland University of Technology, Auckland, New Zealand *Corresponding author(s) E-mail: [email protected] Received 10 September 2014; Accepted 9 February 2015 DOI: 10.5772/60507 © 2015 Author(s). Licensee InTech. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Keywords Nested reconfiguration, Modular robot, Self- Rather than the conventional classification method, we reconfigurable, Tetromino propose to divide modular and reconfigurable robots into intra-, inter-, and nested reconfigurations. We suggest designing the robot with nested reconfigurability, which utilizes individual robots with intra-reconfigurability 1. Introduction capable of combining with other homogeneous/heteroge‐ neous robots (inter-reconfigurability). The objective of this The design philosophy of reconfigurability has been approach is to generate more complex morphologies for studied and applied to robotics since the 1980s. A number performing specific tasks that are far from the capabilities of reconfigurable robotic systems have been proposed of a single module or to respond to programmable assem‐ thereafter [1, 2, 3]. Many practical applications prove that bly requirements. In this paper, we discuss the theory, reconfigurability is a very valuable design strategy.
    [Show full text]
  • Spectrum Intermediate Math
    Intermediate Algebra Tiles (35 pcs) Tasks 1 Modeling Equations Use the algebra tiles to solve 2x+3 = 4x-3. Model the equation first and then solve for x. Remember the rule about the “zero” pairs 1 -1 X -X 2 Solving for x One less than two times a number is equal to three more than the number. Let x represent the number. Model the equation with the algebra tiles and then solve for x. 3 Three Numbers The sum of three consecutive numbers is 63. Write an equation you could use to solve this problem. Model this with algebra tiles. Solve the equation. What are the three numbers? 4 Modelling to Solve Five times a number is equal to two more than three times a number. Let x represent the number. Model the equation with algebra tiles and then solve for x. 5 What’s the Equation? X X -1 -1 -1 -1 -X X -1 -1 -1 -1 What equation does this represent? Then solve for x. 2| P a g e Intermediate Tangrams (7 pcs per set) Tasks Assorted Colour- No colour choice 1 Tangram Puzzle Build the following design using all the tangram pieces. 2 Tangram Puzzle Build the following design using all the tangram pieces 3 Tangram Puzzle Build the following design using all the tangram pieces 4 Tangram Challenge Try and build a square, triangle, trapezoid, parallelogram and pentagon with 1, 2 ,3 ,4, 5, 6, and all 7 pieces. See how many you can solve, not all may be possible! 5 Puzzle Challenge Arrange the tangrams such that they make 1 large square all together.
    [Show full text]
  • Pentominoes & Tangrams: High School Explorations
    DOCUMENT RESUME ED 465 505 SE 065 864 AUTHOR Decovsky, Fred TITLE Pentominoes & Tangrams: High School Explorations. PUB DATE 2001-03-17 NOTE 16p.; Paper presented at the Annual International Teachers Teaching with Technology Conference (13th, Columbus, OH, March 16-18, 2001). PUB TYPE Guides - Classroom Teacher (052) Speeches/Meeting Papers (150) EDRS PRICE MF01/PC01 Plus Postage. DESCRIPTORS *Graphing Calculators; High Schools; *Mathematics Activities; *Mathematics Instruction; Patterns in Mathematics; *Spatial Ability IDENTIFIERS Pentominoes; Tangrams ABSTRACT This collection of activities is designed to show how graphics display calculators can be used to explore pentominoes and tangrams. Activities include games and puzzles developing spatial relations. Teaching notes, solutions, and calculator instructions are included as are blackline masters. (MM) Reproductions supplied by EDRS are the best that can be made from the original document. U.S. DEPARTMENT OF EDUCATION PERMISSION TO REPRODUCE AND Office of Educational Research and Improvement DISSEMINATE THIS MATERIAL HAS EDUCATIONAL RESOURCES INFORMATION BEEN GRANTED BY CENTER (ERIC) This cument has been reproduced as eived from the person or organization originating it. 1:1 Minor changes have been made to improve reproduction quality. TO THE EDUCATIONAL RESOURCES Points of view or opinions stated in this INFORMATION CENTER (ERIC) document do not necessarily represent official OERI position or policy. Pentominoes & Tangrams High School Explorations T3 international Conference Columbus, Ohio March 1618, 2001 Fred Decovsky, Ed.D. [email protected] Teaneck High School Teaneck, NJ 07666 EST COPY AVAILABLE Activity 1 - Making a set of Pentominoes Each Student will receive five one-inch squares. Using all five of the squares, students will make as many different figures as possible.
    [Show full text]
  • The Games and Puzzles Journal, #8+9
    rssN 0267 -36 9X o+o Incorporatind C HE SSIC S 4r9 G A N{ E S Issues8&gcombined t7 ry Nov 1988 - Feb 1989 {_} g O Copyright reserved P .f-/ Z-/ L E G-f.JELLISS, gg Bohemia Road St Leonards on Sea, TN37 6RJ J o U R_ F{ A T- Subscription t6 per year. GAME T.R.DAWSON INVENTION CENTENARY COMPETITION NIGHTRIDER 1989 - p. 119 TOURNEY - p. L?4 1987-88 POLY- AWARD OMINOES FOR CHESS pp. I22-L25 COMPOSITIONS p. 130 Contents II7 Circular Board Tangram, Hexominoes 13? WHATIS IN A GAME 118 Zines & Mags T26 CHESS VARIANTS 138 NUMEROLOGY & Various Board Games ProgressiV€r Mutation DIGITOLOGY Questions I2O CARD PLAY L28 NEWS & REVIEWS L4L LIBRARY RESEARCH Soccer as a Card Game I29 CHESS SOLUTIONS I42 GEOMETRY NOTES 2(5)SJe , Car(d) Park 130 AWARD 1987-88 143 TOURS & PATHS I22 DISSECTIONS T32 CHESS PROBLEMS I44 WORDS & LETTERS Pentominoes, Geometric 134 REVIEWS -SurveY of I47 Cryptic Crossword Jigsawsr Super-Domino Chess Problem Periodicals 148 MATHEMATICAL ART page 118 THE GAMES AND PUZZLES JOURNAL issue 8+9 ZINES & MAGS Tlte Games and Puzzles Journal. Apologies for the late appearance of this issue. Itve attowuetoworkonmyotherproJects,suchastheChessays. Actual publication date for this issue is 23 April 1989. I hope to catch up by issue L2 at least. Games Monthly. My prediction that this magazine looked like a stayer could not have been ilffii6fr$ITToloed after only four issues. Nominally it is being incorporated into Games International, but this appears to be only a commercial deal, allowing the latter to take over the formerrs subscription list and distribution network, not a combining of editorial input.
    [Show full text]