Homage to a Pied Puzzler
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Snakes in the Plane
Snakes in the Plane by Paul Church A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Mathematics in Computer Science Waterloo, Ontario, Canada, 2008 c 2008 Paul Church I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract Recent developments in tiling theory, primarily in the study of anisohedral shapes, have been the product of exhaustive computer searches through various classes of poly- gons. I present a brief background of tiling theory and past work, with particular empha- sis on isohedral numbers, aperiodicity, Heesch numbers, criteria to characterize isohedral tilings, and various details that have arisen in past computer searches. I then develop and implement a new “boundary-based” technique, characterizing shapes as a sequence of characters representing unit length steps taken from a finite lan- guage of directions, to replace the “area-based” approaches of past work, which treated the Euclidean plane as a regular lattice of cells manipulated like a bitmap. The new technique allows me to reproduce and verify past results on polyforms (edge-to-edge as- semblies of unit squares, regular hexagons, or equilateral triangles) and then generalize to a new class of shapes dubbed polysnakes, which past approaches could not describe. My implementation enumerates polyforms using Redelmeier’s recursive generation algo- rithm, and enumerates polysnakes using a novel approach. -
– Channing Pollock – Robert Harbin – Patrick Page
“To see Cardini is like watching a trick fi lm.” – Patrick Page “I had the greatest magical experience of my life when I watched him perform.” – Robert Harbin “If I had seen him work when I was at the start of my career, I would have scrapped the profession and learned a different trade.” – Channing Pollock 42 MAGIC • august 2007 M192 Cardini_v1_FIN.indd 2 7/12/07 11:41:33 AM “The world’s outstanding stage exponent of pure sleight-of-hand.” – Milbourne Christopher “The greatest single act that ever appeared in the world to my way of thinking.” – Dai Vernon ~By John Fisher~ Magicians today acknowledge that the examples set by the legendary Car- dini — in technique, in suavity, and in career achievement — shone the light for them. It is probable that Cardini has still not been surpassed as both an entertaining and an artistic exponent of pure sleight-of-hand within the limitations of a short vaudeville act. MAGIC • august 2007 43 M192 Cardini_v1_FIN.indd 3 7/12/07 11:41:37 AM There could be no greater contrast between nipulate the cards at all without gloves. So he the fi fth, thimbles and fi re. The digital dexter- the level of sophistication which Cardini’s act practiced with them on and laid the ground- ity was present throughout, but he still per- came to epitomize and his early background. work for the exquisite skill and sensitivity that sisted in being a talking magician upon whose He was born Richard Valentine Pitchford on would come to form his act in later years. -
Eugene Burger (1939-2017)
1 Eugene Burger (1939-2017) Photo: Michael Caplan A Celebration of Life and Legacy by Lawrence Hass, Ph.D. August 19, 2017 (This obituary was written at the request of Eugene Burger’s Estate. A shortened version of it appeared in Genii: The International Conjurors’ Magazine, October 2017, pages 79-86.) “Be an example to the world, ever true and unwavering. Then return to the infinite.” —Lao Tsu, Tao Te Ching, 28 How can I say goodbye to my dear friend Eugene Burger? How can we say goodbye to him? Eugene was beloved by nearly every magician in the world, and the outpouring of love, appreciation, and sadness since his death in Chicago on August 8, 2017, has been astonishing. The magic world grieves because we have lost a giant in our field, a genuine master: a supremely gifted performer, writer, philosopher, and teacher of magic. But we have lost something more: an extremely rare soul who inspired us to join him in elevating the art of magic. 2 There are not enough words for this remarkable man—will never be enough words. Eugene is, as he always said about his beloved art, inexhaustible. Yet the news of his death has brought, from every corner of the world, testimonies, eulogies, songs of praise, cries of lamentation, performances in his honor, expressions of love, photos, videos, and remembrances. All of it widens our perspective on the man; it has been beautiful and deeply moving. Even so, I have been asked by Eugene’s executors to write his obituary, a statement of his history, and I am deeply honored to do so. -
Generating Single and Multiple Cooperative Heuristics for the One Dimensional Bin Packing Problem Using a Single Node Genetic Programming Island Model
Generating Single and Multiple Cooperative Heuristics for the One Dimensional Bin Packing Problem Using a Single Node Genetic Programming Island Model Kevin Sim Emma Hart Institute for Informatics and Digital Innovation Institute for Informatics and Digital Innovation Edinburgh Napier University Edinburgh Napier University Edinburgh, Scotland, UK Edinburgh, Scotland, UK [email protected] [email protected] ABSTRACT exhibit superior performance than similar human designed Novel deterministic heuristics are generated using Single Node heuristics and can be used to produce collections of heuris- Genetic Programming for application to the One Dimen- tics that collectively maximise the potential of selective HH. sional Bin Packing Problem. First a single deterministic The papers contribution is two fold. Single heuristics ca- heuristic was evolved that minimised the total number of pable of outperforming a range of well researched deter- bins used when applied to a set of 685 training instances. ministic heuristics are generated by combining features ex- Following this, a set of heuristics were evolved using a form tracted from those heuristics. Secondly an island model[19] of cooperative co-evolution that collectively minimise the is adapted to use multiple SNGP implementations to gener- number of bins used across the same set of problems. Re- ate diverse sets of heuristics which collectively outperform sults on an unseen test set comprising a further 685 prob- any of the single heuristics when used in isolation. Both ap- lem instances show that the single evolved heuristic out- proaches are trained and evaluated using equal divisions of a performs existing deterministic heuristics described in the large set of 1370 benchmark problem instances sourced from literature. -
March 6 Special Interest Groups DVR ALERT from DAVE
The SPIRIT | Official Newsletter of I.B.M. Ring 1 Meeting Update: March 6th M Arch 2 01 3 Special Interest Groups Volume 13, Issue 3 Inside this issue: The March 6 meeting program will feature “Special Interest Groups.” Three instructors will each simultaneously present 45 minute “hands on” teach-ins. Each instructor will only present 2 programs. You may select Meeting Update 1 any two of the three programs and when you have participated in your first program, you will then move on to your second program choice. DVR ALERT 1 Choices: Magic Past 2 Randy Kalin will present effective but simple card tricks with most being Ring Report 3-4 based on mathematical principles without difficult sleights. Schedule of Events 3 Mike Hindrichs, our close-up contest winner, will present his rope magic including routines and individual moves. Dues Info 4 Harry Monti will present the “Linking Rings.” He will demonstrate a Lecture Info 5 routine and then break it down and show the various elements. JDRF Info 6 These are “hands on” programs to be sure so bring your own cards, JDRF Photos 7 ropes and rings. Contest Winners 7 Harry Monti This Just In 8 NEW MEETING AGENDA 6:30 Magic 101 Quiet Please if you are not involved with Magic 101. 7:00 Refreshments/ Socialize and Jamming sessions 7:30 Special Interest Groups QUOTE: Following the meeting- Workshop and Fellowship till 10PM “Any sufficiently advanced technology is indistinguishable from magic.” DVR ALERT FROM DAVE Arthur C. Clarke, Profiles of the Future: An Inquiry into the Limits of the David Copperfield posted this on Facebook- Possible “Breaking news! Excited to announce that I will be hosting magic on the Today Show EVERY Monday in March! It starts this Monday on NBC.” 2 From The Magic Past \ By Don Rataj Here is an update that I have listed in Magicpedia, however I am missing several years. -
A Combinatorial Analysis of Topological Dissections
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector ADVANCES IN MATHEMATICS 25, 267-285 (1977) A Combinatorial Analysis of Topological Dissections THOMAS ZASLAVSKY Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 From a topological space remove certain subspaces (cuts), leaving connected components (regions). We develop an enumerative theory for the regions in terms of the cuts, with the aid of a theorem on the Mijbius algebra of a subset of a distributive lattice. Armed with this theory we study dissections into cellular faces and dissections in the d-sphere. For example, we generalize known enumerations for arrangements of hyperplanes to convex sets and topological arrangements, enumerations for simple arrangements and the Dehn-Sommerville equations for simple polytopes to dissections with general intersection, and enumerations for arrangements of lines and curves and for plane convex sets to dissections by curves of the 2-sphere and planar domains. Contents. Introduction. 1. The fundamental relations for dissections and covers. 2. Algebraic combinatorics: Valuations and MGbius algebras. 3. Dissections into cells and properly cellular faces. 4. General position. 5. Counting low-dimensional faces. 6. Spheres and their subspaces. 7. Dissections by curves. INTRODUCTION A problem which arises from time to time in combinatorial geometry is to determine the number of pieces into which a certain geometric set is divided by given subsets. Think for instance of a plane cut by prescribed curves, as in a map of a land area crisscrossed by roads and hedgerows, or of a finite set of hyper- planes slicing up a convex domain in a Euclidean space. -
The Dehn-Sydler Theorem Explained
The Dehn-Sydler Theorem Explained Rich Schwartz February 16, 2010 1 Introduction The Dehn-Sydler theorem says that two polyhedra in R3 are scissors con- gruent iff they have the same volume and Dehn invariant. Dehn [D] proved in 1901 that equality of the Dehn invariant is necessary for scissors congru- ence. 64 years passed, and then Sydler [S] proved that equality of the Dehn invariant (and volume) is sufficient. In [J], Jessen gives a simplified proof of Sydler’s Theorem. The proof in [J] relies on two results from homolog- ical algebra that are proved in [JKT]. Also, to get the cleanest statement of the result, one needs to combine the result in [J] (about stable scissors congruence) with Zylev’s Theorem, which is proved in [Z]. The purpose of these notes is to explain the proof of Sydler’s theorem that is spread out in [J], [JKT], and [Z]. The paper [J] is beautiful and efficient, and I can hardly improve on it. I follow [J] very closely, except that I simplify wherever I can. The only place where I really depart from [J] is my sketch of the very difficult geometric Lemma 10.1, which is known as Sydler’s Fundamental Lemma. To supplement these notes, I made an interactive java applet that renders Sydler’s Fundamental Lemma transparent. The applet departs even further from Jessen’s treatment. [JKT] leaves a lot to be desired. The notation in [JKT] does not match the notation in [J] and the theorems proved in [JKT] are much more general than what is needed for [J]. -
13. Mathematics University of Central Oklahoma
Southwestern Oklahoma State University SWOSU Digital Commons Oklahoma Research Day Abstracts 2013 Oklahoma Research Day Jan 10th, 12:00 AM 13. Mathematics University of Central Oklahoma Follow this and additional works at: https://dc.swosu.edu/ordabstracts Part of the Animal Sciences Commons, Biology Commons, Chemistry Commons, Computer Sciences Commons, Environmental Sciences Commons, Mathematics Commons, and the Physics Commons University of Central Oklahoma, "13. Mathematics" (2013). Oklahoma Research Day Abstracts. 12. https://dc.swosu.edu/ordabstracts/2013oklahomaresearchday/mathematicsandscience/12 This Event is brought to you for free and open access by the Oklahoma Research Day at SWOSU Digital Commons. It has been accepted for inclusion in Oklahoma Research Day Abstracts by an authorized administrator of SWOSU Digital Commons. An ADA compliant document is available upon request. For more information, please contact [email protected]. Abstracts from the 2013 Oklahoma Research Day Held at the University of Central Oklahoma 05. Mathematics and Science 13. Mathematics 05.13.01 A simplified proof of the Kantorovich theorem for solving equations using scalar telescopic series Ioannis Argyros, Cameron University The Kantorovich theorem is an important tool in Mathematical Analysis for solving nonlinear equations in abstract spaces by approximating a locally unique solution using the popular Newton-Kantorovich method.Many proofs have been given for this theorem using techniques such as the contraction mapping principle,majorizing sequences, recurrent functions and other techniques.These methods are rather long,complicated and not very easy to understand in general by undergraduate students.In the present paper we present a proof using simple telescopic series studied first in a Calculus II class. -
Open Problem Collection
Open problem collection Peter Kagey May 14, 2021 This is a catalog of open problems that I began in late 2017 to keep tabs on different problems and ideas I had been thinking about. Each problem consists of an introduction, a figure which illustrates an example, a question, and a list related questions. Some problems also have references which refer to other problems, to the OEIS, or to other web references. 1 Rating Each problem is rated both in terms of how difficult and how interesting I think the problem is. 1.1 Difficulty The difficulty score follows the convention of ski trail difficulty ratings. Easiest The problem should be solvable with a modest amount of effort. Moderate Significant progress should be possible with moderate effort. Difficult Significant progress will be difficult or take substantial insight. Most difficult The problem may be intractable, but special cases may be solvable. 1.2 Interest The interest rating follows a four-point scale. Each roughly describes what quartile I think it belongs in with respect to my interest in it. Least interesting Problems have an interesting idea, but may feel contrived. More interesting Either a somewhat complicated or superficial question. Very interesting Problems that are particularly natural or simple or cute. Most interesting These are the problems that I care the most about. Open problem collection Peter Kagey Problem 1. Suppose you are given an n × m grid, and I then think of a rectangle with its corners on grid points. I then ask you to \black out" as many of the gridpoints as possible, in such a way that you can still guess my rectangle after I tell you all of the non-blacked out vertices that its corners lie on. -
Hexaflexagons, Probability Paradoxes, and the Tower of Hanoi
HEXAFLEXAGONS, PROBABILITY PARADOXES, AND THE TOWER OF HANOI For 25 of his 90 years, Martin Gard- ner wrote “Mathematical Games and Recreations,” a monthly column for Scientific American magazine. These columns have inspired hundreds of thousands of readers to delve more deeply into the large world of math- ematics. He has also made signifi- cant contributions to magic, philos- ophy, debunking pseudoscience, and children’s literature. He has produced more than 60 books, including many best sellers, most of which are still in print. His Annotated Alice has sold more than a million copies. He continues to write a regular column for the Skeptical Inquirer magazine. (The photograph is of the author at the time of the first edition.) THE NEW MARTIN GARDNER MATHEMATICAL LIBRARY Editorial Board Donald J. Albers, Menlo College Gerald L. Alexanderson, Santa Clara University John H. Conway, F.R. S., Princeton University Richard K. Guy, University of Calgary Harold R. Jacobs Donald E. Knuth, Stanford University Peter L. Renz From 1957 through 1986 Martin Gardner wrote the “Mathematical Games” columns for Scientific American that are the basis for these books. Scientific American editor Dennis Flanagan noted that this column contributed substantially to the success of the magazine. The exchanges between Martin Gardner and his readers gave life to these columns and books. These exchanges have continued and the impact of the columns and books has grown. These new editions give Martin Gardner the chance to bring readers up to date on newer twists on old puzzles and games, on new explanations and proofs, and on links to recent developments and discoveries. -
Gemblo and Polyhex Blokus
with John Gough < [email protected]> Gemblo and Polyhex Blokus Blokus joined together whole-edge to whole-edge. Gemblo is one of the possible polyhex Blokus is an abstract strategy board game games that might be invented. Why for 2 to 4 players. It uses polyominoes obvious? Because both Blokus and Blokus WHicH are plane geometric lgures formed Trigon used families of shapes made from by joining one or more equal squares edge regular polygons that tessellate. How many to edge refer &igure . 0olyominoes HaVe are there? been described as being “a polyform whose cells are squaresv and they are classiled Gemblo according to how many cells they have. ie. number of cells. Wikipedia, 2017 March In 2005, Gemblo was created by Justin Oh 19). Polyominoes and other mathematically in Korea. It is an abstract strategy board patterned families of shapes were invented game with translucent, coloured pieces, by Solomon Golomb, and popularised by each of which is made up of one to lve hex- Martin Gardner. agons. The six colours are clear, red, yellow, green, blue, and purple. Despite the obvious similarities to Blokus, Oh has stated that when he was inventing Gemblo he did not know about Blokus. The name is based on the word ‘gem’, alluding to the gem-like colours used for the play- ing pieces and ‘blocking’—a central feature of playing. The size of the playing board depends on the number of people playing. Figure 1: Examples of polyominoes With players using a hexagonal shaped board that has sides of 8 unit-hexagons. Blokus—using squares—has a sister- game called Blokus Trigon that uses poly- Playing Gemblo iamonds, those families of shapes made s Gemblo can be played as a one- from unit-sided equilateral triangles joined person puzzle or solitaire, or by whole-edge to whole-edge. -
Tangram Evolutif
Tangram Évolutif à Ronald Read, pionnier de l'univers du Tangram sans qui ce livre n'existerait pas 1 2 Tangram Évolutif La nature a une perfection à elle, surprenante, et qui résulte d'une addition de limites. La nature est parfaite parce qu'elle n'est pas infinie. Si on comprend les limites, on comprend comment le mécanisme fonctionne. Le tout est de comprendre les limites. Alessandro Baricco, Océan mer 3 4 Tangram Évolutif Le Tangram est un drôle de jeu. Son apparence est simple mais l'objet est insolite avec ses pièces géométriques qui se ressemblent et s'assemblent. Le manuel de jeu est un catalogue de formes variées – des silhouettes noires de bonshommes, des chats, des théières, etc. – que l'on doit reconstituer. De prime abord, il s'agit d'une sorte de puzzle destiné à un public assez jeune. Personnellement, je n'ai pas vraiment été attiré par cet aspect traditionnel du jeu mais j'en aimais le concept au point de vouloir m'en fabriquer en bois, en carton... Plus tard, un professeur de technologie de mon entourage qui voulait le faire fabriquer à ses élèves me posa une question au sujet de ce jeu et je commençais, pour lui répondre, à m'intéresser aux formes convexes qui étaient réalisables. Je m'étonnais qu'il n'en existait que treize, et me demandais si avec d'autres pièces on aurait pu en obtenir davantage. Je crayonnais des découpages de carrés et commençais des inventaires, puis je me dis que ce serait plus commode de chercher les formes convexes réalisables avec un jeu en programmant un ordinateur pour cela.